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Abstract

Background: The primary aim was to evaluate by means of thromboelastometry (ROTEM) the effects of hydroxyethyl
starch (HES) 130/04 administered as a constant rate infusion (CRI) on hemostasis in hypoalbuminemic dogs. The second
aim was to use ROTEM analysis to detect whether all hypoalbuminemic dogs of our population were hypercoagulable.

Results: The study sample was 20 hypoalbuminemic dogs (albumin < 2 g/dl) with normal perfusion parameters and
requiring intravenous fluid therapy. In order to support plasma colloid osmotic pressure, in addition to crystalloid, HES
130/04 was administered as a constant rate infusion at 1 ml/kg/h (group 1, n=11) or 2 mi/kg/h for 24 h (group 2, n=9).
Blood samples were collected at baseline (TO) and 24 h postinfusion (T1); coagulation was assessed by standard
coagulation profile (prothrombin time, activated partial thromboplastin time, and fibrinogen), and ROTEM analysis
(in-TEM®, ex-TEM® and fib- TEM® profile).

No statistically significant differences in ROTEM values in group 1 were observed (P > 0.05), whereas in group 2
statistically significant differences (P < 0.05) were found at T1 in the in-TEM® profile [decrease in clot formation
time (P=0.04) and increase in a angle (P=0.02)] and in the ex-TEM® profile [increase in maximum clot firmness
(P=0.008) and a angle (P=0.01)]; no changes were identified in the fib-TEM® profile. In both groups, a statistically
significant decrease (P=0.007) in hematocrit was noted, whereas no statistically significant differences in platelet
count and standard coagulation profile were found. In group 2, a statistically significant increase in TS values (P = 0.03)
was noted at T1. ROTEM tracings indicating a hypercoagulable state were observed in 7/20 dogs at TO (5/11 in
group 1 and 2/9 in the group 2).

Conclusion: Our findings suggest that HES 130/0.4 administered as CRI does not cause hypocoagulability in
hypoalbuminemic dogs. A trend toward hypercoagulability, probably related to the underlying diseases, was
observed in group 2 at T1.

Although all dogs were hyoalbuminemic, only 7/20 were hypercoagulable at TO, confirming the lack of correlation
between albumin level and prothrombotic state.
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Background

Hydroxyethyl starch (HES) comprises a group of syn-
thetic polymers routinely used in veterinary anesthesia
and critical care medicine to maintain blood volume,
counteract anesthesia-induced hypotension, to resusci-
tate patients with hypovolemic shock or sepsis, and to
support intravascular colloid osmotic pressure (COP)
during hypoalbuminemic states [1, 2]. HES can be ad-
ministered as a bolus or as a constant rate infusion
(CRI) typically at a rate of 20-50 ml/Kg/day and
1-2 ml/kg/h, respectively [1-3], the doses are generally
extrapolated from human literature [1, 2]. The physico-
chemical and pharmacological properties of HES, as well
as its classification, depend on their mean molecular
weight (MW), molar substitution (MS), and C2/C6 ratio
[4]. The rate of degradation and elimination of HES de-
pends on the MS and C2/C6 ratio, whit higher MS and
C2/C6 ratio leading to a slower elimination and greater
intravascular retention time and associated side effects
[5]. To improve safety and pharmacological properties,
newer third-generation starch products with reduced
MW and MS have been developed [4] that have shorter
half-life, improved pharmacokinetic and pharmacody-
namic properties, and fewer side effects [6]. Nonetheless,
controversy in human medicine and veterinary medicine
persists concerning the safety of HES. Indeed, recent
reports of side effects in people (e.g., acute kidney injury,
tissue storage, and impaired primary and secondary
hemostasis), led to a temporary suspension of HES prod-
ucts. Authorization was reinstated about a year later,
together with new guidelines for contraindications in
certain conditions (e.g., sepsis) [2].

Hypocoagulability and increased risk of bleeding after
administration of HES in human patients is believed to
be due to hemodilution and direct effects of HES on the
hemostatic system. Plasma accumulation of starch mac-
romolecules can lead to platelet dysfunction, decreasing
expression and activation of the surface receptor GPIIb/
IIla, decreased concentration of circulating von
Willebrand factor (vWf) and factor VIII, impaired factor
XIII fibrin cross-linking, and enhanced fibrinolysis
resulting in a weaker and smaller clot [4, 7].

