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Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related
death, but its pathogenesis is still unclear. As the disease is involved in multiple biological
processes, systematic identification of disease genes and module biomarkers can
provide a better understanding of disease mechanisms. In this study, we provided a
network-based approach to integrate multi-omics data and discover disease-related
genes. We applied our method to HCC data from The Cancer Genome Atlas (TCGA)
database and obtained a functional module with 15 disease-related genes as network
biomarkers. The results of classification and hierarchical clustering demonstrate that
the identified functional module can effectively distinguish between the disease and the
control group in both supervised and unsupervised methods. In brief, this computational
method to identify potential functional disease modules could be useful to disease
diagnosis and further mechanism study of complex diseases.

Keywords: differential partial correlation network, hepatocellular carcinoma, functional module identification,
multi-omics data, biomarkers

INTRODUCTION

Hepatocellular carcinoma is the second most common cause of cancer-related death, with a low
5-year relative survival rates (Heimbach et al., 2018; Siegel et al., 2020) in the world. In recent
years, a lot of research has been devoted to discovering disease mechanisms and disease-related
genes for HCC. The traditional biological experiment takes a lot of time, cost, manpower, and
material resources. To some extent, the methodology of computational biology may not be limited
by these factors. Currently, many researchers study diseases by differential expression genes,
considering genes with significant expression differences between cancer and normal tissue lead
to cancer (de la Fuente, 2010). However, the onset of a complex disease is not caused by the
expression change of a single gene but the dysfunction of the relevant system (Liu et al., 2016, 2019).
Consequently, focusing only on differential expression of genes will lead to lots of key information
of the disease being neglected. In comparison, the network-based approaches can discover disease
progression by inspecting regulatory relationships between genes. Recently, a differential co-
expression network was proposed to find out the alterations in network structure between normal
and disease samples (de la Fuente, 2010). The protein interaction or gene regulation only occurred
in one of the normal or disease status may be associated with the disease progress, which can be
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used to recognize disease-related changes in the regulatory
system (Liu et al., 2012; Liu and Chang, 2016).

The conventional method of constructing a gene regulation
network is usually to calculate the correlation coefficient between
genes, but the Pearson correlation coefficient cannot be used to
detect the direct regulation between genes (Zuo et al., 2014).
The partial correlation coefficient can be used to eliminate
the indirect regulation and keep the direct regulation between
genes. In the practical calculation, the computational cost sharply
increases when the order of correlation coefficients increases.
When calculating first-order partial correlation, a fully connected
network will take the most time, about O

(
n3), and it will compute

faster in a sparse network (de la Fuente et al., 2004). Therefore,
first-order partial correlation is appropriate to construct a gene
regulation network even for large-scale data.

The disease progression is involved in biological processes
on multiple layers, such as the genome, transcriptome, and
epigenomics. For example, promoter hypermethylation can lead
to the silencing of genes functioning in some cancer-related
pathways, such as DNA repair and cell cycle regulation (Esteller,
2007). Information at different levels can complement each other.
The joint analysis of multi-omics data can contribute to a better
understanding of complex disease mechanisms and help the
identification of disease biomarkers (Yan et al., 2018).

In this paper, we proposed a new method to identify disease
genes by multi-omics data integration and network analysis.
Based on gene expression data, we constructed a differential
gene co-expression network. In particular, the gene co-expression
network is not constructed by the Pearson correlation coefficient
between genes but by the partial correlation coefficient, which
reduces the indirectly related edges in a network. In addition,
we also integrated DNA methylation data to identify edges
that also change in methylation level. As supplementary
information, single nucleotide variant data are used to prioritize
genes according to the frequency of variation. Subsequently,
a gene can be predicted as a disease-related gene if the gene
occurred more variation and connect to more edges altered
in both gene expression and DNA methylation levels. We
applied the method to the HCC dataset from the TCGA
database1. Finally, 15 genes are identified as disease-related
genes, some of which have been already reported as tumor
genes in the Cancer Gene Census2 (CGC) (Tate et al.,
2019). Furthermore, the identified disease-related genes can
distinguish tumor samples from normal samples by either
classification or clustering. These results suggest that these
predicted disease-associated genes can be used as effective
modular biomarkers for HCC.

