
Moarii et al. BMC Genomics  (2015) 16:873 
DOI 10.1186/s12864-015-1994-2

RESEARCH ARTICLE Open Access

Changes in correlation between promoter
methylation and gene expression in cancer
Matahi Moarii1,2,3, Valentina Boeva1,2,3, Jean-Philippe Vert1,2,3 and Fabien Reyal4,5,6*

Abstract

Background: Methylation of high-density CpG regions known as CpG Islands (CGIs) has been widely described as a
mechanism associated with gene expression regulation. Aberrant promoter methylation is considered a hallmark of
cancer involved in silencing of tumor suppressor genes and activation of oncogenes. However, recent studies have
also challenged the simple model of gene expression control by promoter methylation in cancer, and the precise
mechanism of and role played by changes in DNA methylation in carcinogenesis remains elusive.

Results: Using a large dataset of 672 matched cancerous and healthy methylomes, gene expression, and copy
number profiles accross 3 types of tissues from The Cancer Genome Atlas (TCGA), we perform a detailed meta-analysis
to clarify the interplay between promoter methylation and gene expression in normal and cancer samples. On the
one hand, we recover the existence of a CpG island methylator phenotype (CIMP) with prognostic value in a subset of
breast, colon and lung cancer samples, where a common subset of promoter CGIs hypomethylated in normal
samples become hypermethylated. However, this hypermethylation is not accompanied by a decrease in expression
of the corresponding genes, which are already lowly expressed in the normal genes. On the other hand, we identify
tissue-specific sets of genes, different between normal and cancer samples, whose inter-individual variation in
expression is significantly correlated with the variation in methylation of the 3’ flanking regions of the promoter CGIs.
These subsets of genes are not the same in the different tissues, nor between normal and cancerous samples, but
transcription factors are over-represented in all subsets.

Conclusion: Our results suggest that epigenetic reprogramming in cancer does not contribute to cancer
development via direct inhibition of gene expression through promoter hypermethylation. It may instead modify how
the expression of a few specific genes, particularly transcription factors, are associated with DNA methylation
variations in a tissue-dependent manner.
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Background
DNA methylation is one of the main epigenetic mecha-
nisms, alongside histone modifications, that plays a sig-
nificant role in gene silencing [1], tissue differentiation
[2], cellular development [3], X-chromosome inactivation
[4], or genetic imprinting [5]. Aberrant hyper-methylation
of high-density CpG regions known as CpG Islands
(CGIs) [6] and genome-wide hypo-methylation [7] have
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often been associated with cancer and there has been
an increasing effort to understand the specific epigenetic
modifications that contribute to carcinogenesis [8–10]. In
addition to promoter CGIs themselves, their surrounding
area called shores (up to 2kb from CGIs) and shores (2kb
to 4kb from CGIs) have also a cancer- and tissue-specific
methylation [11], while even larger cancer-specific methy-
lation variations were reported in so called open sea
regions, far from CGIs [12]. In this study, we focus on
methylation in promoter CGIs and surrounding regions
only, in order to investigate its association in cis with gene
expression.
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The possibility to quantify DNA methylation genome-
wide on normal and cancer tissues, with microarray or
sequencing technologies, has triggered a lot of data-driven
research to clarify the role of methylation in gene reg-
ulation and cancer. Several studies have highlighted a
correlation between differentially methylated regions near
promoter regions and gene expression changes [13–17].
However, it has also been reported that aberrant over-
methylation occurs mostly in normally down-regulated
genes, questioning the role of methylation as a causal
mechanism for gene repression [18–21]. More recently,
Timp et al. have proposed a model where epigenetic
aberrations contribute to carcinogenesis by dysregulat-
ing the functions of specific genes that regulate the
epigenome itself [22, 23]. Reddington et al. speculate
that epigenetic reprogramming might lead to an altered
Polycomb binding landscape which could impact genome
regulation [24].
To gain further insight into the role of DNA methy-

lation in cancer, we perform a large-scale meta-analysis
of methylation profiles of normal and cancerous sam-
ples from multiple tissues from The Cancer Genome
Atlas (TCGA). For each CGI and surrounding area, we
focus on (i) its average methylation profile and (ii) the
association between variations of its methylation profile
and variations in the expression of the target gene. Com-
paring these parameters between normal and cancerous
samples of different tissues suggests that the interplay
between promoter methylation and gene expression, and
how they are modified in cancer, is not simple. On the one
hand, while each promoter CGI tends to be either hypo- or
hypermethylated in all normal samples, we observe hyper-
methylation of a common subset of CGIs in several can-
cer samples of different tissues (breast, lung and colon),
supporting the existence of a CpG island methylator phe-
notype (CIMP) with prognostic value, as introduced by
Toyota et al. [25]. However, we did not find evidence
that the genes associated with hypermethylated promoter
CGIs were less expressed in the cancer samples, as most
of the genes concerned are already lowly expressed in nor-
mal tissues, as already observed by [19]. On the other
hand, looking more precisely at associations between pro-
moter methylation level and gene expression within a set
of samples, we observe for each tissue and each normal or
cancerous sample set a subset of genes, different from the
genes hypermethylated in the CIMP phenotype, for which
this association is important and strongest outside of the
CGIs, namely in the N-shores and N-shelves. This subset
of genes varies across tissues but also whether we consider
healthy or cancerous samples. However, transcription fac-
tors are over-represented in all subsets. This suggests that
epigenetic reprogramming might contribute to carcino-
genesis in part bymodifying gene expression susceptibility
to changes in DNA methylation.

