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ABSTRACT
◥

Background: Low-dose CT (LDCT) screening trials have shown
that lung cancer early detection saves lives. However, a better
stratification of the screening population is still needed. In this
respect, we generated and prospectively validated a plasma miRNA
signature classifier (MSC) able to categorize screening participants
according to lung cancer risk. Here, we aimed to deeply characterize
the peripheral immune profile and develop a diagnostic immune
signature classifier to further implement blood testing in lung
cancer screening.

Methods: Peripheral blood mononuclear cell (PBMC) sam-
ples collected from 20 patients with LDCT-detected lung
cancer and 20 matched cancer-free screening volunteers were
analyzed by flow cytometry using multiplex panels charac-
terizing both lymphoid and myeloid immune subsets. Data
were validated in PBMC from 40 patients with lung cancer
and 40 matched controls and in a lung cancer specificity set
including 27 subjects with suspicious lung nodules. A qPCR-

based gene expression signature was generated resembling
selected immune subsets.

Results: Monocytic myeloid-derived suppressor cell (MDSC),
polymorphonuclear MDSC, intermediate monocytes and
CD8þPD-1þ T cells distinguished patients with lung cancer from
controls with AUCs values of 0.94/0.72/0.88 in the training,
validation, and lung cancer specificity set, respectively. AUCs
raised up to 1.00/0.84/0.92 in subgroup analysis considering only
MSC-negative subjects. A 14-immune genes expression signature
distinguished patients from controls with AUC values of 0.76 in
the validation set and 0.83 in MSC-negative subjects.

Conclusions:An immune-based classifier can enhance the accu-
racy of blood testing, thus supporting the contribution of systemic
immunity to lung carcinogenesis.

Impact: Implementing LDCT screening trials with minimally
invasive blood tests could help reduce unnecessary procedures and
optimize cost-effectiveness.

Introduction
Lung cancer represents one of themajor burdens for patients and for

the healthcare system with an estimated mortality rate of 22%,
considering all cancer-related deaths (1). In the last decade, large
randomized trials have reported that clear benefits in terms of both
tumor specific and overall mortality can be achieved by promoting
extensive lung cancer screening programs based on low-dose CT
(LDCT; refs. 2–4). On the other hand, limitations of LDCT screening
remain the overdiagnosis, the high number of false positive cases and
the management of suspicious nodules (5). In this scenario, the
identification of noninvasive biomarkers that could be employed either

alone or in combination with LDCT for the early diagnosis of lung
cancer is of extreme interest.

A continuous evolution of antitumor immunity, starting from
preneoplasia to invasive non–small cell lung cancer (NSCLC), has
evidenced a gradual loss of immune activating pathways with con-
comitant increase of immune suppressive pathways, leading to
immune escape (6). Research efforts directed to the identification of
new biomarkers based on the profiles of patient’s immunity recently
achieved remarkable findings. For instance, neutrophils are the most
relevant immune cell type infiltrating lung cancer tissues and the
presence of tumor-infiltrating lymphocytes in the lung tumor micro-
environment (TME) was associated with better survival (6–8). Con-
versely, high numbers of T-regulatory cells (Treg) or pro-tumorigenic
macrophages in the TME were correlated with worse survival (9, 10).

Concerning peripheral blood, higher levels of neutrophils-related
molecules have been found in patients with early-stage NSCLC (11),
while the absolute count of lymphocytes subpopulation or natural
killer (NK) cells was associated with a better prognosis (12). It has also
been demonstrated that the immunoprofiles and/or changes in the
repertoires of the T-cell receptor of circulating T cells are able to
predict response to anti–PD-1 and anti-CTLA4 therapies (13).
Changes in the gene expression profiles of peripheral blood mono-
nuclear cells (PBMC)were already described for early-stage pancreatic
and renal cell carcinoma and could be potentially used as diagnostic
cancer biomarkers (14, 15). Similarly, a PBMC and a whole blood gene
expression classifier were described as able to distinguish nonmalig-
nant from malignant lung nodules (16, 17).

