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ABSTRACT
Exposure to particulate matter (PM) is recognized as a major health hazard, but molecular responses are
still insufficiently described. We analyzed the epigenetic impact of ambient PM2.5 from biomass
combustion on the methylome of primary human bronchial epithelial BEAS-2B cells using the Illumina
HumanMethylation450 BeadChip. The transcriptome was determined by the Affymetrix HG-U133 Plus 2.0
Array. PM2.5 induced genome wide alterations of the DNA methylation pattern, including differentially
methylated CpGs in the promoter region associated with CpG islands. Gene ontology analysis revealed
that differentially methylated genes were significantly clustered in pathways associated with the
extracellular matrix, cellular adhesion, function of GTPases, and responses to extracellular stimuli, or were
involved in ion binding and shuttling. Differential methylations also affected tandem repeats. Additionally,
45 different miRNA CpG loci showed differential DNA methylation, most of them proximal to their
promoter. These miRNAs are functionally relevant for lung cancer, inflammation, asthma, and other PM-
associated diseases. Correlation of the methylome and transcriptome demonstrated a clear bias toward
transcriptional activation by hypomethylation. Genes that exhibited both differential methylation and
expression were functionally linked to cytokine and immune responses, cellular motility, angiogenesis,
inflammation, wound healing, cell growth, differentiation and development, or responses to exogenous
matter. Disease ontology of differentially methylated and expressed genes indicated their prominent role
in lung cancer and their participation in dominant cancer related signaling pathways. Thus, in lung
epithelial cells, PM2.5 alters the methylome of genes and noncoding transcripts or elements that might be
relevant for PM- and lung-associated diseases.

KEYWORDS
biomass combustion; disease
ontology; methylome;
particulate matter;
transcriptome

Introduction

Exposure to ambient particulate matter (PM) is recognized as a
major health hazard, associated with acute respiratory infec-
tions, lung cancer, and chronic respiratory or cardiovascular
diseases.1,2 Whereas industrial and traffic-related pollutants
have been extensively investigated, the number of studies evalu-
ating the impact of air pollution resulting from burning bio-
mass is limited.

Worldwide, biomass fuel represents about 10% of direct
human energy consumption and will remain the main source
of energy for most of humanity.3-6 According to the World
Health Organization, more than 3 billion people are affected by
emissions from biomass fuels, claiming globally over 4 million
deaths per year.7 Epidemiologic and exposure studies have
associated wild land fires, agricultural burning, and residential
wood combustion with a variety of adverse respiratory health
effects, including asthma, chronic obstructive lung disease, and

acute lower respiratory tract infections, but also with cardiovas-
cular effects and lung cancer.3,6 Thus, emissions from residen-
tial energy use have the largest impact on premature mortality
worldwide.5 The use of biomass fuels and wood burning is still
expected to rise due to high fossil energy costs, the desire to use
renewable, CO2-neutral energy sources, the rise in population,
need for cropland, and climate changes.3 Even in developed
countries, residential biomass combustion is a major source of
particle emissions.3

Emissions from industrial or traffic related sources are
essentially under legislation, but residential combustion of bio-
mass fuels, agricultural burning, and forest fires are largely
uncontrolled and may result in particle concentration up to 3
mg/m3 or even higher.3,8 Particles less than 2.5 mm (fine par-
ticles; PM2.5), are considered to be particularly harmful, as they
efficiently evade the mucociliary defense system and are depos-
ited in the peripheral airways, where they can exert their
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pathophysiological mechanisms, linking exposure to ambient
fine particles to diseases.9

Emissions from biomass fuels usually contain this harmful
size range. Their chemical composition substantially depends
on fuel composition and combustion characteristics and is dif-
ferent from industrial or traffic-related particles on which most
health studies have focused.3 However, molecular studies have
demonstrated that particulate matter from different sources
may all induce oxidative stress and cellular inflammatory
responses, potential mechanisms linking PM to respiratory or
cardiovascular diseases and lung cancer.10-13

Adaption to environmental changes occurs by epigenetic
chromatin modifications resulting in durable alterations in
gene expression.14 Indeed, for most of PM-associated diseases,
epigenetic aberrations have been described.15 Correspondingly,
changes in the DNA methylation pattern have been observed
in the presence of ambient PM. Initially, studies determining
methylation changes and its disease relevance have mainly
focused on specific candidate target genes or repetitive elements
in blood DNA, e.g., after exposure to black carbon, cigarette
condensate, or traffic-related particles.16-18 Only lately, global
methylation changes were determined upon high-occupational
PM2.5 exposure.19 Despite the significant impact of PM from
biomass combustion on health, comprehensive genome-wide
methylation studies are still missing.

In our study, we generated profiles of the human methylome
and transcriptome by microarray technologies in the presence
of PM2.5 from biomass combustion using human airway epithe-
lial cells (BEAS-2B) that represent the first barrier to inhaled
extraneous particles. Exposure to PM2.5 from biomass combus-
tion resulted in genome-wide changes of the methylome
including repetitive elements and noncoding transcripts that
may be relevant for lung cancer, inflammation, asthma, and
other PM-associated diseases. Additionally, we filtered 152 dif-
ferentially expressed genes, which were either hyper- or hypo-
methylated. From these genes, 66 were related to lung diseases,
especially to lung cancer. Our results provide first insights on
how changes in the methylation pattern of genes induced by
chronic exposure to PM from biomass combustion may espe-
cially influence the development of various lung diseases.

