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Rapid growth of single-cell sequencing techniques enables researchers to investigate
almost millions of cells with diverse properties in a single experiment. Meanwhile, it also
presents great challenges for selecting representative samples from massive single-cell
populations for further experimental characterization, which requires a robust and
compact sampling with balancing diverse properties of different priority levels. The
conventional sampling methods fail to generate representative and generalizable
subsets from a massive single-cell population or more complicated ensembles. Here,
we present a toolkit called Cookie which can efficiently select out the most representative
samples from a massive single-cell population with diverse properties. This method
quantifies the relationships/similarities among samples using their Manhattan distances
by vectorizing all given properties and then determines an appropriate sample size by
evaluating the coverage of key properties from multiple candidate sizes, following by a
k-medoids clustering to group samples into several clusters and selects centers from each
cluster as the most representatives. Comparison of Cookie with conventional sampling
methods using a single-cell atlas dataset, epidemiology surveillance data, and a simulated
dataset shows the high efficacy, efficiency, and flexibly of Cookie. The Cookie toolkit is
implemented in R and is freely available at https://wilsonimmunologylab.github.io/Cookie/.
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INTRODUCTION

Single-cell sequencing techniques grew extensively by developing higher cell throughput, improved
sensitivity, better reliability, and more modalities in the last decade (Tang et al., 2009; Peterson et al.,
2017; Svensson et al., 2018; Stuart and Satija, 2019). Among all biological topics and contexts, the
immune system contains a massive amount of highly diverse cells in phenotype and function, and
therefore has benefited enormously from the application of novel single-cell RNA sequencing
(scRNA-seq) in order to investigate the development and activation of immune cells (Bendall et al.,
2014; Goldstein et al., 2019; Winkels et al., 2018; Zhang et al., 2019). In detail, people are able to
characterize diverse properties, for example, transcriptome expression, B cell repertoire (BCR), and
surface protein expression, for a massive amount of single immune cells in a single experiment
(Peterson et al., 2017; Goldstein et al., 2019; Li et al., 2021). This gives people immense power to
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comprehensively scan a whole population of immune cells in
order to identify candidates for further experimental
characterization (e.g., neutralizing and antibody binding)
(Dugan et al., 2021). Since experimental characterizations are
usually resource and human labor intensive, the number of
candidates is usually limited by budget. Therefore, a sampling
strategy that is capable to effectively select compact and
representative samples from a massive population with diverse
properties is highly demanded.

The selection of representative samples to reflect the
properties and maxima proportion of a large population is a
common problem (McCarty et al., 1997; Tominaga, 1998;
Siddiqui et al., 2006; Chen et al., 2016). Compared to
conventional sampling problems, it imposes even more
challenges when selecting samples from a massive biological
dataset, for example, single-cell atlas dataset, as biological
sample selections are often size sensitive and have diverse
properties with different types and importance, and all
properties need to be balanced in the selection. More
specifically, novel biological data, represented by single-cell
atlas data, proposed three specific requirements to
representative sampling. First, the selected samples should be
able to maximally represent the distribution of original
population. Second, the sample size should be as compact as
possible in order to save human labor and reagents. Third,
randomness of selected samples is not preferred in those cases
because subsequent experimental design requires robust and
repeatable results. In general, a sampling strategy that can
achieve the balance between scientific sufficiency and expense
economy with high efficiency is preferred, which can effectively
address the contradiction between growing detection capabilities
and limited experimental capabilities.