In lung cancer screening settings, we developed and ultimately
validated a plasma microRNA signature classifier (MSC) able to
improve performance of LDCT alone (18–20). The results of the
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prospective BioMILD lung cancer screening trial on 4,119 high-risk
individuals have shown that theMSC test at baseline defines individual
lung cancer risk profiles independently from LDCT result and reduces
unnecessary LDCT repeat (20). In details, MSC showed amajor added
value in LDCTþ participants, where it resulted in a positive predictive
value (PPV) and a negative predictive value (NPV) of 18% and 94% in
discriminating cancerous and noncancerous lung nodules (20). In the
current study, we aimed to test whether differential frequencies of
specific immune cell subsets in the peripheral blood of subjects
enrolled in the BioMILD screening trial could further implement the
performance of the MSC test.

By using multiplex flow cytometry–based approach, we first
assessed whether the frequency of specific immune cell subsets detect-
able in the peripheral blood of subjects enrolled in the BioMILD
screening trial could contribute to discriminate patients with screen-
ing-detected lung cancer from disease-free smokers. A set of immune-
related genes was then selected on the basis of flow cytometry results to
develop an easy-to-use and potentially clinical-grade test to improve
early detection of patients with lung cancer and the accuracy of the
MSC algorithm.

Materials and Methods
Patients’ selection and samples’ collection

Samples composing the training and validation sets were collected
from heavy smokers enrolled in the BioMILD lung cancer screening
trial ongoing in our institution. The training and validation sets
consisted of 20 and 40 PBMC samples collected at the time of tumor
pathological diagnosis andmatched 1:1 for gender, age, pack-year, and
MSC result with screening participants who did not develop lung
cancer in the following 5 years. For the specificity set, 27 additional
PBMC samples were selected from subject with positive CT findings
identified in our institution. Of these, 19 had a diagnosis of lung cancer,
6 of benign disease, and 2 were diagnosed as primary pulmonary
lymphomas (Supplementary Fig. S1). Peripheral blood samples
(20 mL) were collected in K2EDTA tubes and centrifuged to collect
the plasma as previously described (21). Viable PBMC were separated
by density gradient medium centrifugation within 2 hours of blood
collection, using Histopaque-1077 (Sigma Chemicals) and SepMate
tubes (STEMCELL Technologies), following the manufacturer’s
instructions. Isolated PBMC were frozen in RPMI1640 (Lonza)
containing 10% dimethylsulfoxide (DMSO, Sigma) and 30% FCS
(Euroclone) and stored in liquid nitrogen to be then simultaneously
tested by multicolor flow cytometry. The MSC test was prospectively
performed on plasma samples as by standard protocol of the BioMILD
screening trial (21).

Flow cytometry analysis
Multiplex flow cytometry was applied to samples of the training set

composed by 20 patients with LDCT-detected lung cancer and 20
matched controls. Results were confirmed in a validation set composed
by 40 patients and 40 matched controls and a third specificity set
including 27 subjects with clinically detected LDCT suspicious
nodules. Thawed PBMC were incubated with live/dead (Thermo
Fisher Scientific) staining for 30minutes on ice and washed, treated
with Fc blocking reagent (Miltenyi Biotec; 10 minutes at room tem-
perature), before incubating with the different mAbs for 30 minutes at
4�C. Thereafter, samples were washed, fixed, and acquired. The
monoclonal fluorochrome-conjugated antibodies applied are listed in
Supplementary Table S1 and allowed the analysis of immune subsets
defined in Supplementary Table S2.

Samples were acquired by Cytoflex flow cytometer and data were
analyzed with Kaluza software (all Beckman Coulter). Gates were set
on the basis of internal references. The distinct cell subsets were
quantified in terms of frequencywithin PBMCandparent populations.
For quality control (QC) purpose, PBMC of the same cohort (training,
validation, and specificity sets) were evaluated simultaneously, in
separate experimental sessions, with samples randomized within the
same session. Every experiment included PBMC from one or two
healthy donors, stained with all single mAbs plus the mix, to set flow
cytometer compensation. Daily QC included the use of Flow-Check
Pro (Beckman, A63493) and CytoFLEX Daily QC Fluorospheres
(Beckman, B53230), fluorescent microspheres for optical alignment
and fluidics system verification. All used Abs were titrated to reach the
optimal concentration to use in the antibody panel mixes. Single mAb
lots were used within the same experimental session. To detect
polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC)
we applied our verified procedure of reliable quantification in thawed
PBMC, using the ‘doublet exclusion gate’, without the live/dead
exclusion (22).