In veterinary medicine, both in vitro [8-14] and in
vivo [15-20] studies have demonstrated impairment of
whole blood coagulation after the administration of
HES. After blood dilution with both crystalloids and col-
loids, in vitro studies have found a dose-dependent
decrease in platelet function, an increase in prothrombin
time (PT) and partial activated thromboplastin time
(aPTT), and changes in viscoelastic parameters toward
hypocoagulability (thromboelastometry or thromboelas-
tography), with more severe impairment observed after
dilution with HES [8-14]. Three in vivo studies have
assessed only platelet function, whereas others studies
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have evaluated secondary hemostasis or whole blood
coagulation following bolus administration of HES
(doses ranging from 10 to 40 ml/kg in approximately
30 min), demonstrating hypocoagulability in healthy
dogs or dogs affected by experimentally induced disease
[15-20].

Viscoelastic techniques, such as thromboelastometric
analysis (ROTEM), evaluate coagulation in whole blood
samples. Since they take into account plasmatic and cel-
lular elements, they better reflect the cell-based model
of hemostasis, that describes coagulation as a dynamic
process in which plasmatic coagulation factors interact
with the cell surface [21, 22]. Rotational thromboelasto-
metry use several reagents in different profiles to meas-
ure the kinetics of clot formation (time required for clot
formation), the mechanical properties (clot strength),
and the time required for clot dissolution (fibrinolysis)
[22, 23]. It is the most useful tool to assess the presence
of a hypercoagulable state, as compared with standard
coagulation assays (PT, aPTT, fibrin degradation prod-
ucts and D-dimers) [22, 23].

To date, there are no published studies investigating
the effects of HES 130/0.4 on whole blood hemostasis
after its administration as a CRI in dogs with naturally
occurring disease. Hypoalbuminemic dogs are a type of
patients in which natural or synthetic colloids are fre-
quently used to support the COP. These patients have
also a high risk to form venous and arterial thrombi, and
some studies have identified by means of ROTEM or
thromboelastography (ROTEG) a hypercoagulable con-
dition in dogs with protein losing enteropathy (PLE) or
nephropathy (PLN) [24—27]. The hypothesized mechan-
ism at baseline of this prothrombotic condition is a loss
of proteins (from the kidney or the gut), which implies
the loss of anticoagulant factors such as antithrombin
[28-30]. In human medicine multiple mechanisms are
involved in the development of hypercoagulability in
case of hypoalbuminemia, including spontaneous
platelet aggregation, increase in coagulation factors,
hypofibrinolysis, decrease in antithrombin and protein C
[31, 32].

The first aim of the present study was therefore to
evaluate the effects of HES 130/0.4 administered as a
CRI (at dose of 1 ml/Kg/h and 2 ml/Kg/h) on hemostasis
in hypoalbuminemic dogs, by means of ROTEM. The
hypothesis was that HES administration will cause a
hypocoagulability state.

The second aim was to determine how many hypoal-
buminemic dogs were hypercoagulable at presentation.

Methods

This randomized, clinical prospective trial was per-
formed on client-owned dogs. The protocol was
approved by the Bioethics Committee of the author’s
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University. The dog owners were informed about the
methods and aims of the study and gave their written in-
formed consent.

Animals and study design

The dogs were selected from patients admitted to our Vet-
erinary Teaching Hospital for hospitalization. The inclu-
sion criteria were: hypoalbuminemia (albumin <2 g/dl)
regardless of underlying disease, normal perfusion param-
eters, to require intravenous fluid therapy due to their
underlying disease (e.g., increased losses, anorexia, dehy-
dration). All dogs underwent complete physical examin-
ation and perfusion parameters were assessed by clinical
evaluation and non-invasive measurement of arterial
blood pressure using Doppler (Model 811-B, Parks
Medical Electronics Inc., Oregon, USA). Exclusion cri-
teria were pulmonary disease, cardiac and liver failure,
renal azotemia, pre-existing hypocoagulability, and his-
tory of non-steroidal anti-inflammatory drugs, steroidal
drugs, artificial colloid or blood products administra-
tion in the 4 weeks prior to the study. Additional
exclusion criteria were abnormal perfusion parameters
(heart rate > 130 bpm, poor pulse quality, capillary refill
time >2 s or <1 s, systolic blood pressure < 90 mmHg
and venous lactate >2 mmol/L) and serologic test
positive to Ehrlichia canis, Dirofilaria immitis, Borrelia
burgdorferi, Anaplasma phagocytophilum, Anaplasma
platys and/or Leishmania infantum.