Sampling from a large population has been well studied, and
multiple probability and nonprobability sampling methods,
including simple random sampling, systematic sampling,
cluster sampling, stratified sampling, quota sampling, and
snowball sampling, have been proposed for practical sampling
problems (Cochran, 2007; Fricker, 2008). Two implementations
of probability sampling methods, R package “sampling” and
“survey,” have been developed and widely used in the
community (Tillé and Matei, 2006; Tillé et al., 2016; Lumley
and Lumley, 2019). Those conventional methods do not or rarely
use data structure in sampling; therefore, they fail to maximally
balance the given properties. Some minor groups maybe ignored
causing samples in those groups being rejected. Furthermore, the
randomness in the results of probability sampling methods is not
preferred or even strictly prohibited in candidates sampling of
single-cell atlas data and some other contexts (e.g., influenza
surveillance) because robust and repeatable results of each step
are crucial for these studies. In addition, a group of Markov chain
Monte Carlo (MCMC)–based sampling methods, for example,
Metropolis–Hastings sampling and Gibbs Sampling, were
proposed to solve sampling problem from high-dimensional
population (Geman and GemanHastings, 1970;, 1984). These
MCMC-based methods select samples by using data distribution
on multiple properties of whole population, and therefore can
generate much more representative results than conventional

sampling methods. However, MCMC-based sampling methods
are usually used to estimate parameters of unknown distribution
by constructing a big stochastic process from a given population,
or to generate representative samples from a known probability
distribution. For single-cell datasets, the joint probability
distributions of multiple properties are usually unknown and
incalculable, which makes MCMC-based sampling unavailable.
Moreover, after algorithms reach a convergence, MCMC-based
methods prefer to select more samples for better estimation,
which contradicts the requirement of compatibility of single-cell
data selection. In practice, compatibility, stability, and
representativeness on massive population are three priorities
that may not be easily achieved by existing sampling methods.
Meanwhile, a systematic approach to determine an appropriate
sample size is required.

To overcome these challenges, we developed a k-medoids
clustering-based sampling strategy. This method achieves both
stable and representative results and allows users to determine an
optimized sample size by evaluating the coverage of key
properties. We have made Cookie available on a public
repository for users worldwide: https://wilsonimmunologylab.
github.io/Cookie/.

MATERIALS AND METHODS

Datasets
Simulated dataset: We generated a simulated dataset with
10,000 samples and five factors. We generated three-character
type factors (Factors 1–3) and two numerical type factors (Factors
4 and 5). Factor 1 is a character factor with levels from 1—20;
Factor 2 is a character factor with levels from 1—50; Factor 3 is a
character factor with levels from group 1—group 9; Factor 4 is a
numerical factor with integer values within the range of 1–20; and
Factor 5 is a numerical factor with floating number values that
follow a normal distribution (mean = 0, standard deviation = 1).
There are a total of 10,000 records in this dataset, and we also
extract different size subsets (1,000, 2,500, and 5,000) from this
dataset to test the efficiency of our method on different data sizes.

Single-cell B cell dataset: In the vaccine clinical trial, we
applied Cookie to unbiasedly select representative monoclonal
antibodies for expression/characterization from 1,937 antibodies
from 19 subjects, seven transcriptional clusters, four isotypes
(IgA, IgG, IgM, and IgD), various V locus gene usages, and
various CDR3 peptide lengths. We generated these monoclonal
antibodies using single-cell B cell receptor cloning of a pair of the
heavy chain and light chain genes followed by in vitro expression
to further characterize mAb specificity and function to evaluate
the vaccine response.

Human influenza H1N1 surveillance viral sample dataset:
We downloaded all data records of human influenza
H1N1 viruses collected between August 1, 2018 and August 1,
2019 from GISAID database (https://www.gisaid.org/) (Shu and
McCauley, 2017). A total of 8,449 viruses were retained after
removing the redundant records. By comparing the sequences to
the WHO recommended H1N1 vaccine strain A/Michigan/45/
2015 (H1N1) (https://www.cdc.gov/flu/season/flu-season-2018-
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2019.htm), we calculated mutation numbers of the HA1 protein
for all H1N1 viruses. Mutation numbers of H1 epitopes was also
calculated for all H1N1 viruses. The protein sequences were
aligned using MAFFT v7.427 (Katoh and Standley, 2013).
Positions of five epitopes of H1 protein were adopted from the
literature (Li et al., 2020). In this dataset, there are four factors:
month, continent, mutations, and mutations on epitopes. The
month factor is a character factor with 12 levels (2018-08 to 2019-
07); the continent factor is a character factor with six levels
(Africa, Asia, Europe, North America, Oceania, and South
America); mutations is a numerical factor with integer values
within the range of 0–14; and mutation on epitope is a numerical
factor with integer values within the range of 0–3. The dataset was
downloaded on August 29, 2019.