RT-qPCR
RNA was extracted from PBMC samples following the Maxwell

RSC RNATissue Kit (Promega) protocol, eluted in 50 mL of buffer and
stored at –80�C. Starting from 500 ng of eluted RNA, RT-PCR was
performed using TaqMan Universal Master Mix II (Thermo Fisher
Scientific) and 96-well plates according to the manufacturer’s instruc-
tions using QuantStudio Real-Time PCR System (Thermo Fisher
Scientific). Details of the assays adopted are reported in Supplementary
Table S3.

Raw data were extrapolated using automated background subtrac-
tion and Ct threshold using the QuantStudio Real-Time PCR Software
Version 1.1 (Thermo Fisher Scientific). Ct values were normalized
according to the –DDCt method: HPRT was adopted as housekeeping
gene and the minor expressor as calibrator. Data were further stan-
dardized to the unit variance for computational analysis.

For the analysis of plasmamicroRNAs, theMSC test was performed
as previously described (21).

Computational and statistical analysis
All datawere transformed to the respective log2 value to have better-

behaved data for statistical and computational analysis. Flow cyto-
metry data were obtained using two different lots of reagents: one for
the training and specificity set and one for the validation set. To correct
for the batch effect, flow cytometry data of the training and validation
sets were standardized using the training set as reference. Indeed, given
the high similarity of the two sets in terms of patients and controls
characteristics (Table 1), data of the validation set were scaled to the
mean and SDof the training set. Unsupervised clustering analyses were
performed centering and scaling genes and using one minus correla-
tion and average linkage. The differences between groups were
assessed using the Student t test for continuous variables and x2, or
Fisher exact test (properly selected) for contingency tables. Pearson R
and relative P value was adopted to correlate continuous data with a
normal distribution. All tests were two-sided and a P value < 0.05 was
taken as statistically significant.

To identify immune cell subsets discriminating patients vs. controls
in the training set, class comparison analyses were performed and
features with P value < 0.05 and fold change > 1.75 were selected. The
compound covariate predictormethodwas adopted to define the linear
classifier in the training set. By recursive feature elimination, the
minimum amount of immune subsets able to discriminate patients
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and controls with an AUC > 0.9 was established to define the flow
cytometry–based immune signature classifier (ISC).

The area under the receiver operating characteristic (ROC) curve
method was adopted to estimate the performance of the developed
tests in the training, validation, and specificity sets. The performance of
the ISC diagnostic test in terms of sensitivity (Se), specificity (Sp),
NPV, and PPV, was evaluated by setting the threshold for positivity
as the maximum Youden’s index (J) value in the whole cohort, where
J¼ sensitivityþspecificity-1. For the simulation of the ISC application
in the BioMILD lung cancer screening trial, we considered the
performance of ISC in the validation and lung cancer specificity set
combined.

For the RT-qPCR based ISC, an algorithm using normalized
expression data of genes representative of specific immune subpopu-
lations was defined as follows:

* To maintain interdependence with flow cytometry data, a weight
(Wi) corresponding to the difference between the mean values in
the 3 higher expressors and in the 3 lowest expressors of the
calibration set was given to each normalized gene expression
value (Xi).

* A first immune score for the single-cell subsets was calculated as the
Wi Xi mean value of genes representative of each immune subset.

* To define a scoring system where higher values correspond to
patients, the final ISCwas given by the sum of the specific immune
scores considering the inverse values for the immune subsets lower
in patients than in controls.

Analyses were performed using BRB-ArrayTools v4.6.1 developed
by Dr. Richard Simon and Amy Peng Lam and R software version
3.5.1. Figures were obtained using Microsoft Office 2007 package and
GraphPad Prism version 5.02 statistical software.