MATERIALS AND METHODS

Data and Preprocessing
The RNA-Seq data, DNA methylation data, and SNP data were
obtained from the TCGA database for HCC. The RNA-Seq data

1 https://www.cancer.gov/tcga
2https://cancer.sanger.ac.uk/census

of HCC contains 371 tumor samples and 49 adjacent non-
cancerous tissue samples as normal samples. The RNA-Seq data
were normalized by the FPKM (The Fragments per Kilobase
of transcript per Million mapped reads). We kept genes that
were expressed in more than half of the total samples and
can correspond to the Hugo Symbol for further study. For
DNA methylation data, the Beta value was used to estimate the
methylation level for each CpG site, and the sites that map to
multiple genes or contain “NA” were filtered out. In addition, we
used SNP data that are processed by MuSE Variant Aggregation
and Masking workflow.

The protein-protein interaction (PPI) network of humans
was obtained from the STRING database with version 11.03

(Szklarczyk et al., 2019) which consisted of 11,759,454
interactions as background network. Each interaction in
STRING PPI was assigned a confidence score ranged from 1
to 999 to reflect its reliability. We removed repeat interactions
and kept the interactions with a confidence score greater than
500 from STRING PPI. Then, the interactions, which cannot
be corresponded to the gene symbols in RNA-Seq data were
removed from the PPI network. Finally, the background network
with 582,168 interactions was obtained for further analysis.

Construction of Differential Partial
Correlation Network
We separated the RNA-Seq samples into normal and tumor
groups and mapped the expression of genes into the background
network. In each sample group, the partial correlation coefficient
was calculated based on each edge in the background network,
and two partial correlation networks were obtained in normal
and tumor groups. We assumed that the two genes with a non-
significant edge by partial correlation test do not interact or
regulate in the corresponding group. Before calculating partial
correlation, we first check whether there is a correlation between
any two genes. The threshold of the p-value for the Pearson
correlation coefficient was set adjusted value 0.01 using the
Benjamini and Hochberg procedure method. It means that the
edges with the adjusted p-values less than 0.01 were reserved, and
the edges with p-values greater than or equal to 0.01 were ignored
in the new network (Pearson correlation coefficient network,
PCCN). In order to exclude the interference of indirect edges
in PCCN, the partial correlation coefficient was computed for
each edge in PCCN.

The partial correlation coefficient can test whether the
correlation between two variables is linked to the third controlled
variable. It is beneficial to remove the influence of the third
controlled variable and only obtain the direct correlation between
the two variables. For each reserved edge, the partial correlation
coefficient can be calculated:

rij(k) =
rij − rikrjk√

1− r2
ik

√
1− r2

jk

(1)

Where i, j, k are three genes on the PCCN, rij is the Pearson
correlation coefficient between gene i and gene j, rik is the

3https://string-db.org/
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Pearson correlation coefficient between gene i and gene k, rjk is
the Pearson correlation coefficient between gene j and gene k,
and rij(k) represents the partial correlation coefficient of gene i
and gene j controlled by gene k.

The statistic t is computed with the method proposed by
Weatherburn (1968):

t =
rij(k)

√
N − q− 2√

1− r2
ij(k)

(2)

WhereN is the sample size and q is the order of partial correlation
coefficient. Then, we calculated p-values by Student’s t-test and
adjusted p-values by the Bonferroni method. The edges with the
adjusted p-values < 0.05 were retained and the partial correlation
networks (PCORN) were constructed by collecting the significant
edges in normal and tumor status. The differential edges between
PCORN in normal and tumor groups can reflect disease-specific
alterations between normal and tumor status. So, the differential
partial correlation network (Figure 1A) between normal and
tumor status was constructed for detecting tumor-related genes,
and we called it Diff-PCORN.