Blood samples were collected by atraumatic
venipuncture of the jugular vein with a 20-gauge needle
using minimum stasis. Samples that were difficult to
obtain (e.g., venipuncture required numerous attempts,
needle repositioning or interruption of blood flow into the
tube) were discarded and blood collection was repeated
from the contralateral jugular vein. After blood collection,
cell blood count (CBC) (ADVIA® 120 Hematology,
Siemens Healthcare Diagnostics, Tarrytown, NY, USA),
serum concentration of albumin (ILAB 300 plus, Clinical
Chemistry System, Instrumentation Laboratories, Milan,
Italy), total solid and packed cell volume were measured
according to the study protocol. Other specific analyses
were performed to assess the cause of hypoalbuminemia,
as needed on a case-by-case basis.

Coagulation was assessed by standard coagulation
profile [prothrombin time (PT), activated partial
thromboplastin ~ time  (aPTT), and fibrinogen]
(Coagulometer StART, Diagnostica Stago, Parsippany,
NJ, USA), and by ROTEM analysis, (ROTEM®, TEM
Innovations GmbH, Munich, Germany) for evaluating
in-TEM®, ex-TEM?®, and fib-TEM® profiles. Blood sam-
ples were divided into two tubes containing 3.2% buff-
ered sodium citrate (Vacumed 3.2% buffered sodium
citrate, FL. Medical, Torreglia, Italy).
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Thromboelastometric analyses were performed ac-
cording to PROVETS guidelines [33, 34], and the
analyses run for 60 min. For each blood sample, three
thromboelastometric profiles were performed: in-TEM®,
ex-TEM®, and fib-TEM® assay to evaluate the intrinsic
and the extrinsic pathway, respectively, and assess the
functional fibrinogen contribution to clot formation. For
the in-TEM® profile, the blood sample was recalcified
using the start-TEM® reagent and coagulation was acti-
vated with the specific reagent containing ellagic acid,
whereas the ex-TEM® profile was activated by adding
thromboplastin after recalcification. To obtain the
fib-TEM® profile, coagulation was activated using
thromboplastin in addition to a specific reagent contain-
ing a platelet inhibitor (cytochalasin D). The following
variables were assessed for each profile: clotting time
([CT], s); clot formation time [(CFT) s]; maximum clot
firmness [(MCF)] mm]; and a angle (a,°). Clotting time
describes the time in seconds from clot initiation until
the fibrin polymers are produced and the amplitude
reaches 2 mm; this parameter is dependent on the con-
centration and activity of plasma coagulation factors
[23]. Clot formation time, measured in seconds, is the
time from initiation of clotting (2 mm) until an ampli-
tude of 20 mm is reached [23]. Clot formation time and
a angle provide information about the kinetics of clot
formation and are predominantly affected by platelet
count and function and fibrinogen concentration [23].
Maximum clot firmness represents the maximum ampli-
tude reached by the clot, reflects maximal clot strength
and stability, and is affected by fibrinogen, platelet count
and function (except in the fib-TEM® profile where
platelet are inhibited), thrombin, FXIII, and hematocrit
(Hct) [23]. Additional calculated parameter is platelet
contribution to maximum clot elasticity (MCE pjatelet)s
which evaluates the platelet component to clot strength
and is obtained as follows: MCEptelet = MCEextem-
MCEgpiem [MCE = (MCF*100)/(100-MCF)] [35].

A ROTEM tracing indicating hypocoagulability is
characterized by an increase in CT and CFT and a de-
crease in MCF and a angle, whereas a ROTEM tracing
indicating hypercoagulability is characterized by a de-
crease in CT and CFT and an increase in MCF and «
angle. ROTEM tracings were considered abnormal when
more than one ROTEM value was above (x angle, MCF)
or below (CT, CFT) our reference ranges (Table 1).