Analysis of public datasets
Two public datasets (GSE13255 and GSE108375) were downloaded

from the public Gene Expression Omnibus (GEO) database on

February 14, 2022 (16, 17). To select a population as similar as possible
to that of the volunteers of the screening programs the following filters
were applied. In theGSE13255 dataset, including patients withNSCLC
and non-healthy controls, only current smokers older than 40 were
filtered in. In the GSE108375 dataset, composed by patients with
malignant or benign nodules, current smokers with a pack-years >20
and older than 50 were filtered in. To apply the ISC algorithm,
normalized data were first calibrated on the minor expressor and
standardized to the unit variance. The ISC algorithm was then applied
as described above.

Data availability
The data generated in this study are available within the article and

its supplementary data files. Expression profile data analyzed in this
study were obtained from GEO at GSE108375 and GSE13255.

Results
Patients’ characteristics

To test our hypothesis we selected PBMC samples from the BioMILD
lungcancer screening trial to compose the following cohorts: the training
set comprised 20 patients with lung cancer and 20matched controls, the
validation set comprised 40 patients with lung cancer and 40 matched
controls (Supplementary Fig. S1). In addition, 27 subjects with positive
CT, including 19 with tumor and 8 with non-tumor lung nodules were
analyzed in the specificity set (Supplementary Fig. S1). In all the 3 sets, no
significant differences between patients and controls were observed in
terms of gender, age, smoking habits (pack-year), and MSC risk level
(Table 1). Adenocarcinoma was the main histology type and stage I
tumors were 14 of 20 (70%) in the training set, 25 of 40 (63%) in the
validation set and 9 of 19 (47%) in the specificity set (Table 1).

Peripheral immune cells distinguish patients from controls in
the training set

PBMC samples from the training set were analyzed by flow cyto-
metry using 4multiplex panels (Fig. 1A; Supplementary Tables S1 and

Table 1. Clinico-pathological characteristics of patients (pts) with lung cancer and controls in the training, validation and lung cancer
specificity set. Chi-square or Fisher’s exact test P values are properly reported.

Training Set Validation Set Lung cancer Specificity Set
20 20 40 40 19 8
Lung cancer pts Controls P Lung cancer pts Controls P Lung cancer pts non–Lung cancer pts P

Gender
Female 10 10

1.0000
15 15

1.0000
8 4

1.0000
Male 10 10 25 25 11 4

Age
≤60 9 8

0.7491
16 18

0.8213
4 3

0.6334
>60 11 12 24 22 15 5

Pack-year
<44 8 11

0.3422
16 21

0.2622
14 5

0.6578
≥44 12 9 24 19 5 3

MSC
Positive 14 14 1 25 25

1
9 3

0.6957
Negative 6 6 15 15 10 5

Histology
ADC 13 / 29 / 16 /
Other 7 / 11 / 3 /

Stage
I 14 / 25 / 9 /
II-IV 6 / 15 / 10 /

Fortunato et al.
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S2). Consequential gating strategies were applied to analyze samples of
the training set with the 23 markers characterizing both lymphoid
(Fig. 2A) and myeloid immune subsets, including immune suppres-
sive components (Fig. 2B). At the univariate level, NK-like T CD56neg

significantly differed according to gender (P ¼ 0.0234), C-Mo (P ¼
0.0440), and PMN-MDSC (P¼ 0.0485) according to pack-year, while
TCD8þPD-1þ (P¼ 0.0071) andMoCX3CR1þ (P¼ 0.0070) according
to tumor stage (Supplementary Table S4).