Results
Classification of genes based on their CGI methylation
profiles in normal and cancerous tissues
We first assess how promoter methylation profiles dif-
fer between genes, when for each gene we consider
the average methylation profile across normal or can-
cerous samples. For that purpose, we collected high-
density methylation datasets from the cancer genome
atlas (TCGA) data portal providing more than 485K CpG
methylation levels for 672 normal and cancerous sam-
ples from three tissues of origin: breast, colon and lung
(Table 1). For each CGI, we combine the probes in the
CGI and in the shore and shelves of the CGI, defined as
the regions up to 4kb outside of the CGI [11], in a unique
CGI, shores and shelves (CGI+SS) methylation profile.
We restrict our analysis to the 1827 CGI+SS where at least
20 CpG probes are measured by the technology in order
to have high enough coverage to measure the methylation
variation within each CGI+SS. For each of the three tissue
of origin, and each normal or cancerous set of tissues, we
compute the average methylation profile of each CGI+SS
by averaging the methylation values of each CpG across
the samples. Hence we compute 3 × 2 = 6 average pro-
file for each CGI+SS, with we refer to below as CGI+SS
signatures.
To assess the diversity of CGI+SS signatures across

genes, we perform an unsupervised classification of all sig-
natures for each of the 6 types of samples, using Ward
hierarchical clustering. Since different CGI+SS may con-
tain a different number of GpG probes, we use a specific
distance based on dynamic time warping to compare sig-
natures of different lengths. Figure 1a shows the CGI+SS
clustering obtained for signatures measured on nor-
mal samples from breast samples. Similar figures were
obtained for lung (Additional file 1a) and colon samples
(Additional file 2a) . We observe two clusters, which are
largely conserved across the 3 tissues of origin (Table 2).
To clarify the types of signatures captured by each clus-
ter, we represent on a standardized CGI+SS x-axis the 10

Table 1 Patients dataset. Original dataset sizes for methylation
(Meth), gene expression (GE) and CNV profiles for normal (N) or
cancerous (C) tissues. The “Matched” column represents the final
dataset containing samples with matched methylation, gene
expression and copy number profiles

Meth GE CNV Matched

N C N C N C N C

Breast 97 626 100 778 1073 1041 70 474

Colon 38 291 0 193 0 470 0 33

Lung 32 452 37 125 568 516 13 82

Total 167 1370 137 1096 1641 1981 83 589
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Fig. 1 CGI+SS patterns in breast tissues. Hierarchical clustering of CGI+SS DNA methylation patterns for breast normal tissues (panel a) and breast
cancerous tissues (panel b) using DTW as a distance metric and a “Ward” linkage. The colorbar represents the clusters association (blue for
hypo-methylated cluster 1, yellow for cluster 2, dark green for cluster 3up, light green for cluster 3down)

medoid CGI+SS signatures for each cluster and each tis-
sue (Fig. 2a, Additional files 3a and 4a). We clearly observe
that the large cluster 1, which contains about 90% of all
CGI+SS, corresponds to hypo-methylated islands with
hemi-methylated CGI shores and hyper-methylated CGI
shelves, while the smaller cluster 2 contains about 10%
of CGI+SS which are fully hyper-methylated. A closer
look at cluster 1 shows that, in some cases, the variation
of methylation between islands and shores is unclear, in

Table 2 Concordance analysis of CGI+SS patterns clusters
between normal tissues

Clusters Colon

Breast 1 2

1 1560 9

2 113 145

Clusters Lung

Colon 1 2

1 1610 7

2 63 147

Clusters Breast

Lung 1 2

1 1549 20

2 68 190

the sense that some shores are fully hypo-methylated. As
CGIs, shores and shelves regions are delimited based on
somehow arbitrary criteria, a systematic analysis of these
signatures could lead to a refinement of currently accepted
boundaries.
Performing the same unsupervised classification inde-