Results

Characterization of PM2.5 from biomass combustion

PM2.5 was obtained from a biomass power plant. Mineralogical
analysis revealed that the particles mainly consisted of crystal-
line arcanite (K2SO4) or amorphous components (for detailed
composition see Table S1 and Dornhof et al.).20

Methylome of PM2.5-exposed BEAS-2B cells

To analyze whether PM affects the human methylome, human
bronchial epithelial BEAS-2B cells were persistently exposed to
PM2.5 from biomass combustion to accumulate DNA methyla-
tion changes. Cytotoxic effects were excluded by the absence of
caspase-3/7 activity and DNA fragmentation (Fig. S1).
Genome-wide DNA methylation was determined by using the
Illumina Infinium HumanMethylation450 BeadChip (450K)
Array. After 5 weeks, differential DNA methylation was

observed in PM2.5-exposed BEAS-2B cells at 1.29% of the anno-
tated sites (5501 CpGs) (Fig. 1A). The majority of alterations in
DNA methylation were related to hypomethylation (decrease
in Db > 0.02; 4234 CpGs; Fig. 1B). Some individual differen-
tially methylated CpGs were annotated to several different sites
in relation to gene region or distance to CpG island (Fig. 1C/D).

CpG hypo- and hypermethylation events in PM2.5-exposed
BEAS-2B cells occurred frequently in the body of genes or
unrelated to any gene region. Because methylation changes at
CpG island-associated promoter sites have high relevance for
gene expression,14 these sites were further investigated. The
promoter region, including CpGs located in the 50UTR, the
TSS200, and the TSS1500, was hypomethylated at 35.45%
(1501 CpGs) and hypermethylated at 28.02% (355 CpGs) of
the differentially methylated sites (Fig. 1C/D). However, most
of the hypo- and hypermethylation events, observed in the
proximal promoters of PM2.5-exposed cells occurred in pro-
moters not associated with CpG islands (Figs. S2/S3). Only
9.6% (144 CpGs) of the hypomethylated sites and 15.21% (54
CpGs) of the hypermethylated sites in the promoter region
were associated with CpG islands.

Additionally, the number of the differentially methylated
CpG sites in the regions island, N-shelf, N-shore, open sea, S-
shelf, and S-shore were compared with the expected number of
CpG sites, assuming that methylation changes appear equally
distributed in all regions. However, it became evident that CpG
sites located in islands appeared less frequently (negative
enrichment, p<0.05) compared with a relatively high number
of differentially methylated CpG sites (positive enrichment,
p<0.05) located in the shelf or open sea region (Table S2).

Chromosomal distribution of DNA methylation
of PM2.5-exposed BEAS-2B cells

Next, the chromosomal distribution of PM2.5 dependent DNA
methylation was studied (Fig. 2, Table S3). DNA methylation
changes were distributed on all analyzed chromosomes. Most
methylation changes were detected on chromosome 1 (�10% of
either the hypo- or hypermethylated sites). In relation to the total
amount of annotated CpGs per chromosome, hypomethylation
was observed more frequently on chromosomes 1, 16, 17, and 22
(each �1.25%; enrichment tested by x2-test, p < 0.05), whereas
hypermethylation was enriched on chromosome 5 (�0.4%; p <

0.05). Moreover, differential methylation was observed in both
G- and R-bands. The fraction of hypomethylated CpGs com-
pared with hypermethylated CpGs was significantly higher in R-
bands (2868 hypomethylated CpGs; 746 hypermethylated CpGs)
than in G-bands, which stain positive for Giemsa (1353 hypome-
thylated CpGs; 507 hypermethylated CpGs; x2-test, p < 0.05). R-
bands are known for their high gene density.

Functional clustering of differentially methylated genes

Differently methylated genes were functionally clustered by a
gene ontology analysis, using the Enrichr web application.21

Genes with hypomethylated CpGs were most significantly
enriched in pathways associated with GTPase activity, regula-
tory signal transduction to growth factor stimuli and acidic
chemicals, or coded for proteins involved in the architecture of
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the extracellular matrix (p <1.0e-6; Fig. 3A). Genes with hyper-
methylated CpG sites were significantly enriched in pathways
connected to cellular adhesion and pathways responsible for
ion binding, transport, or channel activity (p < 1.0e-5; Fig. 3B).
The affected genes are listed in Tables S4/S5.

PM2.5 treatment affects tandem repeats and the miRNA-
specific methylome

Differential methylation of repetitive DNA by environmen-
tal pollutants might have serious consequences for the
structural integrity of the genome and on transcriptional
activity, consequently affecting human health.22 Therefore,
the methylation profile of these tandem repeats was also

analyzed. Interspersed repeats (long interspersed nuclear
elements, LINEs; short interspersed nuclear elements,
SINEs; long-terminal repeats, LTRs) satellite DNA (simple
sequence repeats, SSRs; satellite) and low complexity regions
(LCRs) were included in the study (Table 1). Reduced
methylation of tandem repeats was prominent, but also
some DNA loci were hypermethylated, indicating poten-
tially impaired functionality of these sites.