Serological tests for Ehrlichia canis, Dirofilaria
immitis, Borrelia burgdorferi, Anaplasma phagocytophi-
lum, Anaplasma platys (Snap 4DX, IDEXX Laboratories,
Westbrook, ME) and Leishmania infantum (Snap
Leishmania, IDEXX Laboratories, Westbrook, ME) were
also carried out.

An intravenous catheter was inserted into the periph-
eral vein, and fluid therapy was started using lactated
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Table 1 ROTEM and standard coagulation profiles results, before and 24 h after hydroxyethyl starch 130/0.4 infusion

GROUP 1 (1 ml/kg/h) N=11

GROUP 2 2 ml/kg/h) N=9

Institutional reference ranges

ROTEM T0 T1 T0 T
In-TEM®
CT (s) 180 (132-268) 166 (61-209) 188 (112-279) 141 (108-240) 126-363 s
CFT (s) 63 (45-132) 59 (41-113) 73 (41-86) 58 * (38-81) 47-224 s
MCF (mm) 72 (56-80) 72 (58-88) 68 (62-77) 72 (62-78) 50-75 mm
a angle (°) 77 (65-81) 79 (69-82) 76 (73-82) 78 * (74-82) 55-81°
Ex-TEM®
CT (9 44 (27-61) 45 (20-77) 46 (30-89) 40 (33-80) 29-92's
CFT (s) 67 (38-159) 78 (49-132) 81 (51-96) 62 (49-92) 54-275s
MCF (mm) 77 (60-82) 70 (64-83) 70 (66-81) 72 * (67-86) 36-73 mm
a angle (°) 76 (61-83) 76 (65-82) 74 (71-80) 77 * (73-81) 47-79 °
Fib-TEM®
CT (s) 47 (31-107) 39 (21-57) 45 (29-92) 39 (32-80) 14-102 s
MCF (mm) 25 (7-38) 16 (8-46) 15 (9-30) 20 (14-78) 6-26 mm
a angle (°) 77,5 (70-86) 76 (30-86) 76,5 (67-81) 77 (71-84) 40-78 °
MCEpjatelet 294 (142-404) 211 (169-441) 206 (175-383) 235 (183-571) 50-235
Standard coagulation
aPTT (s) 12.5 (9.6-154) 12.3 (8.7-16) 13.9 (12.1-16) 14.5 (11.7-16) 12-16's
PT (s) 7.5 (6.6-9.6) 7.15 (6.6-9.9) 74 (6.2-10) 7.3 (63-10) 8-10s
Fibrinogen (g/L) 3.5(25-85) 3.6 (24-7.9) 34 (22-74) 41 (2.2-7.1) 1.5-4.50 (g/L)

Values are expressed as median (minimum-maximum)

Values of institutional reference ranges for ROTEM parameters are expressed as 95% confidence intervals'
In-TEM® intrinsic thromboelastometry pathway, Ex-TEM® extrinsic thromboelastometry pathway, Fib-TEM® functional fibrinogen, CT clotting time, CFT clot formation
time, MCF maximum clot firmness, PT prothrombin time, aPTT activated partial thromboplastin time

* Indicates statistically significant differences between TO and T1 (P < 0.05)

Ringer’s solution (Ringer’s lactate solution, Baxter S.p.A,
Rome, Italy), to replace dehydration, maintenance, and
ongoing losses, and HES 130/0.4 [Voluven, Fresenius
Kabi Italia srl, Isola della Scala (VR), Italy] for COP
support. Hydroxyethyl starch 130/0.4 was administered
as a CRI for at least 24 h. Colloid treatment [1 ml/kg/h
(group 1) or 2 ml/kg/h (group 2)] was randomly
assigned via a computer-generated program (Microsoft
Excel, Redmond, WA, USA). The dogs were assessed for
body temperature, respiratory rate and perfusion param-
eters every 4 h. Blood samples were collected at baseline
(T0), to assess all previously laboratory analysis
described, and 24 h after start of infusion (T1) CBC,
albumin, packed cell volume, total solid (TS), and coagu-
lation tests were repeated.

Statistical analysis
Data were collected and analyzed with the software Stata
14.2 (Stata Statistical Software, release 10, StataCorp LP,
College Station, TX, USA). Normality of data was
assessed using the Shapiro-Wilk test.