Data Vectorization
Each sample was represented by a vector, and dimensions of
the vector are factors from the original data (e.g., subject,
transcriptional cluster or just “cluster,” gender, and antibody
isotype). All factors can be divided into two groups: character
factors and numerical factors. Character factors usually have
multiple (two or more) discrete values, representing clusters,
subjects, groups, batches, and so on. Numerical factors have
continuous numerical values with either integers or floating
numbers, and different levels can be quantified by the
difference of these values. To clarify, character factors also
have numerical levels. The difference between numerical
factors and character factors is that the levels of character
factors are none-quantifiable labels and the levels of
numerical factors are quantifiable values. The difference
between any two levels can be quantified by the difference
of their values. For example, for a character factor (e.g., a
cluster) which has three levels, the difference between levels
1 and 2 is equal to that between levels 1 and 3. For a numerical
factor (e.g., number of mutations) which has three levels, the
difference between levels 1 and 2 is smaller than that between
levels 1 and 3.

Linearization
In biological datasets, logarithmic values are a commonly used
data type (e.g., HI titers in Influenza hemagglutination inhibition
assays, https://www.cdc.gov/flu/about/professionals/antigenic.
htm). In order to compare values within a factor, values of all
the numerical factors should be linear (Sun et al., 2013). All of the
nonlinear factors should be linearized in advance of further
normalization. A logarithm will transfer logarithmic values
into linear values. Users should choose the base number of the
logarithm according to their dataset. For example, original HI
titers are equal to HI � 10 × 2n, where n is the number of
dilutions, so the base of logarithm will be two for HI data;
thus, the linearized HI titer should be: HI′ � log2(HI/10).

Normalization
Data normalization is essential for numerical factors in order to
be comparable with other factors (Hancock et al., 1988; Singh and
Singh, 2020). Here, we adopted a min–max normalization
method to scale a numerical factor such that all values are

within the range of [0,1]. The normalized value x′ can be
calculated by the following equation:

x′ � x − xmin

xmax − xmin
,

where x, xmin, and xmax are the original values, the minimum
value of original samples, and the maximum value of original
samples, respectively.

Distance Calculation
For any two samples, we calculated pairwise distances following a
two-step strategy, that is, (1) compute the differences between
two samples on individual factors and 2) calculate the overall
distance by integrating the differences from all factors. We
applied binary distance coding to represent the difference
among character factors (0 for equal and 1 for difference). For
numerical factors, the distance is equal to the absolute value of the
difference. Then, overall distance D was calculated by integrating
differences on all factors di using a weighted L1 norm (summary
of their absolute values with weights). wi denotes weight of the
i-th factor:

D � widi1 � ∑n
i�1

∣∣∣∣∣∣∣∣∣widi

∣∣∣∣∣∣∣∣∣.
In case of missing values in the dataset, we consider the

difference between missing values and any other value as 0.
This strategy prevents introducing biases from comparing
missing values with real values.

Embedding
To visualize the sampling results, we utilized two state-of-the-art
nonlinear dimensional reduction methods, that is, uniform
manifold approximation and projection (UMAP) and
t-distributed stochastic neighbor embedding (t-SNE) (McInnes
et al., 2018; Van der Maaten and Hinton, 2012). Both embedding
methods accept pairwise distances as input and render a 2D
projection of the samples.