Construction of Differential Methylation
Network
In the same way, we also divided methylation data into normal
and tumor groups. Each methylation site was mapped into a
gene, and each gene may include more than one methylation site.
The methylation network (MN) can be constructed by calculating
the Pearson correlation coefficient between methylation sites,
which correspond to different genes in Diff-PCORN. Two
methylation networks were, respectively, constructed using the
methylation data in normal and tumor groups. Then, for any
pair of two methylation sites located in two genes of an edge,
their correlation coefficient was compared between methylation
networks in normal and tumor status, and the difference was
regarded as the differential methylation score for this edge. If the
differential methylation score of an edge is greater than 0.7, the
edge should be reserved to compose a differential methylation
network which was named Diff-MN (Figure 1B). When one
gene was mapped to multiple methylation sites, more than one
differential methylation score may be computed for an edge.
In that situation, the maximum was retained as the differential
methylation score.

Data Integration and Disease-Related
Genes Identification
In SNP data, genes were ordered by their variation frequency. For
each sample, if mutations occurred on one or more sites in a gene,
the gene was considered mutated in this sample. For each gene, its
variation frequency was defined by the ratio of samples in which
it has mutated to all samples in SNP data.

A three-step process was used to identify the potential disease-
related genes for HCC. Firstly, the genes with a degree greater
than 30 in the Diff-PCORN were chosen as the first candidate
gene set. Secondly, the genes with a degree greater than 15
from the Diff-MN were chosen as the second candidate gene

set. Thirdly, we obtained the overlapped genes between the
two candidate gene sets and ranked the overlapped genes using
ascending variation frequency (Figure 1C). The top 15 genes with
the most frequent variation were identified as potential disease-
related genes or module biomarkers (if variation frequency is the
same in two genes, the gene with a greater degree in Diff-PCORN
was chosen first).

Validation of the Identified
Disease-Related Genes
In order to validate the ability of disease-related genes to
recognize cancer samples, we used them to distinguish normal
samples from tumor samples. Support vector machine (SVM)
algorithm was utilized for sample classification with the
expression of the disease-related genes. In addition, the receiver
operating characteristic (ROC) curve and the area under the
ROC curve (AUC) were used to evaluate the performance of
classification. Furthermore, to test whether the disease-related
genes could identify samples in unsupervised learning, we
utilized the hierarchical clustering method to distinguish normal
and tumor samples. The single linkage with cityblock distance
(Ren et al., 1998) was used in the clustering method, and the
clustering result was visualized by heat map. SVM and ROC curve
were implemented by Scikit-learn package (Python machine-
learning library) (Pedregosa et al., 2011). Hierarchical clustering
was implemented with the SciPy package4. Meanwhile, another
independent liver cancer dataset from the GEO database (ID:
GSE14520) was used to validate the availability of the potential
disease-related genes (Roessler et al., 2010, 2012; Zhao et al., 2015;
Sun et al., 2017; Wang Y. et al., 2019).

Functional Verification of Module
Biomarkers
The hypergeometric test was utilized to estimate the enriched
significance of the module biomarkers to known tumor genes
from the CGC database. The formula of the hypergeometric test
is as follows:

P (X ≥ x) = 1−
x−1∑
k = 0

(
M
k

) (
N−M
n−k

)
(
N
n

) (3)

Where N is the total gene number of RNA-Seq dataset,
M is the number of known cancer genes, n is the number
of the potential disease-related genes that we identified, x
is the number of genes that overlap between known cancer
genes and identified potential disease-related genes,

(
M
k

)
is

a combinatorial number that represents all the combinations
about selecting k elements out of M elements without repeating,
and P is the statistical significance of the enrichment test. The
enrichment analysis was also tested for the potential disease-
related genes in hepatocellular carcinoma and cancer pathway
from the KEGG database.