Unsupervised clustering analysis of flow cytometry results identified 4
clusters of sampleswith the larger distance, as reported inFig. 2C. Indeed,
two small clusters were composed exclusively by 6 patients with lung
cancer,whereas the two larger clusters in themiddle included themajority
of the controls (16/20) and 11 of the 14 remaining patients, respectively.
When considering the immune cell tree, two main clusters with the
largest distance can be identified, Cluster A and Cluster B including
immune cell subsets with lower and higher frequency in PBMC samples
of patients comparedwith controls, respectively.Amongmyeloid subsets,
intermediate (CD14þCD16þ), both classical (CD14þCD16neg) and non-
classical (CD14dimCD16þ), Lox1þ and protective (HLA-DRbright)
monocytes were found in Cluster A (lower frequency in patients PBMC
with respect to controls). Conversely, monocytes with inflammatory
(CD14dim), pro-angiogenic (CX3CR1þ) and migration-prone (CCR2þ)
phenotypes, as well as M-MDSC and PMN-MDSC (both HLA-DRneg)
compose Cluster B, i.e., (higher frequency in patients versus controls.
When considering lymphoid markers, all NK and NK-like T were
included in the Cluster A. This cluster also includes T lymphocytes,
activated (CD3þCD8high) and cytotoxic (CD3þCD8þPD-1þ) T cells, as
well as CD4þ effector T cells (CD3þCD4þCD25highCD127þ). Instead,
Tregs (CD3þCD4þCD25highCD127neg), anergic (CD3þCD8þTIM3þ),
and exhausted T (CD3þCD8þPD-1þLAG3þ) characterized by an
immunosuppressive potential were all included in Cluster B.

Development of a phenotypic lung cancer ISC
By class comparison analysis, 8 immune subsets were found dif-

ferentially expressed at the univariate level (P < 0.05) comparing
patients with lung cancer and controls in the training set (Supple-
mentary Table S5). According to the compound covariate predictor
method, the 8 immune cell subsets discriminated patients and controls
with an AUC of 0.95 (Supplementary Fig. S2A). By recursive feature
elimination, 4 immune subsets [M-MDSC, PMN-MDSC, intermediate
monocyte (I-Mo), and T CD8þPD-1þ] maintained an AUC > 0.90
(Supplementary Fig. S2B), and were thus selected to compose a flow
cytometry–based ISC.

PBMCsamples of the validation and specificity setswere analyzed to
confirm our findings. Considering the 4 selected immune subsets
separately, they were concordantly found at higher (M-MDSC and
PMN-MDSC) and lower levels (I-Mo and T CD8þPD-1þ) in patients
and controls of the validation sets and, except for the I-Mo subset, in
the lung cancer specificity set (Fig. 3A).

The performance of the ISC algorithm in discriminating patients
and controls was further evaluated in the training, the validation and
specificity sets. As reported in Fig. 3B, when considering all patients
the AUCs were 0.94, 0.72 and 0.88, respectively. Subset analyses were
also performed in MSC-positive and MSC-negative patients. Despite
the ISC algorithm clearly discriminates patients and controls in both
the subgroups, in MSC-negative patients a better performance of
ISC classifier was observed with higher AUCs values in the training
(AUC ¼ 1.00), the validation (AUC ¼ 0.84), and the specificity set
(AUC ¼ 0.92).

Clinical utility of ISC in lung cancer screening
The performance of the ISC in terms of Se, Sp, NPV, and PPV, was

then estimated and the threshold for positivity defined as the

Figure 1.

High-dimensional flow cytometry analysis. Scheme of immune subpopulation analyzed in patients with lung cancer and controls.
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Figure 2.

The comprehensive peripheral immune cell profile of patients with screening-detected lung cancer and controls. Gating strategies of lymphoid populations (A) and
myeloid populations (B). Plotsmarkedwith “G” are shown to indicate the setting of the gate.C,Unsupervised clustering considering all 32 subpopulation analyzed in
the training set. Dashed lines separate the 4 and the 2 clusters of samples and immune cells at the larger distance (1-correlation), respectively.

Fortunato et al.
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maximum J value in the whole cohort. Results are reported in
Supplementary Table S6: in both the training and validation sets, Se
(95% and 80%, respectively) is higher than Sp (85% and 60%), favoring
a higher NPV (94% and 75%) rather than the PPV (86% and 67%).
Conversely, in the lung cancer specificity set, given the imbalance of
cancerous compared with noncancerous lung nodules, the PPV was
larger than the NPV (89% vs. 67%). Also in this analysis, when

stratifying subjects according to MSC test results, higher values in
terms of Se, Sp, NPV, and PPV were observed in the MSC-negative
subgroup in all the 3 datasets (Supplementary Table S6).

To have a first insight if tumor characteristics such as histo-
logy, stage and nodule size could affect ISC outcome, we consi-
dered all 79 patients with lung cancer belonging to the 3 sets
together. Regarding histology, our cohort is composed mainly of
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Figure 3.