Roles of Factors
In this workflow, we designed three different roles for factors
which are as follows: prime factor, important factors, and regular
factors. All factors contribute to the distance calculation. The
prime factor and important factor are optional in a sampling. The
prime factor is unique in a dataset, and the representative samples
were selected evenly from each element of prime factor (e.g.,
subject and animal) instead of selecting from the entire dataset.
Important factor indicates a 100% coverage requirement and can
be multiple. Regular factors contribute to the distance calculation
as other factors do but without any specific requirement to the
sampling. The determination of prime factor and important
factor is up to users own choice. Users can determine each
factor from their dataset to any role (prime, important, or
regular) according to their sampling needs and domain
knowledge. For example, in the sampling from our single-cell
B cell dataset, we would like to select samples from each subject
(donors), so that “subject” was set as the prime factor. We would
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also like to investigate all transcriptional clusters, so that “cluster”
was set as an important factor. The rest of the factors were set as
regular factors.

Clustering-Based Two-step Sampling
Strategy
To achieve a high sampling coverage with good
representativeness, we designed a two-step sampling strategy.
The first step is to select N samples from the entire dataset or from
each subject if the prime factor was set using a k-medoids
clustering method. The cost function in k-medoids algorithm
is given as (Kaufman et al., 1987)

c � ∑
Ci

∑
Pi∈Ci

∣∣∣∣∣∣∣∣∣∣Pi − Ci

∣∣∣∣∣∣∣∣∣∣,
where Ci denotes the medoid and Pi denotes the sample. The
most common implementation of k-medoids clustering is the
partitioning around medoids (PAM) algorithm. More
specifically, samples can be clustered into multiple evenly
distributed clusters using the k-medoids clustering method.
The medoid for each cluster can be considered as the most
representative samples of the corresponding cluster. This step
guarantees the representativeness of selected samples.

The second step is to investigate the coverage rate of all important
factors (defined by users) from the representative candidates picked
by k-medoids clustering from last step. If any important factor has a
coverage rate lower than 100%, then an additional selection will be
performed to pick the proper samples from the unpicked population
to cover all the levels/categories of the important factor. The strategy
for adding qualified samples is as follows: for a category of an
important factor that has not been covered by samples selected in
step 1, if there is more than one candidate, we select the one that has
the largest local distances with all selected samples in the first
step. We define local distance as

DLocal � min
i∈S

Di,

where Di denotes the distance between the current sample and
the i-th selected samples. S denotes the set of selected samples.

Evaluation of Sampling
The quality of sampling can be evaluated and quantified by
coverage rate on each single factor. Here, for character factors,
we define the coverage rate as

Coverage rate � number of levels in selected samples

number of levels in the original population
.

To be consistent, for numerical factors, since they have been
scaled into [0,1], we assigned them to ten evenly divided bins ([0,
0.1] [0.1, 0.2], . . . [0.9, 1]); and then the coverage rate of
numerical factors can be defined as

Coverage rate � number of levels in selected samples

number of levels in the original population
.

Of note, a statistical test between original population and
selected population can also be used to evaluate the sampling
quality for a numerical factor.

Using the quantified coverage rate on each single factor, users
can determine an optimized sample size that balances both factor
coverage and cost.

Users can also check the distribution of selected samples on each
factor. For example, if the distribution of selected samples is identical
to that of the original samples, it indicates that the sampling is of high
quality. The similarity of distribution on each factor between the
original population and selected samples can also be approximately
quantified by Pearson correlation coefficient.

rxy � ∑n
i�1(xi − �x)(yi − �y)�����������∑n

i�1(xi − �x)2
√ �����������∑n

i�1(yi − �y)2√ ,

where n is the number of levels in this factor and xi and yi are the
number of samples of the i-th level of this factor for two sets of
samples; �x � 1

2∑n
i�1xi and analogously for �y.