4https://scipy.org/
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FIGURE 1 | The flowchart for data integration. (A) Construction of differential partial correlation network (Diff-PCORN). After constructing the initial network based on
the PPI network, the edges with a significant Pearson correlation are kept (adjusted p < 0.01) as the PCCN. Then, PCORN is constructed by deleting the
non-significant edges (dotted line in PCCN) with adjusted p-values of partial correlation greater than or equal to 0.05. Remove edges in both PCORN (disease) and
PCORN (control). (B) Construction of differential methylation network (Diff-MN). Pearson correlation coefficient can be calculated between methylation sites if there
are interactions between their corresponding genes. Every edge is assigned a score by the maximum value of correlation difference between MN (disease) and MN
(control). The edge with a score greater than 0.7 forms the Diff-MN. (C) Rank the candidate genes according to the variation frequency and the top 15 genes are
identified as potential disease-related genes or module biomarkers.

RESULTS

Identifying Disease Genes Across
Multiple Differential Networks
The disease-associated genes identified from gene expression
data, DNA methylation data, and SNP data in disease may cause
changes in these three aspects coordinately. Thus, we built the
network gradually and integrated the three datasets to find out
the potential cancer genes.

There are 582,168 edges and 16,264 nodes on the PPI network
from the STRING database after filtering the RNA-Seq data. We
separately calculated the Pearson correlation coefficient based on
the background networks in the tumor group and normal group
and reserved the edges with a significant correlation coefficient
(adjusted p< 0.01). In the tumor group, 332,092 edges and 15,626
nodes were retained; similarly, 206,361 edges and 14,114 nodes
were kept in the normal group. Although the retained edges are
significant, the direct correlation and indirect correlation are still
indistinguishable. In order to filter out the indirect edges from the
network, we utilized partial correlation analysis and eliminated

the non-significant edges with the adjusted p-values of partial
correlation coefficient greater than or equal to 0.05. In this way,
we obtained PCORNs with 58,195 edges and 15,353 nodes in the
tumor group and 20,290 edges and 12,841 nodes in the normal
group. After removing 10,646 common edges in both tumor and
normal status, Diff-PCORN consisted of the remaining edges
only in one PCORN in either tumor or normal. There were 15,439
nodes and 57,193 edges in Diff-PCORN, of which 47,549 edges
came from the tumor network, and another came from normal.
We considered that the more edges a gene connected in Diff-
PCORN, the more likely it played an important role in tumor
progression. Therefore, 269 genes with a degree greater than 30
were selected from Diff-PCORN as a candidate tumor-related
gene set. Then, we performed functional enrichment analysis
for these genes using DAVID (Huang et al., 2009), and they
are enriched into the cell cycle, adherens junction, and viral
carcinogenesis pathways (Supplementary Table 1).

In addition, some edges were also altered from the normal
to tumor group in the methylation space. In total, 44,034
edges with 13,052 nodes of Diff-PCORN corresponded to the
methylation data. Since one gene may be mapped to more than
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one methylation site, we used the most significant change of
the methylation site pair to represent the score of an edge. For
example, if A-B is an edge in Diff-PCORN, gene A includes
two methylation sites a1 and a2, and gene B includes two
methylation sites b1 and b2. Consider four relationships between
paired methylation sites: (a1, b1), (a1, b2), (a2, b1), and (a2,
b2). For the methylation site pair (a1, b1), we calculated the
correlation coefficient both in tumor group (rtumor) and normal
group (rnormal), respectively, and then, the absolute value of
the difference between those two groups (|rtumor − rnormal|) was
calculated as a correlation difference of (a1, b1). The correlation
difference of (a1, b2), (a2, b1), and (a2, b2) can be computed
in the same way. Next, the maximum correlation difference is
assigned as the differential methylation score of edge A-B in
Diff-PCORN. Diff-MN was composed of edges with scores of
more than 0.7, hence 20,570 edges with 9,978 nodes were kept
in Diff-MN. The genes with a degree greater than 15 in Diff-MN
were chosen as the second candidate gene set which contained
244 potential disease genes and they are enriched into pathways
of adherens junction, proteoglycans in cancer, and pathways in
cancer (Supplementary Table 2).