Furthermore, the differential methylation of noncoding
transcripts (miRNAs, miRs) was analyzed using positional data
from the miRBase database (http://mirbase.org). Persistent
exposure to PM2.5 significantly modified the methylation pro-
file at 45 CpG loci annotated to 43 miRs. A large part of these
CpGs were located proximal to the promoter and were

Figure 1. Methylome of BEAS-2B cells exposed to PM2.5 for 5 weeks. (A) Percentage of differentially methylated CpG sites in untreated BEAS-2B cells vs. PM2.5-exposed cells
(change in Db>0.02). (B) Percentage of hypermethylation and hypomethylation. (C) Functional genomic distribution of hypomethylated CpGs (upper pie chart) or in relation
to CpG island regions (lower pie chart). (D) Functional genomic distribution of hypermethylated CpGs (upper pie chart) or in relation to CpG island regions (lower pie chart).
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hypomethylated, indicating a potential mechanism for their
transcriptional activation (Table 2).

The direct disease association of miR was examined by the
human microRNA Disease Database v.2.0 (http://cuilab.cn/

hmdd). We found that miRs with a distinct methylation pattern
were prominently involved in lung and PM-associated diseases,
such as lung cancer and neoplasms, asthma, interstitial lung
disease, or pulmonary embolism (Table 2). Moreover, miRs

Figure 2. Ideogram of the human karyotype. R-bands are shown in white, G-bands in gray; the centromere and the coding region for rRNA are shown in red, regions of hypomethyla-
tion in blue, and regions of hypermethylation in yellow. The gender-specific XY-chromosomes were not further analyzed, because BEAS-2B cells originate from various individuals.

Figure 3. Gene ontology of hypomethylated genes (A) or hypermethylated genes (B) following persistent exposure to 100 mg/ml PM2.5 for 5 weeks. The 12 most signifi-
cant functionally linked biologic processes, the number of clustered genes, the p-values and combined scores (in brackets) are shown.

782 K. HEßELBACH ET AL.

http://cuilab.cn/hmdd
http://cuilab.cn/hmdd


were linked to different types of cancer, regulation of inflam-
mation and viral responses, which may also adversely affect
lung physiology. A high proportion of miRs could be allocated
to heart diseases. Several miRs contribute to the metabolic syn-
drome, and affect hypertension, diabetes, or lipid metabolism.
All these diseases can be related to high ambient PM
exposure.1,2,23

Effect of gene methylation on gene transcription

To determine the biologic significance of differential DNA
methylation, gene expression profiling of PM2.5-exposed BEAS-
2B cells was performed using the Human Genome U133 Plus
2.0 Array. Subsequent correlation of the transcriptome with
changes in methylation resulted in 152 individual genes that
show significant congruence (p-value threshold � 0.05; Tables
S6/S7). Mapping of expression vs. CpG methylation of these
genes indicated a trend toward transcriptional activation by
hypomethylation (Fig. 4). Accordingly, 78.42% of the hypome-
thylated CpGs were positioned on upregulated genes and
located in the upper left quadrant. However, a correlation of
hypermethylation and gene repression was not evident (lower
right quadrant, 51.28% of hypermethylated CpGs). This trend
did not change significantly, when only CpG island or pro-
moter-associated alterations in the methylation pattern were
included in the analysis (data not shown).

Gene ontology analysis using the Enrichr web application
allocated genes that show both differential CpG methylation
and transcription to functional properties (Fig. 5, Tables S8/
S9). Functional enrichment of downregulated genes revealed
that PM2.5 largely affected common pathways related to cyto-
kine signaling, cell motility, differentiation, and development.
Upregulated genes were largely involved in biologic responses
to extracellular stimuli, e.g., chemotaxis, cell growth, wound
healing, inflammation, angiogenesis, and responses to foreign
particles or molecules.

PM2.5-associated changes in the methylome and
transcriptome are linked to human disease markers

Exposure to PM2.5 has been epidemiologically related to pul-
monary and cardiovascular disease, metabolic disorders, and
lung cancer.1,2,23 Therefore, a disease ontology approach was
used to find a causal relationship between alterations in the
methylome and transcriptome of PM2.5-exposed BEAS-2B cells
and diseases known to be exacerbated by PM. The 152 genes
that showed both exposure-associated alterations in DNA
methylation and gene expression were included in the analysis.
Biocomputational profiling using the human disease methyla-
tion database (http://bioinfo.hrbmu.edu.cn/diseasemeth), the
Dragon Database for Methylated Genes in Diseases (http://
cbrc.kaust.edu.sa/ddmgd/), and the Human Gene Database

GeneCards� (http://genecards.org) revealed 66 molcular regu-
lators mainly associated with lung diseases, in particular with
lung cancer (Table 3). Extracted genes involved in lung inde-
pendent diseases are listed in Table S9.

Next, the cellular and molecular relevance of the genes asso-
ciated with lung cancer was investigated by a Medline search in
more detail (data are included in Table 3, for references see
Table S10). A significant number of these genes are upregulated
in tumors and modulated by methylation. Some of these genes
are implicated in tumor suppression and improved prognosis,
whereas other genes were found to be largely involved in cellu-
lar transformation, proliferation and cell growth, tumor pro-
gression, metastasis, angiogenesis, inhibition of apoptosis, and
therapeutic resistance. These tumor-promoting genes are
prominently associated with Wnt, Akt, growth factor or hyp-
oxia-related signaling pathways, epithelial-mesenchymal transi-
tion (EMT), and the circadian system. All of these pathways are
central in promoting cellular survival and tumorigenesis.24-30

Discussion

This study demonstrates that long-term exposure to PM2.5

results in genome-wide alterations of the methylome and sig-
nificantly alters gene expression. Predominantly, we observed
hypomethylation of CpG sites, which is consistent with other
studies, analyzing tandem repeats or individual candidate genes
involved in cancer or cardiovascular disease upon exposure to
polluted air.18,31 Extensive DNA hypomethylation can be
induced by oxidative stress.32 Correspondingly, we detected
increased intracellular levels of reactive oxygen species in
chronically PM2.5-exposed lung epithelial cells (Regina Dorn-
hof, unpublished observation).