RESULTS

Cookie: Representative Sample Selection
From a Massive Population Using
K-Medoids Clustering
Here, we present Cookie, a user-friendly toolkit, to select
representative samples from massive populations (especially
single-cell sequencing data). The prime idea of this method is
quantifying and vectorizing all samples in order to quantify their
dissimilarity by their Manhattan distances, and then samples can
be classified into several clusters by k-medoids clustering according
to their dissimilarity and centers of those clusters are representative
samples (Figure 1). In detail, each sample is presented as a
numerical vector, and the elements of the vector are attributes
of the original data (e.g., subject, transcriptional cluster, and
gender). The relationships/dissimilarity among all samples were
quantified by calculating a pairwise Manhattan distance matrix.
Based on that, a two-step sampling strategy was performed as
follows: 1) classify samples into k clusters by k-medoids clustering
and select centers of the k clusters and 2) add proper samples to
qualify the coverage requirement on specified factors. This method
is composed of four steps: normalization, distance calculation,
sampling, and embedding (Figure 1A). In this toolkit, we defined
three roles of factors, prime, important, and regular, to help users
better describe their sampling goal. To achieve better
representativeness, we designed a two-step sampling strategy
(Figure 1B). The first step is to select k samples using
k-medoids method from the entire population or from each
subject of prime factor (Kaufman et al., 1987; Schubert and
Rousseeuw, 2018). The second step is to add qualified samples
to cover all the categories/levels of important factors (seeResults for
details). Cookie calculated the summary of distances between
candidates and selected samples and always picks the one with
largest distance if there is more than one candidate.
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FIGURE 1 |Workflow of k-medoids–based sampling. (A)Workflow of Cookie pipeline and (B) selecting representative samples using k-medoid clustering method.

FIGURE 2 | Select representative samples from a large single-cell population. (A) Determine appropriate sample size by quantifying coverage on all factors. Line of
subject factor was indicated by dash line to avoid overlap. (B) Coverage on each factor of selected samples. (C) Compare distributions on each factor between original
population and select samples.
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FIGURE 3 | Selected representative samples from human Influenza H1N1 surveillance data. (A) Testing coverage rate on each factor of different sample sizes. (B)
Selected samples and unselected samples on 2D visualization (t-SNE). (C) Distributions of each factor of original population and selected samples.

TABLE 1 | Runtime of major steps of Cookie pipeline on different population sizes. All the tests were performed on a simulated dataset using a 2015 Apple MacBook Pro
(Core i5, 2.7GHZ, 8 GB DDR3 memory). N denotes population size.

Processing Step Runtime (seconds)

N = 1,000 N = 2,500 N = 5,000 N = 10,000

Preprocess Create object 0.001 0.004 0.004 0.05
Normalization 0.003 0.005 0.012 0.027
Distance calculation 0.347 1.77 7.375 32.511
Nonlinear reduction (t-SNE) 6.759 13.731 50.701 142.668

Prime factor mode* (PAM algorithm) Sample size test 0.279 1.414 9.097 54.703
Sampling 0.04 0.195 1.523 6.134

Prime factor mode* (FastPAM algorithm) Sample size test 0.663 1.036 4.276 43.047
Sampling 0.123 0.154 0.578 3.089

Nonprime factor mode** (PAM algorithm) Sample size test 26.258 301.05 1750.68 >3,000
Sampling 3.517 36.251 261.614 >3,000

Non-prime factor mode** (FastPAM algorithm) Sample size test 4.403 27.656 115.79 598.854
Sampling 0.493 3.31 13.522 68.22