Applying the above criteria, there are 269 genes from the first
candidate gene set and 244 genes from the second candidate
gene set. And, 141 overlapped genes were obtained from the
two candidate gene sets. According to the frequency of variation
in SNP data, the top 15 genes from the overlapped genes were
identified as the final disease-related genes or module biomarkers
(Supplementary Table 3). For gene functions, we found that
some of the disease-related genes are associated with HCC. For
example, BPTF promotes the growth of cancer cells by regulating
the expression of human telomerase reverse transcriptase, and its

high expression is associated with advanced malignancy (Zhao
et al., 2019).DHX9 encodes an RNA helicase, which is an essential
factor in the regulation of Hepatitis B virus DNA replication,
virus circular RNA, and virus protein levels (Sekiba et al., 2018;
Shen et al., 2020). In addition, when the interaction of DHX9
with CDK6 is prevented by a specific lncRNA, the growth of
HCC will be promoted (Wang Y. L. et al., 2019). Furthermore,
after enrichment with DAVID, module biomarkers are mainly
gathered in some pathways, such as HTLV-I infection, cell
cycle, hepatitis B, viral carcinogenesis, and microRNAs in cancer
pathway, which implies that HCC may be linked to viral factors
(Supplementary Table 4).

Furthermore, the predicted module biomarkers connected
to each other and their interactions in the STRING database
(confidence > 0.5) are shown in Figure 2. In different conditions,
disease-related genes and their corresponding interaction
partners demonstrate different structural compositions
(Supplementary Figures 1–4). In PCORN (tumor), disease-
related genes and their partners constituted a subnetwork with
833 edges and 715 nodes. Meanwhile, another subnetwork
of PCORN (normal) was constructed by 109 edges and 122
nodes. We performed pathway enrichment analysis using
disease-related genes and their interaction partners. The results
show all the pathways in the normal group can be found in
the tumor group; however, some pathways, such as the cell
cycle, viral carcinogenesis, and p53 signaling pathway, are only
enriched in the tumor group (Supplementary Tables 5, 6). In
addition, the connection of module biomarkers is different in the
normal and tumor groups. For the partial correlation network,
we can see from Supplementary Figure 1 that there is no edge
between disease-related genes in the normal group; however,

FIGURE 2 | Interaction network of disease-related genes. In total, 29 interactions among 15 disease-related genes are identified by STRING database, and they can
be considered as a disease module. The edge with a higher combined score from the STRING database is wider, and the node with the higher degree is bigger.
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9 out of 29 edges from identified disease module still exist in
the tumor group. And we considered that these edges may be
associated with tumors. Although the mechanisms of these
interactions are unclear at present, some genes of these 9 edges
have been reported that are involved in the HCC process, such
as EP300 (Yokomizo et al., 2011), TP53 (Hussain et al., 2007),
and BPTF (Zhao et al., 2019). Therefore, it’s likely that these nine
differential edges present disease-specific change from normal
to tumor status.

Functional Verification of Identified
Module Biomarkers
In order to verify whether the identified disease-related genes
have pathogenic functions, we used known cancer genes for
enrichment analysis. In the Cancer Gene Census database,
723 genes have been confirmed to associate with cancer and
nine of them are also identified in the module biomarkers
(Figure 3 and Table 1). We performed a hypergeometric
test and obtained a significant p-value of 4.6098 × 10−10,
which indicates that the predicted disease-related genes are
enriched into the known cancer genes. Meanwhile, we got

531 genes from the cancer pathway in the KEGG database
(Kanehisa et al., 2004), four disease-related genes enriched in
this pathway, and a p-value of 5.5652 × 10−4. In addition, 168
genes of the hepatocellular carcinoma pathway were obtained,
and we implemented enrichment analysis with a p-value
of 6.4041 × 10−6. The results show that the module biomarkers
are closely related to HCC.