Although methylation changes were also found in the pro-
moter region, only a minor part of those were located within
CpG islands. The methylation pattern of CpG islands within
the promoter region seems to be most critical for gene expres-
sion,14 but methylation outside this region may also be func-
tionally relevant, because these CpG sites are evolutionarily
conserved and not subject to negative selection. Accordingly, it
was shown that changes in the methylation pattern of non-
CpG island promoters have almost an identical impact on gene
expression and disease relevance as changes in CpG island
promoters.33

PM-mediated variations in DNA methylation were distrib-
uted among most chromosomes, but accumulated at regions
with high gene density. The fraction of hypomethylated to
hypermethylated CpG sites was enriched in the transcription-
ally competent R-bands compared with G-bands and hypome-
thylation was most prominent on the chromosomes 17 and 19,
which contain the highest gene density in the genome. The
observed intra-chromosomal clustering of DNA methylation
changes may be a specific biologic response to PM2.5. However,

Table 1. PM-dependent methylation changes of tandem repeats.

Tandem repeat LINE SINE LTR SSR LCR Satellite DNA

Hypomethylated repeats 202 (1.47%) 199 (1.35%) 92 (1.10%) 8 (0.39%) 3 (0.10%) 0 (0.00%)
Hypermethylated repeats 74 (0.54%) 54 (0.37%) 46 (0.55%) 3 (0.15%) 3 (0.10%) 4 (1.50%)
Analyzed repeats in total 13771 14793 8338 2043 2898 267
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it may also demonstrate that changes in methylation is
enriched at loci of high gene density or simply is a matter of
technical bias by annotation of variable CpG sites to these
regions.

Gene ontology enrichment analysis revealed that hypomethy-
lated genes prominently affected pathways involved in G-protein
signaling, cellular structure and extracellular interaction. Corre-
spondingly, we observed PM-dependent cytoskeletal changes,
such as the formation of stress fibers,20 which might progress to
epithelial barrier disruption in the respiratory tract, systemic
spread of inhaled particles and lung-independent diseases.
Hypermethylated genes were also associated with pathways
involving cellular adhesion, indicating that these pathways are a
dominant field of epigenetic regulation by PM. Loss of cellular
adhesion by repressive hypermethylation might promote cancer
cell progression, permeability of epithelial barriers, and metasta-
sis. Furthermore, hypermethylation also clustered for pathways
responsible for ion binding and shuttling, which might represent
a biologic response to the high salt content in PM2.5.

Hypomethylation was evident at repetitive element-associated
DNA. Likewise, exposure to ambient air pollution or cigarette
smoke induces hypomethylation of interspersed elements (LINE-
1) or tandem repeats.18,31,34 Reduced methylation of interspersed
repeats is associated with genomic instability, overexpression of
oncogenes, and a higher risk of developing and dying from can-
cer.35,36 It has been proposed that hypomethylation of repetitive
elements may also be used as a marker for many other human
diseases, including metabolic disorders, lung injury, cardiovascu-
lar diseases, and associated risk factors.16,37-39 Thus, genome-
wide hypomethylation of repetitive elements might represent a
major mechanism to promote PM-associated diseases.

miRs posttranscriptionally affect gene expression and their
deregulation may be involved in the pathogenesis of human
disease.40 Transcriptional activation of miRs can be regulated

epigenetically41 and exposure to environmental pollutants or
cigarette smoke may result in differential expression of
miRs.42,43 We found methylation changes in some of these miR
loci but also identified others for which relationship to PM
exposure has not yet been reported (miRs listed in Table 2).
Methylation changes were located near to the transcription
start point suggesting functional relevance. A miR-specific dis-
ease database predicted a connection to PM-associated diseases.
Almost all hits were related to the development or progression
of cancer. miR-loci with a tumor suppressive allocation were
frequently hypermethylated,44-48 whereas some oncogenic
miR-loci were hypomethylated.49-55 However, the biologic
functions of miRs are complex and most often tumor-type spe-
cific. Several miRs were also involved in the regulation of
inflammation, response to pathogens, cardiovascular diseases,
and associated risk factors, or various lung specific diseases (see
Table 2). Some of these miRs have been described as useful bio-
markers, such as for early detection of non-small cell lung can-
cer (NSCLC),56 COPD,57 or type 2 diabetes,58 indicating that
their dysregulation might represent an early event in disease
development. Furthermore, dysregulation of some of these

Figure 4. Mapping of gene expression vs. DNA methylation (p-value threshold �
0.05). Each dot represents a single CpG, located on a gene that is both differentially
methylated and expressed upon persistent exposure to 100 mg/ml PM2.5 for 5
weeks. Hypomethylated CpGs located on genes that cluster in the upper left quad-
rant were upregulated, whereas hypermethylated CpGs located on genes that
were downregulated clustered in the lower right quadrant. The number of CpGs in
each quadrant is indicated (UL, upper left quadrant; UR, upper right quadrant; LL,
lower left quadrant; LR, lower right quadrant).