pendently on signatures obtained from the three types
of cancerous tissues leads to different results, with the
apparition of a third stable cluster (Fig. 1b for breast,
Additional files 1b and 2b for lung and colon, respec-
tively). Comparing the clusters of normal and cancerous
tissues shows that, for all types of tissues, the first two
clusters found in cancerous tissues are mostly composed
of CGI+SS of the corresponding clusters in normal tis-
sues, while the CGI+SS in the third cluster, specifically
found in cancerous tissues, tend to come evenly from
both clusters in normal tissues (Table 3). A look at rep-
resentative signatures of each cluster (Fig. 2b for breast,
Additional files 3b and 4b for lung and colon, respec-
tively) confirms that clusters 1 and 2 contain respec-
tively hypo- and hyper-methylated profiles, just like the
respective clusters in normal tissues, while cluster 3
contains CGI+SS signatures which are hemi-methylated
(Additional file 5). Separating the CGI+SS in cluster 3 into
sub-clusters “3up” and “3down”, depending on whether
they are in cluster 1 or 2 in normal tissues, we further
see that the level of methylation of CGI+SS signatures in
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Fig. 2 Characteristic profiles for each clusters. Visualization of the CGI+SS DNA methylation signatures as condensed profiles from the 10 medoids
profiles for each clusters in breast normal (panel a) or cancerous (panel b) tissues. The two orange dashed lines represent the normalized 1kb long
CGI region while the two blue lines represent the 2kb limit between shores and shelves regions

the “3up” sub-cluster tends to be lower than the level of
methylation of CGI+SS signatures in the “3down” sub-
cluster (5 to 8 fold decrease). Interestingly, cluster 3 is
mostly conserved between tissues (Fig. 3), suggesting that
these epigenetic variations might be associated with a
tissue-independent carcinogenesis process.

In summary, this global analysis of methylation sig-
natures suggests the existence of four types of CGI+SS
largely conserved across tissues: the majority of them
remains hypo-methylated on the CGI and hyper-
methylated on the shores and shelves in normal and can-
cerous tissues (cluster 1); a minority is hyper-methylated
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Table 3 Concordance analysis of CGI+SS patterns clusters from
normal to cancerous tissues. Each table represents the
concordance of clusters between normal and cancerous
clustering analysis

Breast Normal

Cancerous 1 2

1 1231 21

2 9 109

3 329 128

Lung Normal

Cancerous 1 2

1 1128 12

2 18 168

3 471 30

Colon Normal

Cancerous 1 2

1 1112 11

2 13 106

3 548 37

in normal and cancerous tissues (cluster 2); finally, a frac-
tion of CGI+SS signatures is hypo-methylated in normal
tissues and partly methylated in cancerous tissues (clus-
ter 3up), while another fraction is hyper-methylated in
normal tissues and partly methylated in cancerous ones
(cluster 3down). To clarify whether these four categories

60
66

136

56

275

108

62

Breast Colon

Lung
Fig. 3 Stability of the cancerous-specific cluster between tissues.
Venn diagram representing the intersection of the CGI+SS associated
with cancerous-specific cluster 3 for each tissue

or CGI+SS are associated to particular biological func-
tions, we performed a gene functional enrichment analysis
[26] of the genes associated to the CGI+SS in each of
the four categories, for each tissue. Results are shown in
Additional file 6. Restricting ourselves to Gene Ontology
(GO) biological processes associated to at least 20 genes,
we found that the large cluster 1 is mostly enriched in
genes involved in metabolic processes, while the cancer-
specific cluster 3up is enriched in genes involved in devel-
opmental processes. There was no significant functional
enrichment for genes in cluster 2 and 3down.

Cancer-specific methylation does not repress gene
expression but instead targets genes lowly expressed in
normal tissues
CGI methylation is often associated with gene expression
silencing. We therefore assess whether the CGI+SS clus-
ters defined above, corresponding roughly to lowlymethy-
lated (clusters 1), highly methylated (cluster 2) or partially
methylated in cancer (cluster 3) CGI+SS, are associated
with different mean levels of gene expression. In normal
breast tissues, we indeed observe that genes near hypo-
methylated islands in cluster 1 are slightly but signifi-
cantly less expressed than genes near an hyper-methylated
islands in cluster 2 (Fig. 4a, PBreast = 0.02). There is how-
ever no significant difference between the two clusters in
normal lung tissues (Additional file 7a, PLung = 0.39), and
we could not test the hypothesis on normal colon tissues
since we have none with both methylation and expres-
sion data (Table 1). In cancerous samples, we observe that
genes near a CGI+SS in the cancer-specific cluster 3 have
a significantly lower expression than other genes (Fig. 4b,
Additional files 7b and 8, PBreast ,PLung ,PColon <10−16),
particularly for the genes near a CGI+SS in the “3up”
cluster. As genes in the “3up” cluster are hypo-methylated
in normal tissues, this could suggest that their cancer-
specific methylation is a way to repress their expression in
cancer. However, a closer look at the expression of these
genes in normal tissues (Fig. 4c, Additional file 7c) shows
that they are already lowly expressed in normal tissues.
This suggests that instead of activating CGI methylation
to silence to genes, cancer cells instead activates CGI
methylation of hypo-methylated genes which are already
lowly expressed in normal tissues.