Furthermore, we aimed to test whether the predicted disease-
related genes can distinguish the normal samples from the tumor
samples. Support vector machine (SVM) algorithms are used to
classify samples. To handle the imbalance of samples, we took
the random oversampling approach when training the model.
Through fivefold cross-validation, the AUC is 0.9750 for the ROC
curve (Figure 4A). It indicates that the predicted genes have
favorable classification performance. Moreover, we performed
hierarchical clustering for all samples with the predicted genes.
In the normal sample cluster, 80% of samples were correctly
identified (Figure 4C). In addition, we obtained an independent
gene expression dataset (GSE14520) for HCC. The same methods
were used to validate the predicted genes. Figures 4B,D show
that the AUC is 0.9513 for the ROC curve in classification,

FIGURE 3 | Validation of identified disease module. (A) In total, 723 known cancer genes were obtained from the CGC database and nine of them are identified as
disease-related genes. (B) In total, 168 hepatocellular carcinoma-associated genes were obtained from the KEGG database and four of them are identified as
disease-related genes.

TABLE 1 | Common genes between predicted disease-related genes and known cancer genes.

Cancer-related gene from the CGC
database

Genes involved in cancer pathways from
the KEGG database

Genes in Hepatocellular carcinoma pathway from
the KEGG database

EP300 PIK3CA EP300 TP53

TP53 SF3B1 TP53 CTNNB1

POLQ CTNNB1 CTNNB1 PIK3CA

SMARCA4 ATM PIK3CA SMARCA4

RANBP2
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FIGURE 4 | Results of classification and clustering with identified disease-related genes. (A) ROC curve obtained from classification between tumor and normal
group using fivefold cross-validation. ROC, receiver operating characteristic. AUC, the area under the curve. (B) ROC curve obtained from classification between
tumor and normal group with independent dataset GSE14520. (C) Heat map of hierarchical clustering with single linkage and cityblock distance. (D) Heat map of
hierarchical clustering with the same parameter in independent dataset GSE14520.

and 78% of samples of normal sample clusters were correctly
identified in hierarchical clustering by the module biomarkers.
Besides, when training the SVM model on the original dataset
and directly testing it on the independent dataset, the AUC is
0.8735 (Supplementary Figure 5). The above results demonstrate
that the predicted disease-related genes can effectively separate
tumor and normal samples. It confirmed that the identified
module biomarkers are indeed associated with HCC.

DISCUSSION

In this paper, we put forward an approach to identify the
disease-related genes for HCC by constructing a gene regulation
network at different levels. In addition, other methods can also
identify disease genes. For example, differential expression genes,

which were found by measuring the individual differences of
gene expression levels, can achieve a better result in sample
classification but perform poorly in enrichment analysis. It
is not hard to explain that the differential expression genes
themselves come from a direct numerical classification between
the tumor and normal group; consequently, they make it easier
to separate samples into the two groups. However, dramatic
changes in expression levels of individual genes may not be
the dominant reason for complex diseases, so they cannot
be used to identify the cancer genes from the perspective of
pathogenic function. Furthermore, some studies are also involved
in identifying HCC-related genes. We compared the results
of Gui’s (Gui et al., 2015) and Jiang’s (Jiang et al., 2013)
methods with our method by the enrichment analysis of the
predicted HCC related gene-set. The result of our method is
more significant than other methods in CGC database and
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hepatocellular carcinoma pathway (Supplementary Figure 6). In
the CGC database, p-values are respectively, 4.6098 × 10−10

(our method), 1.3570 × 10−8 (Jiang’s method), and 0.2577
(Gui’s method). In the hepatocellular carcinoma pathway,
p-values are 6.4041 × 10−6 (our method), 8.2039 × 10−6