Figure 5. Functional enrichment of genes that show both differential methylation
and transcription following persistent exposure to 100 mg/ml PM2.5 for 5 weeks
identified by the Enrichr web server. The top 14 of the most significant functionally
linked pathways, p-values, combined score, and number of clustered genes are
indicated.
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Table 3. Differentially methylated and expressed genes and allocated lung-specific and lung-associated diseases.
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Gene

log2FC FC
AGPAT9 a 1.65 3.14 x x x +/- +/- +/- - +
ANPEP a 1.44 2.71 x x x + + - * + - x
ANTXR2 a 0.80 1.74 x x x + x
ARHGAP26 a 0.72 1.65 x x - - - - x -
ARID3A a 0.56 1.47 x x + -
ARNTL2 a, b 0.83 1.78 x x x + + + + x x
ASPH c 0.56 1.48 x x x + + + x
CD82 b -0.50 0.71 x x x - + * - - - + + - - -
CDKN1A b, c 0.51 1.42 x x x +/- +/- + +/- + + + +/- x - x x x x
CHST11 a 0.82 1.77 x x x + + + + x x
CLDN1 a 0.91 1.88 x x - + +/- - + - x x x x
DCBLD2 a 1.33 2.52 x + + + + - + + x
DHRS3 a -1.08 0.47 x x + * - - + - x
DMBT1 b 0.60 1.52 x x x x - + + x -
DUSP2 a -1.49 0.36 x x x x - + * + * - - - - + - x
DUSP5 a 0.79 1.73 x x x x - - - +
EGFR b, c 0.84 1.79 x x + + - * + + + * + + + x
EPHA2 b 0.61 1.53 x x + + + + + + + + - + x x x
ERRFI1 a 1.37 2.58 x x x - + + * - - - + - - x
FAM129A a 1.09 2.13 x x + - +/-
FGR b 0.84 1.78 x x x +/- + + - x
FHOD3 a 1.04 2.06 x x + x
FLNB a 0.70 1.62 x x + * - + * + * x
FLVCR2 a 0.52 1.43 x x
FOSL1 a 0.89 1.85 x x x +/- + * + * + + - x x +
G0S2 a, c 1.25 2.37 x x x x - + x
GJB2 b, c 1.02 2.03 x x x +/- + + - x -
HMCN1 a -0.68 0.63 x x - x
KDM4B a 1.10 2.15 x x + + + - * - * x
KRT6A b 1.48 2.79 x x x
LAPTM5 c 1.21 2.32 x x x - + * - + - -
LIFR b -0.69 0.62 x x x - + - - - - x - x
LIMD1 a, c 0.71 1.64 x x x - x + * + * - - + * - - -
LPL b, c -0.98 0.51 x x + x x
MAMDC2 b -2.47 0.18 x x x -
MCC c -2.26 0.21 x x - + - - - -
MEGF6 a 0.86 1.81 x x x +
MICAL2 a 1.00 2.00 x x x + + + + + + x
MSLN b, c -0.53 0.69 x x x + + + + x
MXD1 a 0.94 1.91 x x +/- x + - - + - x x
NPAS2 a 0.77 1.71 x x x - - + x x
NT5E a, c 1.18 2.26 x x - * + + + + - + + x
PI3 b 1.20 2.29 x x x - + * - - - -
PPP1R14A a, b 0.84 1.79 x x x - - + - x
PTGS2 b, c 1.38 2.60 x x x x + + + + + + + + - + x + x
RAB27B a 0.99 1.98 x x x + + + + + + +
RNF145 a -0.64 0.64 x x
SEL1L3 a 0.75 1.68 x x
SERINC2 a 0.94 1.92 x x +
SERINC5 a 0.89 1.85 x x
SH2B3 a 0.93 1.90 x x x + +/- - -
SLC7A11 b 1.58 2.99 x x x + + + + - * + + * - * + + x
SLCO4A1 a 1.14 2.20 x x x
SMAD6 a -0.56 0.68 x x + + - * + - + * -
SOX7 a, b, c 1.09 2.13 x x - + + * + * - + - -
SPOCK1 a, b 1.04 2.05 x x + + - * + - * + x + x
SPP1 b, c 1.06 2.09 x x x x + + + + + x x + x
SV2C a -3.70 0.08 x x x
TCP11L2 a 0.65 1.57 x x
TGFA b 2.04 4.10 x x x + + + + + x x
TSPAN12 a 0.99 1.99 x x x + - x
TSPAN14 a 0.86 1.81 x x x + + +
UST a -0.67 0.63 x x +
ZC3HAV1L a 1.16 2.24 x x x
ZEB1 a 0.63 1.55 x x x + - * + + + + + x - * + + x x
ZNF395 a 0.82 1.76 x x x + - +/- + * + * - - - x

#for references see supplemental Table S8; aDiseaseMeth (http://bioinfo.hrbmu.edu.cn/diseasemeth); bGeneCard
�
(http://genecards.org); cDragon Database for Methyl-

ated Genes and Diseases (http://cbrc.kaust.edu.sa/ddmgd/); daccording to data base search;Cpromoted/overexpressed; ¡suppressed/downregulated; �when absent or
inhibited; x involved but not specified
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miRs frequently correlates with outcome of cancer and is pre-
dictive for refractory therapy,59-61 development or relapse of
disease before clinical manifestation,62 and poor progno-
sis.50,51,63 Additionally, it may lead to hypertension64 and is
also indicative of increased risk of death upon chronic heart
disease65 or post infarction.66 However, further experiments are
needed to prove that methylation changes affect miR and target
gene expression, and thus represent a prominent mechanism
for PM-associated diseases.