Immune cell subsets discriminate pati-
ents with lung cancer and controls.
A, Box plots reporting the levels of
selected peripheral immune subsets
in patients with lung cancer and con-
trols measured by flow cytometry in
the training, validation and specificity
sets. Asterisks represent the level of
significance by unpaired t test P value
(� , < 0.05; �� , < 0.01; ��� , < 0.001).
B, Performance of the ISC, estimated
using the AUC-ROC method, in the
training, validation and specificity sets,
considering all the analyzed subjects
or stratified according to MSC test
results.
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Adenocarcinoma (ADC; n ¼ 58), but it also includes 8 squamous cell
carcinoma (SCC), 7 small cell lung cancer (SCLC), and 6 carcinoma
not otherwise specified (CaNOS). Indeed, no main differences in
terms of Se were observed, being 49 of 58 (84%) ADC, 7/8 (88%)
SSC, 6/7 (86%) SCLC, and 5/6 (83%) CaNOS positive to ISC. Similar-
ly, stratifying by stage, 42/48 (87%) stage I and 25/31 (81%) stage > I
were positive to ISC; while a positive ISC outcome was observed in
28/32 (87%) patients with lung cancer with indeterminate nodules
(113–260 mm3) and 39/47 (83%) with nodules larger than 260 mm3.

To better have insights about the clinical utility of ISC in the setting
of lung cancer screening, we took advantage of BioMILD data recently
published to simulate its application (20). Focusing on the 655 LDCTþ

BioMILD participants at the baseline, lung cancer was diagnosed
within the first 2 years in 38 of the 209 (18%) MSC-positive and 28
of 446 (6%) MSC-negative participants. By performing the ISC test in
MSC-negative subjects only, 24 of the 28 (86%) malignant nodules
could be recovered by ISC at the cost of 105 of 418 (25%) non–lung
cancer nodules classified as ISCpositive. As a result, theNPVof the two
tests combined would raise from 94% of the MSC alone to 99%, while
maintaining 18% PPV.

Improvement of a molecular lung cancer ISC
To set-up a handy qPCR-based clinical grade assay, a panel of

26 genes representative of the 4 immune cell subsets discriminating
patients with lung cancer from controls was first assessed in RNA
extracted from PBMC samples of 12 screening participants charac-
terized by extreme levels of at least one immune cell subset, according
to flow cytometry data. The full list of genes can be found in
Supplementary Table S3. Genes to be tested were selected on the basis
of the phenotype (CD3D, CD8A, PDCD1, FUT4, CD14 and FCGR3A)
and functional activity (CD274, GZMB, PRF1, IFNG, APBA2, S100A9,
IL6, CCL2, TGFB1, SEMA4B, CCR5, FPR1 and HCAR2) of immune
cell subpopulations as determined by flow cytometry analysis and
published immune cell gene signatures (23–29). In addition, genes
encoding markers specific for immune cell types (ARG1, CEACAM8,
CCL13, S1PR3, CCL26 and GFRA2) were also evaluated (30).

Twenty of the 26 selected genes were detected by RT-qPCR in at
least the 90% of samples. The expression value of each gene was then
correlated with the amount of the represented immune cell subset
considering the 3 highest and the 3 lowest flow cytometry values.
According to our results, 14 genes showed a direct correlation with
the represented immune population (Supplementary Fig. S3): 5
genes were representative of T cells CD8þPD-1þ (CD8A, GZMB,
PRF1, PDCD1 and APBA2), 1 gene represented the I-Mo (GFRA2), 5
(CD274, S1PR3, SEMA4B, TGFb1 and CD14) the M-MDSC and 3
(FUT4, FPR1 and HCAR2) the PMN-MDSC immune subsets.