*A prime factor is determined in this run. Algorithms for k-medoids clustering are indicated in the brackets.
**No prime factor is determined in this run. Algorithms for k-medoids clustering are indicated in the brackets.
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Application of Cookie on Single-Cell Atlas
Data to Select Candidates of Monoclonal
Antibody for Further Experimental
Characterization
We applied this method to select candidates of monoclonal
antibody from the isolated genes for 1,937 antibodies for
laborious protein expression and downstream analysis. The
single-cell atlas dataset consists of seven transcriptional clusters,
19 subjects, a variety of V gene usages, four major isotypes, and a
variety of complementarity-determining region 3 (CDR3) lengths
among the genes for 1,937 antibodies. Our goal was to 1) select
representative samples for laborious protein expression from the
genes of 1,937 antibodies and 2) determine the optimized sample
size that can balance sampling coverage on all factors and
economy. For this dataset, we wanted to evenly select samples
from each subject, and a 100% coverage is required for
transcriptional clusters. We set “Subject” as the prime factor
and “transcriptional cluster” as an important factor. As shown
in Figure 2A, coverage of all factors is positively correlated with
sample sizes from each subject, andN= 7 is the optimal sample size
from each subject because 100% coverage of three key factors
(subject, cluster, and isotype) and high coverage of other two
factors have been achieved. After determining the sample size to
seven per subject, we selected 133 samples from 1,937 antibodies
with a 100% coverage on subject, cell cluster, and isotype
(Figure 2B). We observed highly similar distributions between
selected 133 samples and the original population by comparing the
distribution of five factors (Figure 2C). Moreover, the total
runtime of sample size determination and sampling is less than
ten seconds. In conclusion, results on real single-cell B cell dataset
showed that Cookie toolkit is effective and efficient in selecting
candidate antibodies for further experimental characterization
from massive single-cell population.

Application of Cookie on Human Influenza
Virus Surveillance Data
Beside single-cell sequencing data, Cookie toolkit is also
compatible with more biological applications. Here, we

examined the flexibility of our method on a different type of
biological dataset. Influenza virus has a highly mutable
replication process allowing it to escape from immunity, often
on an annual basis (Kosikova et al., 2018). In order to control this
escape, each influenza season, tens of thousands of samples of
influenza viruses are collected from surveillance programs across
six continents (Lackenby et al., 2018). Identifying antigenic
variants from those viral samples is the key to a successful
vaccine strain selection to generate a vaccine protective against
the most common viral variants (Koel et al., 2013). The main
challenge is that people can only investigate antigenic profiles for
a small proportion of all viral samples using HI assay, which is
time- and labor-intensive. An efficient sampling method that can
balance samples with genetic variations, locations, and times of
sampling (month) is required. The k-medoids sampling method
proposed in this study is capable of addressing this problem. We
performed the k-medoids sampling on a human H1N1 influenza
dataset with 8,449 viral samples (see dataset section for details)
using Cookie toolkit. To identify the earliest antigenic variant, we
set “Month” as a prime factor to balance samples from different
time periods. The sample size test indicates that a sample size of
five (setting sample size to seven will slightly increase the coverage
of mutation, if budget allows) is an appropriate choice for this
dataset (Figure 3A). With the sample size of five, the selected
samples covered all the clusters, and therefore are able to
represent all of the genetic-temporal-spatial combined
variances (Figure 3B). The distribution of each factor also
shows that the selected samples have a highly similar
distribution as the original population (Figure 3C). In general,
results on two real datasets showed that Cookie specializes in
solving contradiction between large detective capabilities and
limited experimental capabilities and is compatible with
multiple biological contexts.

Evaluation of Cookie Performance Using
Simulated Data of Different Population
Sizes
To evaluate the efficiency and compatibility of this method, we
generated a simulated dataset (see datasets section for details)

TABLE 2 |Coverage rates of k-medoids sampling on different population sizes. All the tests were performed on a simulated dataset using a 2015 Apple MacBook Pro (Core
i5, 2.7GHZ, 8 GB DDR3 memory). N denotes population size. Tests were generated using the Cookie package with the FastPAM method. The sample size for prime
factor mode is set to 10 (from each level of prime factor) and that for no-prime factor mode is set to 100.