Hypomethylation of genes is associated with transcriptional
activation.14 Accordingly, most genes that were hypomethy-
lated also showed increased gene expression. In contrast, only
less than half of the hypermethylated genes showed transcrip-
tional repression. Because hypermethylation of CpG islands
within promoter regions has a high impact on transcriptional
repession,14 these genes were separately analyzed, but also
showed no statistical bias for gene repression (data not shown).
Controversially, increased gene body methylation or high
methylation of shore and shelf regions, flanking demethylated
CpG islands are associated with high gene expression, which
might partly explain lack of correlation.67,68 Nevertheless,
methylated CpG dinucleotides are considered to be mutational
hot spots that cause genetic diseases and cancer through spon-
taneous deamination of 5-methylcytosine (5mC) and its transi-
tion to thymine.14

We functionally clustered differentially methylated genes
according to their up- or downregulated expression. Interest-
ingly, most of the selected genes were repeatedly identified by
different GO terms with potential impact on PM-associated
diseases (genes listed in Tables S8/S9 and referenced in Table
S10). Some antiviral genes were downregulated, whereas other
genes, encoding viral docking sites, were upregulated. This may
facilitate respiratory infections, frequently associated to ambi-
ent PM or cigarette smoke exposure.69,70 Furthermore, genes
that promote respiratory or cardiovascular diseases were pri-
marily upregulated, whereas suppressors of these diseases were
transcriptionally repressed. Encoded proteins are known to be
critically involved in the pathogenesis of acute and chronic
inflammation, asthma, COPD, atherosclerosis, or lung injury,
but also often have pleiotropic functions and thus may addi-
tionally contribute to epithelial-mesenchymal transition,
chronic inflammation and, consequently, to a pro-tumorigenic
microenvironment.71,72 Other allocated genes may directly pro-
mote tumorigenesis by facilitating proliferation, invasiveness,
metastasis, angiogenesis, immune evasion or resistance and are
associated with poor patient survival when upregulated in
tumor cells, tumor stroma, or surrounding tissue (Tables S8/
S9). Transcriptional and functional activation by cigarette
smoke or airborne particulate matter and regulation by methyl-
ation have been independently confirmed for some of these
genes (Tables S9/S10). In contrast, tumor suppressive genes
were transcriptionally repressed in the presence of PM (Tables
S8/S10). Interestingly, some upregulated genes contradictorily
showed hypermethylation whereas some repressed genes were
hypomethylated (Tables S6-S9). This indicates that these genes
may not be exclusively epigenetically regulated, but that addi-
tional, unknown mechanisms might predominate for their
expression. However, most of these genes were repeatedly iden-
tified by multiple gene ontology terms with highest significance

highlighting their potential relevance. Because they represent
central mediators of severe diseases, their reciprocal interaction
and pathophysiological impact on adverse health effects by PM
should be further examined.

In addition, the disease relevance of differentially methylated
and expressed genes was confirmed by disease ontology. Some
of the previously functionally clustered genes were allocated
again and numerous additional genes were identified (Table 3).
Genes, significant for cancer formation and progression were
most highly enriched, indicating that exposure to PM may
facilitate pro-tumorigenic conditions and transform lung epi-
thelial cells to tumor cells. The cancer-associated molecular
functions of these genes are referenced in Table S10. Again,
tumor-promoting genes and genes associated with poor out-
come in cancer patients were generally upregulated, whereas
tumor-suppressive genes were often downregulated. However,
the observed upregulation of some tumor-suppressive genes
might represent an adaptive response to protect from cellular
transformation. Independent studies have shown that many of
these genes can be regulated by DNA methylation (see Table 3
and Table S10) and, interestingly, most of the allocated genes
were associated with the same dominant pro-tumorigenic path-
ways, such as EGF/TGF-b-signaling, EMT including downre-
gulation of E-cadherin, b-catenin activation, and response to
hypoxia. Since these pathways are substantially linked to malig-
nant progression, metastasis, angiogenesis, therapy resistance,
and poor clinical outcome,25-29 it is crucial to further verify
their activation and pathologic function during PM exposure.

In addition to cancer, dysregulation of some of these disease
relevant genes may also exacerbate pulmonary inflammation,
lung injury, severity of respiratory infections, and progression
of COPD and ARDS (Table S10), but also lung-independent
diseases, such as cardiovascular disease, hypertension, meta-
bolic syndrome, neurologic disorders and chronic inflamma-
tion, or cancer in different tissue types (Table S11) and, thus,
may contribute to other common pathological features symp-
tomatic for PM exposure. However, here we used bronchial epi-
thelial cells and therefore our discussion focuses on lung
diseases. Whether PM2.5 induces similar biologic responses in
different cell types needs further investigation.