The 14 genes were thus considered to define the final ISC as
described in the materials and methods section. A molecular based
immunoscore was first defined for each of the 4 immune subsets in
samples of the validation set. Considering the whole series, a positive
direct correlation was found comparing the flow cytometry data with
the molecular immunoscore of each cell subset (Fig. 4A). Once the 4
immunoscores were then combined in the final molecular ISC, the
performance reported an AUC of 0.75 in the entire validation set
(Fig. 4B). Furthermore, consistent with flow cytometry data, the
performance of the molecular ISC was lower in the subset of MSC-
positive subjects (AUC ¼ 0.70; Figure 4C), rather than in MSC-
negative subjects (AUC¼ 0.83; Figure 4D). Even when the molecular
ISC score was dichotomize into positive and negative result to evaluate
Se, Sp, PPV, and NPV, results were similar to those obtained by flow
cytometry (Supplementary Table S7).

Microarray gene expression dataset obtained from PBMC
(GSE13255) andwhole blood (GSE108375) samples in public available
datasets were further analyzed to validate the molecular ISC. After
applying filtering parameters on age and smoking status to more
closely mirror individuals eligible for lung cancer screening trials, 27
patients with NSCLC and 6 with nonmalignant lung disease were
selected in the GSE13255 dataset, and 29 patients with malignant
nodules and 39 with benign nodules were selected in the GSE108375
dataset (Supplementary Table S8). By the microarray platform, the
CD274 gene was not detected in any of the two datasets, while TGFB
was not detected in whole blood samples of the GSE108375 dataset.
These geneswere thus excluded from the classifier for this analysis. The
AUC obtained by applying the molecular ISC was 0.69 and 0.63 in the
GSE13255 and in the GSE108375, respectively (Supplementary
Fig. S4).

Discussion
New advances in immune-oncology have drastically changed the

management for the treatment of patients with lung cancer. Never-
theless, the role of adaptive and innate systemic immunity in lung
carcinogenesis remains poorly understood. Studying peripheral blood
immune cells could thus provide insights into the pathogenesis of lung
tumors and allow the identification of novel biomarkers for early
diagnosis and intervention. In the current study, by taking advantage
ofmulticolorflow cytometry, immunologicmarkers related tomyeloid
lineage and T-cell anergy/exhaustion were included to capture early
disease-related immunologic alterations. We observed differential
frequencies of 4 specific immune cell subsets in the peripheral blood
of patients with lung cancer compared with disease-free smokers in
both the training and validation sets.

Notwithstanding the good performance, difficulties in bringing a
flow cytometry–based assay into clinical practice, where PBMCs
should remain viable from blood withdrawal until the analysis, might
limit the utility of such a test in a general laboratory. Translation of the
flow cytometry assay into amolecular test, which includes qPCR-based
expression values of those genes most representatives of the 4 immune
subsets, revealed to be successful with good correlation between the 2
assays and a significant diagnostic value.

The final molecular ISC was composed by 14 genes representative
of activated T cells and of intermediate monocytes (i-Mo) as well as
of genes characterizing M-MDSC and PMN-MDSC. Downregula-
tion of T cells and of I-Mo genes, which are associated with cancer
immunosurveillance with concomitant upregulation of MDSC in
patients with lung cancer compared with controls are indicators of
an immunosuppressive feature. The role of i-Mo in tumor devel-
opment is still controversial. Indeed, these cells could play a role in
the immune response against pathogens (31) but they are also able
to secrete anti-inflammatory cytokines such as IL10 (32). In patients
with lung cancer, a high number of circulating i-Mos was observed
in the blood compared with controls (33). Regarding the role of
circulating T cells, it has been shown that alterations in specific
T and B cell subsets in the blood of patients with lung cancer were
associated to prognosis (34).

The frequencies of circulatingM-MDSCor PMN-MDSCdiffered in
patients with lung cancer compared with healthy donors and were
associated with the risk of recurrence in resected patients (35). The
importance of PMN-MDSC in enhancing tumor growth and their
immunosuppressive role in TME is well known (36). Furthermore, the
ratio of circulating T cells and PMN-MDSC number was a predictive
biomarker of response in patients treatedwith anti–PD-1 therapy (37).
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Our findings in a cohort of patients with lung cancer detectedwithin
LDCT screening trial suggest that imbalance of specific blood cell
subsets might represent an useful biomarker for screening and early
diagnosis. So far, the characterization of peripheral blood immune cells
and their gene expression content as diagnostic biomarker was
assessed in few studies. Interestingly, a 29-gene signature in PBMC,
able to discriminate patients with lung cancer from controls with
nonmalignant nodules with 91% sensitivity and 80% specificity, was
first identified (17). This signature, composed by genes related to
immune response, NK function and apoptosis, wasmodulated in post-
surgery patients (38). The same authors also reported that differential
expression of 26 genes in PBMC was correlated with survival inde-
pendently from tumor stage. Some of the genes associated to prognosis
were linked to monocytes, myeloid cells and neutrophils (39).