Cancer-specific methylation is an independent predictor of
patient survival in breast cancer
Our analysis so far compares CGI+SS in terms of their
mean methylation across a set of samples and does not
take into account between-sample variations. CGI+SS
associated with cluster 1 (resp. 3) are hypo- (resp. hyper-)
methylated on average, which indicates that there is lit-
tle to no variations between samples. However, signa-
tures of CGIs in the cancer-specific cluster 3 are partly
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a b c

Fig. 4 Distribution of gene expression in different clusters for in breast tissues. Gene expression distribution for genes based on the cluster
assignment of their associated CGI+SS. Panel a Gene expression distribution in normal breast tissues shows a slight repression for genes associated
with cluster 2 (hyper-methylated CGI+SS profiles). “Ref” represents the genome-wide gene expression distribution Panel b Gene expression profiles
in cancerous breast tissues shows high repression for genes associated with cluster 3 and specifically cluster “3up” (hemi-methylated CGI+SS
profiles). Panel c Gene expression profiles in both normal and cancerous breast tissues using the cluster assignement in cancerous tissues shows
that genes associated with cluster “3up” in cancerous tissues define a cluster of genes already repressed in normal tissues

methylated, which can either hide the fact that they are
hemi-methylated for most cancerous samples, or that they
are highly variable between samples. We therefore assess
whether the partial methylation of CGI+SS signatures in
cluster 3 is related to an overall increase (for cluster 3up)
or decrease (for cluster 3down) in methylation for all or
most of the patients, or if this it is caused by a subset of
patients that become hyper- (resp. hypo-)methylated for
these CGI+SS.
For that purpose, we first summarize the methylation

of each CGI+SS on each breast cancer sample by a sin-
gle value, the average methylation of the probes in the
CGI+SS. We then represent each sample by the vector
of methylation values of the CGI+SS in cluster 3up, and
perform a Ward hierarchical clustering of the cancerous
samples based on this representation. The resulting clus-
tering is shown in Fig. 5a, where in addition we indicate
the ER+, HER2 and survival information for each patient.
We observe that the distribution methylation values is
very bimodal, and that the hyper-methylation of a given
CGI+SS from cluster 3up generally happens in a subset
of patients only. Interestingly, we see that the same subset
of patients tends to be simultaneously hyper-methylated
for all CGI+SS from cluster 3up, suggesting that hyper-
methylation of these islands is a characteristics of a subset
of the tumors. This allows us to divide the set of breast
cancer patients in three clusters given the level of methyla-
tion in cluster 3up as either “low”, “intermediate”, or “high”
(Fig. 5a). Interestingly, distinguishing patients given the
level of methylation from the CGI+SS in cluster 3up is
significantly predictive of the patient survival (Fig. 5b, log-
rank, p = 0.01). Surprisingly, the cluster with the lowest

survival is the “intermediate” cluster encompassing a por-
tion but not all of the triple negative breast cancers (65%
in cluster 3up “low”, 32% in cluster 3up “intermediate”
and only 3% in cluster 3up “high”). A multivariate Cox
proportional hazards regression model fitted with avail-
able clinical parameters (tumor size, lymph node status,
hormone receptor status, HER2/NEU status and patient’s
age) further shows that this stratification of patients based
on the methylation level of genes in cluster 3up adds
prognostic value independently of other clinical features
(Table 4, Additional file 9). These results support the exis-
tence of a CpG island methylator phenotype (CIMP) as
introduced by Toyota et al. [25] that is clinically relevant
to assess the survival of patients. More importantly, they
suggest that low survival might not be associated with
a positive or negative CIMP, but with an intermediate
phenotype termed as CIMP-low [27].
A similar analysis on CGI+SS associated with cluster

3down is less conclusive, and does not clearly cluster
patients in separate clusters (Additional file 10). A lack
of sufficient survival data for colon and lung tissues pre-
vented a similar analysis for these tissues.

Methylation of CpG in the 3’ region outside the CGI is the
most correlated with gene expression
Our analysis so far compares CGI+SS to one another,
by looking at their average methylation profiles across
collections of samples. We found no clear evidence for
a correlation between mean methylation level of a CGI
and mean expression level of the corresponding genes,
but this may be due to the fact that many other factors
impact the expression level of a gene, including biological
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Fig. 5 Cluster 3up methylation is a predictive factor for survival of patients in breast cancer patients. Panel a Hierarchical clustering of breast cancer
patients given the average methylation level of all the CGI+SS associated with cluster 3up. The row color bar represents the average methylation
level for the same CGI+SS in healthy breast tissues. The column color bar gives clinical information about the patients such as ER and HER2 statuses
(grey for negative and white for positive), survival information (white for positive overall survival within 5 years and red for death within 5 years). The
top row of the column color bar represents the three classes distinguished by methylation profiles in cluster 3up (blue for cluster 3up “low”, green
for cluster 3up “intermediate” and pink for cluster 3up “high”). Panel b Kaplan-Meier estimate of breast cancer patient survival given the cluster 3up
class (blue for cluster 3up “low”, green for cluster 3up “intermediate” and pink for cluster 3up “high”) shows that cluster 3up “intermediate” patients
have a significantly higher risk of death within 5 years than either cluster 3up “low” or “high” patients (Log-rank, p = 0.01)

and technical ones. Another way to assess how methyla-
tion impacts expression is to look, for each given gene,
how variation in expression across samples correlates with
variations in methylation of nearby CGIs. For each set of
samples (split by tissue of origin and normal/cancerous
state), we measure the strength of association between
methylation and expression for each gene by comput-
ing a predictive goodness of fit R2 which represents the
level of gene expression variation explained by CGI+SS
methylation variation (see Materials and methods). This