Our results may open the door for preventive or therapeutic
considerations, e.g., by using dietary compounds to reduce or
reverse detrimental methylation changes when exposed to high
PM2.5 concentrations. It has already been shown that folic acid
can enhance methylation and that DNA methylation inhibitors
can significantly reduce carcinogen-induced lung cancer devel-
opment in animal models.73,74

However, the presented data may have some limitations by
the use of a single fraction of PM from biomass combustion.
Particle composition and cellular responses can vary depending
on the type of biomass and combustion conditions.75 Addition-
ally, the concentration of PM and duration of exposure may
have a direct impact on biologic responses. The given concen-
tration (100 mg/ml), which had no significant impact on cell
viability upon prolonged treatment, was also used in other
studies investigating biocombustion.11 Moreover, our approach
for efficient identification of putative target sites for methyla-
tion changes is additionally supported by the fact that ambient
PM concentrations from biomass combustion may significantly
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exceed industrial or traffic-related emissions,3,8 and that
inhaled PM <2.5 mm may accumulate in the lung paren-
chyma.9 Consistently, health effects are especially evident in
regions with recurrent and intense pollution, but rarely after a
single and short exposure.1 Nevertheless, further studies will be
necessary for targeted validation of the most important top
hits. We also acknowledge that the use of an immortalized cell
line and cell culture conditions may not reflect in vivo pro-
cesses. Moreover, both 5mC and 5-hydroxymethylcytosine
(5hmC) are interrogated by the Illumina 450K array. The
5hmC modification, which is an intermediate of 5mC demeth-
ylation by TET enzymes,76 may be responsible for some of the
activation, correlated with higher promoter methylation.
Finally, the Illumina 450K array does not completely cover the
entire epigenome.

In conclusion, using BEAS-2B cells as a model, we could
observe genome wide DNA methylation changes at CpG sites
residing in disease relevant genes, repetitive elements, and
miRs. Consequently, DNA methylation analysis should be
included in future efforts to understand the interactions
between environmental exposures and PM-associated diseases.
By identifying putative targets and their allocation to selective
prominent disease relevant pathways, there is now an urgent
need to independently confirm the biologic effects of methyla-
tion changes on gene expression, to clarify the interplay of the
affected mediators, and to demonstrate how they contribute to
adverse health effects. This might finally result in the establish-
ment of new sensitive and reliable diagnostic biomarkers and
therapeutic targets for the prevention and/or treatment of PM-
associated diseases.

Materials and methods

Preparation of PM2.5

Preparation of PM2.5 has been described previously.20 Briefly,
bulk fly ash was collected from an electrostatic precipitator of a
medium-scale biomass power plant with a nominal thermal
output of 1.7 MW (B€urger Energie St. Peter eG, St. Peter,
Schwarzwald, Germany), which exclusively combusts chips of
soft wood (mainly spruce) derived from the local forests. The
wood chips included debarked stem wood and branches with a
minimum of 7 cm in diameter (merchantable wood) without
leaves and twigs. The collected ash was subsequently size-
fractionated by a cyclone with an aerodynamic cut-off diameter
of 2.5 mm (Labor f€ur Partikeltechnologie/Mechanische Verfah-
renstechnik, Hochschule Konstanz, Technik, Wirtschaft und
Gestaltung). The resultant size fraction (PM2.5) was then used
for all biologic assays.

Cell culture and PM2.5 treatment

Immortalized bronchial epithelial cells (BEAS-2B; LGC Stand-
ards GmbH, #ATCC-CRL-9609) were maintained in Dulbec-
co’s Modified Eagle Medium/F12 with stable Glutamine (GE
Healthcare, #E15–889) containing 5% fetal bovine serum (Life
Technologies, #10270–106) 100 IU streptomycin and 100 IU
penicillin (Sigma-Aldrich, #11074440001) at 37�C in a humid-
ified incubator. BEAS-2B cells were plated at a density of

0.7 £ 106 cells per 75 cm2 cell culture flasks (Greiner bio-one,
#658175) and were split twice a week after rinsing 2 times
with phosphate buffered saline and subsequently using tryp-
sin, 0.25% EDTA (Life Technologies, #25200056) for detach-
ment. For the experiments, adherent cells were repeatedly
treated with PM2.5 every first day after each passage. Particles
were immersed in BEAS-2B growth medium at a concentration
of 200 mg/ml and sonicated for 20 min (SONOREX RK510H,
BANDELIN electronic GmbH & Co. KG, Berlin, Germany)
immediately before dilution to the cells at a final concentration
of 100 mg/ml PM2.5. The cells were maintained in the same
PM2.5-containing medium until the next passage. For the last
passage, cells were seeded in 6-well plates and were exposed on
the next day with 100 mg/ml PM2.5 for a final time period of
48 h. Control cells were similarly treated in the absence of
PM2.5. After 5 weeks of exposure, cells were harvested for DNA
(DNeasy Blood & Tissue Kit, Qiagen, #69504) and RNA
(RNeasy� Plus Mini Kit, Qiagen, #74136) extraction following
the manufacturer’s instructions. To avoid RNA contamination,
400 mg RNase A (Carl Roth, #7156.1) were added during cellular
lysis for genomic DNA isolation. For each condition (control
and PM2.5-treated cells) 3 independent replicates have been per-
formed for DNA and for RNA isolation.