(Jiang’s method), and 1 (Gui’s method). Besides, the three HCC
related gene-set were compared in the SVM algorithm on an
independent dataset of HCC (GSE39791) (Kim et al., 2014). The
AUC of fivefold cross-validation were 0.9131 (Gui’s method),
0.9286 (Jiang’s method), and 0.9663 (our method), indicating
the predicted HCC genes of our method can better distinguish
normal samples from tumor samples. Gui’s method predicted
target genes based on gene expression profile and Jiang’s method
identified target genes by PPI network analysis. By contrast, our
method also studies the changes in methylation and mutation
aspects, which provide more information to identify HCC-
related genes.

In this study, we used adjacent non-cancerous tissue samples
as normal samples because of few real normal samples in TCGA,
and most studies applied the same criteria (Zhao et al., 2018;
Ding et al., 2019). In RNA-seq data, 371 tumor samples and 49
adjacent non-cancerous tissue samples were used. The 371 tumor
samples were from different individuals, and 49 of them can
match adjacent non-cancerous tissue samples.

In the process of network construction, different threshold
settings and different p-value-adjusted procedures may lead to
different results. When we calculated partial correlation to build
the networks without indirect edges, we actually calculated
the Pearson correlation coefficient and removed non-significant
edges at first, then calculated partial correlation for remained
edges. In the first step, we aimed to construct basic correlation
networks that reflect whether the correlation between any two
genes is significant. When the number of tumors and normal
samples is unbalanced, the network size for tumor and normal
would be seriously skewed, which results in the subsequent
analysis being difficult. Consequently, we use a loose p-value-
adjustment method to reduce the differences of network size
between tumor and normal. On the other hand, the selection
of candidate genes directly depends on their connected edges
number in Diff-PCORN; therefore, it is necessary to minimize
the probability of indirect edges. Hence, we used a strict method
to adjust the p-value of partial correlation to keep a low number
of indirect correlations. Besides, some thresholds were used in
this manuscript, for example, the disease-related genes were
required degree greater than 30 in Diff-PCORN and degree
greater than 15 in Diff-MN, Diff-MN was formed by edges
whose differential methylation score greater than 0.7. When
setting threshold parameter, we used hypergeometric test to
ensure thresholds can be selected from a suitable range. When a
parameter led to a more significant p-value of the hypergeometric
test, the parameter was more likely to become the threshold. The
results of the hypergeometric test in the CGC databases show
changing threshold may affect the number of observed cancer
genes, however, the results were all significant (Supplementary
Figure 7). In addition, the top 15 genes selected from different
thresholds were utilized to classify tumor and normal samples.
SVM algorithms with fivefold cross-validation were performed
on independent dataset GSE39791. The ROC curve and AUC

suggest small changes of thresholds will not bring about a huge
difference in classification.

By integrating multi-omics data based on network analysis, we
identified a disease module and 15 genes as module biomarkers.
All of the 15 genes were highly expressed in the tumor group
with p-values of t-test less than 0.05. Some genes were shown
related to HCC, such as BPTF, DHX9, and EP300. Currently,
some genes were few reported for HCC but they were studied
in other diseases. For example, DNA Polymerase Theta (POLQ)
is an error-prone DNA polymerase involved in the replication
of damaged DNA and repair of DNA double-strand breaks. In
breast tumors, POLQ overexpression is considered to favor the
emergence and survival of proliferating cancer cells (Lemee et al.,
2010). NIPBL cohesin loading factor (NIPBL) is the homolog of
the sister chromatid cohesion 2 and plays an important role in
sister chromatid cohesion, development, DNA repair, and gene
regulation. Down-regulation of NIPBL impairs the DNA damage
response and promotes autophagy. High expression of NIPBL is
associated with poor prognosis in non-small cell lung cancer (Xu
et al., 2015; Zheng et al., 2018). These genes may play a role in
HCC due to the similarities in cancer mechanisms.