Table 4 Multivariate Cox regression analysis including the level
of methylation in the cancer-specific cluster “3up” in addition to
significant clinical variables for breast cancer

Clinical variable (Reference) HR (95% CI) p-value

Cluster 3up (Low vs intermediate) 3.44 (1.44–8.23) 0.007

Cluster 3up (Low vs high) 1.92 (0.50–7.34) 0.34

(ER,HER2) (-/- vs +/-) 0.37 (0.15–0.88) 0.026

(ER,HER2) (-/- vs -/+) 1 × 10−8 (0–Inf) 1

(ER,HER2) (-/- vs +/+) 0.53 (0.09–2.94) 0.46

Lymph Node (Negative) 4.51 (1.63–12.44) 0.004

coefficient is calculated either when the CGI+SSmethyla-
tion status is summarized by the mean methylation values
of all the probes, or by using the full CGI+SS methylation
information of each probe.
We observe that the full CGI+SS methylation profile

is predictive of gene expression for a subset of genes in
each dataset, and that this predictive power is significantly
higher than using only the average CGI+SS methylation
(Fig. 6, Additional files 11a, b, PBreast <10−16, PLung =
1.3 × 10−16, PColon = 3.2 × 10−5). We provide in Table 5
the list of the top 50 genes based on their predictive score
in cancerous breast tissues and similar lists for normal
breast, lung and colon tissues in Additional file 12. Among
the 2,374 genes studied, 139 genes are associated with
more than one CGI+SS. For these genes, the predictive
power is computed using the CGI+SS closest to the TSS.
Using all the CGI+SS for these genes do not yield signif-
icant improvement over taking only the CGI+SS closest
to the TSS except for breast tissues (PBreast = 0.003,
PLung = 0.15, PColon = 0.62). We also observe no asso-
ciation between the predictive goodness of fit R2 and the
CGI+SS clusters described above (PBreast = 0.48, PLung =
0.47, PColon = 0.44).
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Fig. 6 Impact of DNA methylation in gene expression prediction.
Predictive power distribution of DNA methylation for gene expression
using either the average CGI methylation and least squares (orange)
or the full CGI+SS profile and lasso regression (purple) shows that a
more complex model allows to better predict gene expression
variations in both normal and cancerous tissues

Since the predictive power of multivariate models based
on all CpG probes in a CGI+SS is larger than the pre-
dictive power of the mean methylation value only, we
now investigate which CpG in a CGI+SS are particularly
important predictors of expression. For that purpose, we
measure the correlation between the methylation of indi-
vidual CpG and gene expression for the 50 genes with the
largest predictive R2, and summarize the correlation val-
ues based on the position of the probe in the CGI+SS in
Fig. 7 for breast samples (Additional file 13 for colon and
lung). As expected, we observe overall a negative correla-
tion between methylation and gene expression, and notice
that this association is stronger in CGI shores and shelves
located in the 3’ region than in the CGI itself. This is
coherent with results in [11] stating that variations in the
CGI are less critical than variations in proximity regions
of the CGI. Performing the same analysis by varying the
number of genes selected to compute correlations from 20
to 100 gave similar results.

Correlation between gene expression and promoter
methylation is tissue-specific, and is modified in cancer
tissues but overall targets transcription factors
Results in the previous section suggest that for a subset of
genes, a significant correlation between promoter methy-
lation and gene expression is observed, which may be due
for example to a direct regulation of gene expression by
promoter methylation. To assess whether this correlation

Table 5 Genes regulated by methylation in breast cancer

Gene Score

DQX1 0.6993144

IRS2 0.6920052

GPSM3 0.6698851

FOXC1† 0.6428115

PSMB9 0.6242704

HOXC10† 0.6233063

NDRG2 0.6230449

MAPT 0.6078226

STC2 0.6064161

ZNF502† 0.5859661

PTPRCAP 0.5834326

SCAND3 0.5832075

SLC1A4 0.5801594

TAP1 0.5763637

DBNDD2 0.5650488

OTX1† 0.5648463

TCF7† 0.5618545

LY6G6C 0.5618097

FERMT3 0.5602340

ZIC4† 0.5595657

HLA-B 0.5565054

GDF9 0.5517472

SOX9† 0.5513052

CELSR1 0.5502329

SYS1-DBNDD2 0.5490248

HLA-E 0.5490118

CYP1B1 0.5411610

RUNX3† 0.5406337

KIAA1949 0.5379938

RIPK4 0.5313998

TPPP2 0.5305543

HLA-F 0.5304392

PPP1R3C 0.5293955

HOXB5† 0.5287862

CELSR3 0.5272638

B3GNT5 0.5259399

ME3 0.5244800

TMC8 0.5231671

AIF1 0.5223122

SLC39A6 0.5217374

HOXC11† 0.5122936

ERBB2 0.5055868

TBC1D10C 0.5038227

SIM2 0.5030521
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Table 5 Genes regulated by methylation in breast cancer
Continued