Factor Coverage Rate (%)

N = 1,000 N = 2,500 N = 5,000 N = 10,000

Prime factor Factor 1 84.00 82.00 78.00 80.00
Factor 2 100.00 100.00 100.00 100.00
Factor 3 100.00 100.00 100.00 100.00
Factor 4 90.91 100.00 90.91 90.91
Factor 5 81.82 72.7 72.7 72.73

Nonprime factor Factor 1 92.00 86.00 88.00 84.00
Factor 2 100.00 100.00 100.00 100.00
Factor 3 100.00 100.00 100.00 100.00
Factor 4 90.91 100.00 90.91 90.91
Factor 5 81.82 72.73 72.7 72.73
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and tested our method on this simulated dataset. We compared
the runtime of our method on four different data sizes: 1,000,
2,500, 5,000, and 10,000 samples. As shown in table 1, with
increasing population sizes, the runtime of the four major steps
(distance calculation, nonlinear reduction, sample size test,
and sampling) increased exponentially. In addition, sampling
from the levels of prime factor is much faster than sampling
from the entire population, especially for large populations.
That is because the runtime complexity of the k-medoids
clustering algorithm (also called as PAM algorithm) is
O(k(n − k)2), and the runtime is proportional to population
size n and cluster number k. A recent study proposed an
optimized k-medoids clustering algorithm called FastPAM
that reduces the runtime complexity to O(n2) (Schubert and
Rousseeuw, 2018). By adopting the FastPAM algorithm, the
runtime was largely reduced (Table 1). Of note, conventional

probability sampling methods are much faster than k-medoids
sampling because such methods do not (or rarely) use data
structure and distribution of the original population as seen in
k-medoids. In conclusion, our results indicate that k-medoids
sampling is able to effectively and efficiently select
representative samples from large populations (Tables 1, 2).
These results also demonstrate that sampling from levels of a
prime factor or using algorithm acceleration (FastPAM) could
significantly reduce the sampling time.

Comparison With a Conventional
Probability Sampling Method
The randomness of probability sampling methods is not
preferred in antibody selection from single-cell data and some
other biological studies. In these cases, distributions and

FIGURE 4 | Compare k-medoid sampling with probability sampling method (stratified sampling). (A) Coverage rate on each factor of ten independent runs of
stratified sampling. (B) Distributions of each factor of original population and samples selected by k-medoid sampling and stratified sampling.
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importance of factors are well known. The top priority of
sampling is to select the most representative samples based on
those factors. Randomness will help less to establish
representativeness and may result in inconvenience for further
experimental design. Another issue with probability sampling is
that the results from two independent probability samplings may
be different. Nevertheless, we compared our method to
probability sampling methods. We used stratified sampling,
the most suitable method for this single-cell dataset among all
probability sampling methods, as an example of probability
sampling methods. This comparison was performed on our
single-cell dataset (see dataset section for details). As shown in
Figure 4, we compared our method to the stratified sampling
method with the same sampling size (select 133 samples from
1,937 cells). Samples were stratified according to “Subject” in
stratified sampling. “Subject” was set as the prime factor and
“Cluster” was set as an important factor in our method. We
performed ten independent runs of stratified sampling on the
single-cell dataset, and the results showed that the coverage rates
of each factor among ten runs vary (Figure 4A), with two runs
not even covering all cell clusters (run5 and run6). We picked two
from the ten runs (run4 the best and run5 the worst) and
compared the results to Cookie selection and the original
population (Figure 4B). The results show that both k-medoids
clustering selection and run4 of stratified sampling are able to
represent the original population while run5 fails (fail to select
any sample from a small cluster, “Cluster 7”). The results prove
that the k-medoids clustering method is not only effective for the
selection of representative samples but also able to avoid potential
bias caused by the randomness of probability sampling.