We applied this method to kidney renal clear cell carcinoma
(KIRC) data, using the same thresholds and p-value adjusted
procedure to build Diff-PCORN and Diff-MN. In Diff-PCORN,
67,355 edges and 19,400 nodes were retained. In Diff-MN,
10,486 edges and 6,857 nodes were kept. Besides, 296 genes
were chosen as the first candidate gene set with a degree
more than 30 in the Diff-PCORN, 181 genes were selected
as the second candidate gene set with a degree more than
10 in Diff-MN, and 47 genes in the overlap between the two
candidate gene sets. Furthermore, after ranking 47 overlapped
genes, the top 15 genes were predicted as disease-related genes.
After performing enrichment analysis with DAVID, the disease-
related genes were observed in some pathways, such as Pathways
in cancer, Adherens junction, ErbB signaling pathway, and
Proteoglycans in cancer (Supplementary Table 7). Besides, 9
genes of our predictions can be markedly observed in the
CGC database (p = 3.3234 × 10−10), and some genes were
related to renal cell carcinoma. For example, EGFR, epidermal
growth factor receptor, was overexpressed in the majority
of clear-cell renal cell carcinoma and co-overexpression of
EGFR and erbB-2 gene was associated with metastatic disease
(Stumm et al., 1996; Cohen et al., 2007). In addition, SRC
proto-oncogene was related to the processes of proliferation
and survival of cancer cells. The Src family was reported
to contribute to the appearance of malignant phenotypes in
renal cancer cells (Yonezawa et al., 2005; Lue et al., 2015).
Although our method was put forward for HCC, the above
analysis showed the method of data integration can be applied
in other diseases.

There were 108 first-order neighbor nodes with 109 edges
for the 14 disease-related genes, and these genes formed isolated
modules under the level of first-order neighbors in the normal
state (Supplementary Figure 1). The disease-related genes
connected 700 nodes with 833 edges and only formed one
big module in the tumor state (Supplementary Figure 2). It
means that the disease-related genes have more connections and
regulations with other genes in the tumor state. The first-order
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neighbor networks for each disease-related gene are independent
and there is no link between any two networks in the normal
state (Supplementary Figure 1), but the networks are connected
to each other in tumor state (Supplementary Figure 2). From
Supplementary Figure 2, each of the disease-related genes
can connect some other disease-related genes to constitute a
subnetwork. It means these disease-related genes can work
together or regulate each other to affect the tumor onset in HCC.
In the tumor state, these disease-related genes can regulate some
famous oncogenes, like SETD2 and STAG1, but not in the normal
state (Supplementary Figure 3). The differential networks show
the change of regulations and connections from the normal to
tumor state (Supplementary Figures 3, 4). From the differential
networks, we can see that the regulations of the identified disease-
related genes were changed from normal to tumor, and it is more
possible that the disease-related genes take part in the process
of tumor development. For example, gene CREBBP is a known
tumor gene, and it does not show a connection with PIK3CA
in the normal state (Supplementary Figure 1), but it can be
regulated by PIK3CA in tumor state (Supplementary Figure 2).
This means that gene PIK3CA does not directly regulate gene
CREBBP in the normal state, and PIK3CA can affect the tumor
gene CREBBP in the tumor state.

CONCLUSION

In this work, we proposed a method for potential pathogenic
gene identification based on networks and multi-omics data
integration. By applying our method for HCC, we identified
a disease module with 15 potential disease-related genes
after integrating data in gene expression, DNA methylation,
and SNP levels. The results of classification and clustering
demonstrate that the predicted disease-associated genes can
distinguish HCC samples from normal samples effectively by
both supervised and unsupervised learning. Furthermore, we
used known cancer genes from the CGC database and KEGG
database to verify the function of the disease-related genes.
The significant enrichment results suggest that the predicted

disease-related genes can be module biomarkers and are indeed
associated with HCC.
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