CAMK2N1 0.5022371

RGMA 0.4996740

LOC100132215 0.4979089

PAX6† 0.4976355

VANGL2 0.4960224

DDHD2 0.4879724

Gene: Top scoring genes ranked by the predictive power of methylation to predict
gene expression variation. Score: R2 score associated. Transcription factors are
highlighted with a †

is conserved across tissues, we compare the predictive
powers of methylation for each gene when it is computed
on normal or cancerous samples from different tissues.
As shown on Additional file 14, however, we observe little
correlation between the predictive power across tissues in
normal and in cancer samples, suggesting that the associ-
ation between promoter methylation and gene expression
is tissue-specific (R2,Normal

Breast/Lung = 0.04, R2,Cancerous
Breast/Lung = 0.17,

R2,Cancerous
Lung/Colon = 0.07, R2,Cancerous

Colon/Breast = 0.06). We also observe
very little correlation between predictive powers in nor-
mal and cancerous tissues, which could suggests a shift of
the epigenetic regulationmechanism during cancer devel-
opment (Fig. 8, Additional file 15, R2

Breast = 0.05, R2
Lung =

6 × 10−7).
Many mechanisms besides DNA methylation are

involved in gene expression regulation. In particular, tran-
scription factors (TF) play a critical role in the recruitment
of RNA polymerase that allows gene transcription [28].
We noticed that the list of the 50 genes with the largest
predictive R2 score in each tissue is significantly enriched
in TFs as collected from [29], suggesting that methylation
may play an important role in the gene regulatory process
of transcription factors (PBreast = 0.03, PLung = 3 × 10−4,
PColon = 0.02). Using the TF list obtained from [30] yields
similar conclusions, as well as varying the number of genes
selected from 20 to 100.

Copy number variations in cancer is an independent factor
correlated with gene expression
In cancer, aberrant DNA copy number variations (CNVs)
can have an important impact on gene expression phe-
notypes [31]. Since genome-wide DNA copy number
information is available for all samples analyzed in this
study, we now perform an integrated analysis combining
methylation, DNA copy number and gene expression. We
compute a predictive goodness of fit R2 to represents the
power of DNA copy number information alone to predict
gene expression, on the one hand, and a multidimen-
sional regression model combining both the full CGI+SS
DNAmethylation information and the DNA copy number

a

b

Fig. 7 Correlation between individual CpG methylation and gene
expression for breast cancer. Distribution of the correlation between
individual CpG methylation and gene expression for normal (panel a)
and cancerous (panel b) breast samples. The analysis is restricted to
the 50 genes with the largest R2 predictive value. Correlations are
aggregated by regions in the CGI+SS. We see the strongest
association for probes located outside of the CGI, particularly in
shores regions, in both normal and cancerous tissues

information, on the other hand. We observe that com-
bining methylation and copy number information leads
to significantly better results in predicting gene expres-
sion than taking each information separately (Fig. 9a,
Additional files 16–17a, PBreast <10−16, PLung <10−9,
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Fig. 8 Shift of epigenetic regulation in cancer. Scatterplot between
the predictive power of DNA methylation for gene expression in
normal and cancerous breast tissues shows little correlation
(R2 = 0.04)

PColon <10−8). Moreover, correlation analysis between
predictive scores using DNAmethylation only, on the one
hand, and predictive scores using CNVs only, on the other
hand, shows very little correlation (R2

Breast = 7 × 10−4,
R2
Lung = 1 × 10−4, R2

Colon = 1 × 10−3, Fig. 9b, Additional
files 16–17b). This suggests that both methylation and
DNA CNVs are important and non-redundant predictors
of gene expression variation.

Discussion
DNA methylation is a well-described process in normal
development and is critical in specific gene expression
regulations such as X-chromosome inactivation, genomic
imprinting and tissue developpment [2–5]. Since aberrant
hyper- and hypo-methylation have also been frequently
observed in cancer, it has been often argued that activa-
tion of oncogenes or repression of tumor suppressor genes
could be caused by these epigenetic variations [6].
In the present study, we assessed the existence of char-

acteristic CGI+SS DNA methylation signatures in nor-
mal tissues and showed a weak association between the
hyper-methylated signature and gene expression repres-
sion. A similar study in cancerous tissues showed the
existence of a cancer-specific signature highly associated
with repressed genes. However, the corresponding genes
are already highly repressed in normal tissues, question-
ing the causal impact of methylation in gene expression
regulation, as already observed [18, 19, 21].