DISCUSSION

Based on a k-medoids clustering strategy, we developed a
method to select representative samples from a large
population. A similar approach for geographical sampling
using a k-means clustering method was developed in a prior
study (Walvoort et al., 2010). Their results also proved the
representativeness and practicability of application of
clustering methods in sampling. Of note, their method
requires an existing distance measurement among the
original samples. It limited the application range of the
method since most of biological/clinical datasets do not
satisfy the requirement. By developing a workflow
consisting of data vectorization and distance calculation
steps, our method normalizes different types of factors into
the same scale and quantifies the distances among samples
based on those normalized factors. This workflow can quantify
relationships among samples for all the populations with
multiple numerical and non-numerical factors and greatly
expand the range of application of our method. Compared
to the previous clustering-based sampling approach, our
method is advantageous for single-cell populations with
complicated structures (multiple factors with different types
and priority levels) and compatible with most of the biological
datasets.

Conventional probabilistic/nonprobabilistic sampling
methods do not or rarely use data structure in sampling.
While it highly improves efficiency of sampling process by not
using data structure however, the representativeness of samples
through random selections usually cannot be guaranteed. By
contrast, our method uses the entire data structure when
selecting samples. It generates pairwise distance matrix by
considering all factors with different priority levels to quantify
relationships among samples. Then our method selects samples
using k-medoids clustering method by dividing entire population
into k clusters. Since the clustering results are subject to pairwise
distance that considers all factors, factors of selected samples are
therefore maximumly balanced. In other words, the
representativeness of selected samples is achieved by balancing
all factors of original population. Of note, considering all details
in data structure will result in inefficiency, especially for large
populations due to the exponential growth of running time as the
sample number increases. By introducing a recent proposed
method FastPAM, the runtime complexity was greatly
reduced. Simulation results showed that Cookie toolkit is
capable for robust and efficient sample selection from large
populations.

In practice, the number of candidates to be experimentally
characterized is usually limited; therefore, selected sample size
should be optimized to balance the representativeness and
economy. Conventional methods usually do not offer an
effective method to determine an appropriate sample size.
Furthermore, the representativeness of a sample selection is
usually difficult to evaluate. To overcome this challenge,
Cookie implemented coverage rate of factors to quantify and
evaluate the representativeness of a sample selection. The method
also allows users to determine an appropriate sampling size by
comparing coverage rates of different sample sizes. In addition,
our framework is highly modularized and extendable; other
evaluation metrics, for example, Pearson’s correlation
coefficient, can also be incorporated to the evaluation process.
By evaluating on different population sizes using both
experimental data and simulated data, our method was proven
to be effective and efficient.

In conclusion, we proposed a sampling method that achieved
representativeness, stability, economy, and universality. The
method is implemented in an R package Cookie and is freely
accessible on GitHub. We hope this toolkit (package) will help
biologists select representative samples in an unbiased manner
from large-scale datasets.

Limitations
There are two major limitations of this workflow. First, there is
only one distance metric (Manhattan distance) in current
model. Since different distance measurements can highly
affect the clustering results, therefore affecting the final
sampling results, investigating effects of different distance
measurements is promising to improve the clustering and
sampling in the future work. The second limitation is that
the time complex of calculating the pairwise distance matrix
increases exponentially as the sample number increases. It
limits the application of this method on future massive
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datasets (e.g., datasets have more than 50,000 samples).
Furthermore, in current model, we approximately quantify
the differences between any two levels of a character factor as
the same. A more precise strategy for differences
quantification of character factors is also needed to improve
the sampling results.

Code Availability
The method is implemented in R and is freely available on
GitHub https://github.com/WilsonImmunologyLab/Cookie.
The source is also available at Zenodo: https://zenodo.org/
record/6639035#.YqdqBRPMIvo. Tutorials and documents are
available at https://wilsonimmunologylab.github.io/Cookie/.

The package has been tested under 1) macOS Mojave version
10.14.6 with R version 3.6.0 and RStudio Version 1.2.1335 and 2)
ubuntu 18.04 64bit with R version 3.5.
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