DNA methylation chip preparation and data analysis

The Illumina HumanMethylation450 BeadChip (450K) array
was performed by AROS Applied Biotechnology A/S (Aarhus,
Denmark) resulting in IDAT files containing the raw data.
Analysis of Illumina 450K v1.2 data was performed with the R
minfi package.77 For the preprocessing of the raw data, the
preprocessQuantile function was used. After calculation of
b-values, 56,235 cross hybridizing probes were removed.78

Differentially methylated positions were identified using the
dmpFinder function and a False Discovery Rate (FDR) of less
than 5% was obtained (q-value cutoff of 0.05). The differences
of averaged b-values of the 4 replicates of each control and par-
ticular matter sample were defined with a cutoff for minimum
difference of 0.02 (decrease in Db > 0.02, hypomethylated;
increase in Db>0.02, hypermethylated). Probes were annotated
using the getAnnotation function implemented in the minfi
package. Enrichment calculations (Table S2) were based on the
x2-test (p < 0.05).

Gene expression and chip preparation

Affymetrix HG-U133 Plus 2.0 oligonucleotide microarrays
(Affymetrix, #900467) were used to determine transcription
levels of more than 54,000 transcripts and variants, represent-
ing over 20,000 genes. RNA was quality assessed (Agilent RNA
6,000 Nanokit, Agilent Technologies, #AGI 5067–1511; Agilent
2100 Bioanalyzer, Agilent Technologies, Waldbronn, Germany)
and quantified (NanoDrop ND-1,000 spectrophotometer,
Thermo Fisher Scientific, Berlin, Germany). The RNA quality
revealed values of RIN � 9.9 for all samples. After reverse tran-
scription of 300 ng total RNA (InvitrogenTM AmbionTM RETRO-
scriptTM Reverse Transcription Kit, Thermo Fisher Scientific,
#AM1710) and generation of cRNA probes (30 IVT Plus Amplifi-
cation Kit, Affymetrix, #902395), 50 mg/mL of biotinylated and
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fragmented cRNA was hybridized to HG-U133 Plus 2.0 arrays.
After washing and fluorescence labeling (GeneChip Hybridization,
Wash & Stain Kit, Affymetrix, #900720), arrays were scanned
(Affymetrix GeneChip Scanner 3000, Affymetrix).

Gene expression analysis

Analysis of the raw expression data was performed using the
simpleaffy79 and the affy R packages80 for uploading and RMA
normalization of the data. The lmFit, contrasts.fit, as well as the
eBayes functions of the limma package81 were used to preprocess
the data, and, finally, the topTable function was applied to iden-
tify differentially expressed genes, with a false discovery rate
defined by the Benjamini-Hochberg method of smaller than 0.05
and each p-value smaller than 0.05. Annotation data of probes
were obtained from the supplier’s homepage (http:/www.affyme
trix.com/support/technical/byproduct.affx?product D hg-u133-
plus, file: “HG-u133_Plus_2.na35.annot.csv,” creation_date D
2014–10–06). If several probe sets were assigned to the same
LocusID either all sets were kept individually since variances
between those values might be a result of alternative splicing of
the related transcript (Fig. 4)82 or the average of the transcripts
were calculated (Tables 3, S6, and S7) for a clearer presentation.

Data plotting

Mean b values of the control probes were plotted against the b
values of the PM-treated samples of all differentially methylated
CpG sites using the ggplot2 package of R.83

Transcription start site (TSS) positions were obtained from
the UCSC website (http://hgdownload.soe.ucsc.edu/golden
Path/hg19/database/; file: “knownGene.txt.gz”) taking into
account the strandedness of annotated genes. Distances of all
differentially methylated CpG positions to their nearest TSSs
were calculated with the help of the DistanceToNearest-
function of the “GenomicRanges” package,84 and plotted
against their corresponding Dbvalue.

The phenogram shown in the manuscript is a collage of 3
different phenograms (for hypomethylated CpGs, hypermethy-
lated CpGs, and Giemsa bands). Each phenogram was gener-
ated using the web application PhenoGram.85 The input data
table for the Giemsa-stained cytobands was obtained from the
PhenoGram website (cytoBand-human.txt, http://visualization.
ritchielab.psu.edu/phenograms/document).

The names of all differentially methylated or differentially
expressed genes were converted with the help of the web applica-
tion GeneCards (http://www.genecards.org/) and the db2db data-
base (https://biodbnet-abcc.ncifcrf.gov/db/db2db.php), and
subsequently analyzed for enrichment using the default param-
eters of the Enrichr platform.21 Plotting of the tabular output of
Enrichr was performed using Python’s matplotlib module
(http://matplotlib.org/).

Overlaps of all differentially methylated CpG positions with
different kinds of repetitive elements (“LINE,” “SINE,” “LTR,”
“Simple_repeat,” “Low_complexity,” “Satellite”) were counted
using the GenomicRanges package in R.84 The repetitive element
positions were downloaded from the UCSC website (http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/database/, file: rmsk.

txt.gz). Overlaps with miRs were counted and incorporated
with the input data from the miRBase website (http://www.mir
base.org/ftp.shtml, file: hsa.gff3; gff-version 3 - miRBase v21,
build GRCh38, hg38). The CpG positions were converted from
hg19 to hg38 by using the liftOver tool (http://genome.ucsc.
edu/cgi-bin/hgLiftOver).

Circos plots were generated using the default settings of
related web application (http://mkweb.bcgsc.ca/tableviewer/).
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