Fig. 9 Association between predictive power of methylation and
CNVs. Panel a Predictive power distribution using either CNV data only
with least squares, DNAmethylation data only with lasso regression or
both CNV and DNAmethylation data with lasso regression. Combined
methylation and CNV information yield significantly higher predictive
power (P <10−16). Panel b Scatterplot of predictive power using DNA
methylation only and copy number information only shows that both
regulation mechanisms operate exclusively on genes (R2 = 6× 10−4)

Using regression methods we analyzed whether dif-
ferences between CGI+SS methylation across samples -
independently of signatures - are predictive of gene
expression variation. We showed that for certain genes,
expression variations across samples can be well predicted
from DNAmethylation and that these genes are not asso-
ciated with cancer-specific methylation patterns. We also
showed that using the full CGI+SS methylation profiles
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in a multidimensional regression framework yields bet-
ter predictive power than summarizing the methylation
of a CpG island by one mean value, as done in previous
studies [32]. Looking at probewise methylation correla-
tion with gene expression for the top scoring genes, we
observed that the impact of a CpG methylation on gene
expression is largely dependent on its location in or near
the island, and that CpGs located outside of CGIs have
a bigger impact on gene expression variations than CpG
located within the CGI, in accordance with [11, 33]. The
impact of CGIs located outside of promoter regions, such
as intragenic CGIs is still unclear as it does not seem to
contribute significantly to global gene expression regu-
lation. Yet, a few studies point at their potential role in
modulating alternative promoters [34] or in long-range
regulation [35].
Reproducing this methodology on different datasets

allowed us to compare the variations of gene expression
regulation bymethylation in normal and cancerous tissues
but also between different types of tissues. Our results
suggest that genes targeted by methylation are not only
very different between different normal tissues, but more
importantly that they are very different between normal
and cancerous samples of a given tissue suggesting a shift
of epigenetic regulation between normal and cancerous
tissues. Recently, hydroxymethylation of cytosines (hmC)
has been shown to be significantly present in mammalians
cells [36] and methylation data generated with Illumina
arrays, as done here, are not able to distinguish methyla-
tion (mC) from hmC [37]. However, hydroxymethylation
is significantly less observed in cancer tissues [38, 39]. It is
therefore likely that the epigenetic information measured
here is indeed cytosine methylation.
In addition, the association between DNA methylation

and other important regulation mechanisms widens our
understanding of the role of methylation in the whole gene
expression regulation process. While TFs are essential for
controlling gene expression, we showed that their activa-
tion itself is significantly associated with DNA methyla-
tion markers, highlighting the critical role of methylation
in the regulatory process. CNVs have been widely ana-
lyzed as a source of genetic variation that plays an impor-
tant role in complex phenotypes such as cancer [31, 40].
While CNV contribution has been characterized on a
genome-wide scale, the link with other regulation mech-
anisms, particularly DNA methylation, is still unclear
[41, 42]. We showed that the impact of both processes in
gene expression regulation seems to be non-redundant.
The relatively large dataset size gives us confidence in the
statistical validity of the results, which are however limited
to a fraction of the total genes because of uneven cover-
age. Methylome sequencing has already been performed
and also supports the complexity of methylation patterns
but is still limited to very small datasets [32]. Undoubtedly,

larger methylome datasets available in the near future will
further improve our understanding of the role of DNA
methylation in gene expression regulation.

Conclusions
In summary, this study suggests that promoter methyla-
tion profiles can be summarized with a few characteristic
profiles that we refer to as CGI+SS methylation signa-
tures. In cancer, we observe an epigenetic reprogramming
that leads to the apparition of a cancer-specific CGI+SS
methylation signa- ture. However, this epigenetic repro-
gramming is not associated changes in gene expression,
suggesting that this mechanism does not contribute to
cancer development via direct inhibition of gene expres-
sion through promoter hypermethylation. On the other
hand, we observe that genes which demonstrate high cor-
relation between methylation variations and gene expres-
sion variations differ from normal to cancer- ous tissues.
This suggests that in cancer, the association between
gene expression and promoter DNA methylation is
modified.

Materials andmethods
Patients selection
All data were retrieved from the TCGA data portal. We
selected samples from breast, colon and lung adenocar-
cinomas because large matched datasets were available
for methylation, gene expression and copy number pro-
files. The datasets are detailed in Table 1 and the different
institutions that released the data are mentioned in the
acknowledgement section.