In line with the hypothesis of the current study, our group has
already reported that 24 circulating microRNAs, originating mostly
from lung stromal and hematopoietic cells, compose a miRNA sig-
nature risk Classifier (MSC) able to predict tumor development in
heavy smokers (18, 19, 40). Interestingly MSC also identifies a sub-
group of patients who do not benefit from immunotherapy treat-
ments (41). Full clinical validation of MSC as a companion diagnostic
tool in the BioMILD prospective LDCT screening trial was recently
published (20). The combination of LDCT and MSC biomarker
showed clinical utility in targeting screening intervals on the basis of
initial risk prediction and identified individuals withmajor differences
in lung cancer risk despite similar age and tobacco exposure.

The main limitation of MSC is sensitivity to hemolysis, which leads
to a negative MSC result. In addition, false negative results might

hamper sensitivity of such biomarker. Thus implementing the MSC
test by other complementary biomarkers is crucial to translate the test
into clinical practice. Interestingly the ISC algorithm developed in the
current study showed significantly higher AUCs values in MSC-
negative subsets in the training (AUC ¼ 1.00), validation (AUC ¼
0.84) and lung cancer specificity (AUC ¼ 0.92) sets.

By simulating a chained-rule approach in the context of the
BioMILD screening trial and considering the 655 LDCTþ participants,
ISC was able to increase the NPV from the 94% of MSC alone to 99%.
In accordance with current guidelines, additional radiological exam-
inations are planned for LDCTþ participants after 3 months or one
year according to nodule size, but only 10% actually have cancer (20).
Indeed, with 99% NPV, the 48% (314/655) of LDCTþ screening
participants who are both MSC and ISC negative could avoid addi-
tional unnecessary procedures for up to 2 years (Fig. 5). It should also
be considered that both tests can be performed on a single 5mL blood
sample: MSC using plasma and ISC using PBMC, thus optimizing
time, resources and, more importantly, inducing less stress in screen-
ing participants.

While the strength of this study relies in the direct validation of
immune related biomarkers in the ‘intended to use’ context, given
the availability of prospectively enrolled screening cohorts of smo-
kers at risk of developing lung tumors, nonetheless we acknowledge
a few limitations including the retrospective nature of the study and
the limited number of samples analyzed. On the other hand, the two
GEO datasets that we interrogated as external validation were
unbalanced in term of cases:control ratio and did not include lung
cancer screening series. Moreover, given the different technology
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Development of a RT-qPCR based
lung cancer-related immune-score
(ISC) for the analysis of PBMC sam-
ples. A, Heatmap reporting the corre-
lations (Pearson R) between the gene
expression values measured by RT-
qPCR of 14 genes representative and
the values of the 4 immune subset
(T CD8þ PD-1þ, I-Mo, M-MDSC, and
PMN-MDSC) evaluated by flow cyto-
metry on PBMC samples of the valida-
tion set. Genes are highlighted with
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immune subset/s. ROC curves and
respective AUCs evaluating the dis-
criminatory capacity of the RT-qPCR
based ISC considering thewhole series
(B) as well as the subsets composed
by MSC-positive (C) and MSC-
negative (D) subjects.
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adopted, some of the genes composing the ISC algorithm were not
detected, thus leading to less optimal AUCs (0.69 and 0.63). Further
analyses are needed to prospectively validate the ISC test in larger
LDCT screening cohorts.

Altogether, these findings suggest that an immunosuppressive
systemic immunity could concur to lung carcinogenesis. Hence, a
peripheral myeloid/lymphoid molecular immunoscore can help the
early detection of lung cancer and may implement the accuracy of
other blood biomarkers such as miRNA-based classifier.
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