Methylation profiling
Methylation profiles were retrieved from level 2 TCGA
data. They were obtained with the Illumina Human-
Methylation450K DNA Analysis BeadChip assay, which is
based on genotyping of bisulfite-converted genomic DNA
at individual CpG-sites to provide a quantitative mea-
sure of DNA methylation [43]. Following hybridization,
the methylation value for a specific probe was calculated
as the ratio M/(M + U) where M is the methylated sig-
nal intensity and U is the unmethylated signal intensity.
485,577 CpG methylation levels, associated with 27,176
CGIs and 21,231 genes, weremeasured as such accross the
genome.
Following [11], we considered not only the CGI methy-

lation profile but also included in the analysis proximal
regions in the near vicinity (up to 4kb), namely the CGI
Shores and Shelves regions in a general CGI+SS methy-
lation profile. As we were interested in the coordinated
variations of methylation, we restricted the analysis to
CGI+SS profiles containing at least 20 probes which
reduced the analysis to 1827 CGI+SS associated with
2,374 genes from the original dataset.



Moarii et al. BMC Genomics  (2015) 16:873 Page 12 of 14

Gene expression profiling
Gene expression profiles were retrieved from level 3
TCGA data. They were obtained from the Illumina HiSeq
RNASeq technology and processed following [44].

CNV processing
CNVs were retrieved from the level 3 TCGA data infered
from Affymetrix SNP6.0 data files in GenePattern follow-
ing [45]. For each gene, we then obtained the log ratio
copy number score as the segmented log ratio score for
the interval containing its transcription start site.

Combined CpG island, shores and shelves pattern analysis
CGI+SS patterns were compared using dynamic time
warping (DTW) [46] as it is less sensitive to small varia-
tions than the Fréchet distance [47]. Dynamic time warp-
ing was originally applied as a speech signal similarity
measure and has been applied with success in several
other fields including computer vision [48], protein struc-
ture matching [49] and time series analysis [50].
A CGI+SS profile i can be represented as a couple of

vector (Xi,Y i) = ((xi1, y
i
1), . . . , (xin, yin)) where xik repre-

sents the position of the kth CpG associated with the
CGI+SS and yik ∈ [ 0; 1] represents the mean methyla-
tion level for this probe accross a given dataset. For two
CGI+SS profiles with respectively m and n probes, we
compute the distance between the two profiles as:

DTW (CGI1,CGI2) = min
w∈Path

length(w)∑

k=1
|y1wk

1
− y2wk

2
|2 ,

where a path w of length K is a pair of vectors
(wk

1,w
k
2)k∈[1:K ] in [ 1;m]×[ 1; n] that verifies:

• (w1
1,w1

2) ∈ {1}×[ 1; n]∪[ 1;m]×{1} (partial
initialization)

• ∀i ∈ {1; 2}, wk+1
i = wk

i or w
k+1
i = wk

i + 1
(monotonicity and continuity)

• (wK
1 ,w

K
2 ) ∈ {n}×[ 1; n]∪[ 1;m]×{n} (partial

boundary condition)

The algorithm is applied for each pair of CGI+SS pat-
terns to obtain a dissimilarity matrix. Ward hierarchical
clustering is then performed on this dissimilarity matrix
to assess the existence of characteristic patterns amongst
the different datasets.
The number of significant clusters is assessed through

bootstrapping (nrepeats = 100) on a random subset of
CGI+SS of the initial dataset (ratio = 80% of the total
number of CGI+SS) following Ben-Hur et al [51]. R code
for analysis is available upon request.

Survival analysis
Overall survival was estimated using the Kaplan-Meier
method [52] to compare the survival between the group

of patients with a lower level of methylation in the hemi-
methylated CGI+SS compared to the group of patients
with a higher level of methylation. Amultivariate Cox pro-
portional hazards regression model [53] was also fitted
to estimate the additional value of this classification as a
predictive factor for survival compared to other clinical
parameters such as age, tumor size, lymph node status,
receptor status and HER2/NEU status.

Computing gene expression susceptibility to DNA
methylation changes
We apply ridge [54] and LASSO [55] multivariate regres-
sion methods to predict gene expression using the full
CGI+SS methylation profiles as well as univariate least
square regression when using only the averaged methyla-
tion from the whole CGI+SS profile. Following Acharjee
et al. [56], we assess the predictive power of the methyla-
tion using the predictive goodness of fit R2 which repre-
sents the squared Pearson correlation between observed
and fitted values on an independent dataset. The estima-
tion of the predictive power for each gene is obtained
through 3-fold cross-validation averaged over 100 repeats.
Parameters for both lasso and ridge regression methods
were obtained by minimizing the mean squared error
function using nested 3-fold cross-validation on the train-
ing dataset. The use of the predictive goodness of fit
instead of the classic mean squared error as a score allows
to compute a comparable score between different pre-
dictions. In particular, the mean squared error is highly
affected by the absolute level of gene expression while the
R2 is invariant to scaling. It is also important to note that
in this case the R2 computed for least square regression is
a prediction R2 and not just a goodness-of-fit of the given
dataset and therefore provides confidence on the general-
ization of the score on independent datasets. R code for
analysis is available upon request.
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