To evaluate changes in ROTEM parameters after
administration of the two different doses of HES 130/0.4
(CRI of 1 and 2 ml/kg/h) at two time points (TO vs. T1),

a hierarchical linear mixed effects model was used,
where the random effect is given by the individual sub-
ject. Bonferroni correction was applied to detect in
which medium the difference was statistically significant.
When the data did not meet the assumption of normal-
ity, the comparison was conducted with the sign test.

Analysis of the data showed that only some dogs were
hypercoagulable and that many had been randomly
assigned to group 1. Despite the small number of hyper-
coagulable animals, Friedman’s test was carried out and
the population divided (independent of HES dose ad-
ministered) into two subgroups: hypercoagulable dogs
(group H) and not hypercoagulable dogs (group NH).
This was done to detect differences in ROTEM parame-
ters at the two time points (TO vs. T1).

A value of P < 0.05 was considered significant.

Results

Of the total of 25 adult dogs initially enrolled, 5 were
excluded because of Leishmaniosis (7 =2), liver failure
(n=2), and hypocoagulability with an abnormal throm-
boelastometric tracing at TO (n=1). The study sample
comprised 20 dogs: 11 received HES 130/0.4 as a CRI at
1 ml/kg/h (group 1) and 9 at 2 ml/kg/h (group 2) for at
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least 24 h. In group 1, the median age was 7 years (min
2-max 12) and the median body weight 27 kg (min 5-
max 39); breeds included: Australian Shepherd (n=1),
Border Collie (n=1), Rottweiler (n=1), German Shep-
herd (n=1), Beagle (n=1), and mixed breed (n=26).
Seven were females (4 neutered and 3 intact) and 4
males (1 castrated and 3 intact). Dogs included were af-
fected by acute protein losing enteropathy (n=4),
chronic protein losing enteropathy (# = 3), protein losing
nephropathy (PLN) (n = 1), or chylothorax (n = 3).

In group 2, the median age was 7 years (min 2 — max
10) and the median body weight 17.8 kg (min 5 — max
44); breeds included: Rottweiler (n = 1), English Bulldog
(n=1), Pit bull (n=1), longhaired Dachshund (n=1),
Labrador (n=1), Jack Russell (n=2), and mixed breed
(n =2). Six were females (4 neutered and 2 intact) and 3
intact males. Dogs included were affected by chronic
protein losing enteropathy (n = 6), chylothorax (n=2) or
hypoadrenocorticism (n = 1).

There were no statistically significant differences in
age, body weight, serum albumin concentration,
ROTEM values, PT and fibrinogen concentration be-
tween the two groups at baseline (T0). The aPTT was
slightly prolonged in group 2 at both TO and T1 (f=2.2,
C.I. 95% and P =0.027, respectively), but still within the
reference range.

Comparison between PT, aPTT, and fibrinogen con-
centration showed no statistically significant within-
group differences between the two time points (TO ver-
sus T1) (Table 1). While no statistically significant
within-group differences in ROTEM values (TO vs. T1)
were found in group 1; statistically significant differences
were noted in group 2 at T1: a decrease in CFT (P=
0.04) and an increase in the a angle (P =0.02) in the in-
TEM°® profile and an increase in MCF (P =0.008) and
the a angle (P =0.01) in the ex-TEM® profile (Table 1),
whereas no changes was identified in the fib-TEM® pro-
file and in the MCE,seier. Nevertheless, there were no
statistically significant differences in ROTEM parameters
between the two groups at T1. In both groups, there was
a statistically significant decrease in Hct (P =0.007) at
T1 (time-dependent reduction), but no statistically sig-
nificant dose-dependent difference between the two
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dosages (Table 2). There was no statistically significant dif-
ference in platelet count at T1 in either group (Table 2).
Finally, a statistically significant increase in TS values
(P=0.03) in group 2 was noted at T1, but no statisti-
cally significant differences in albumin concentration
in either group (Table 2).

ROTEM tracings indicating a hypercoagulable state
were observed in 7/20 dogs at TO (5/11 in group 1 and
2/9 in group 2). (Table 3) There were no statistically sig-
nificant changes from TO to T1 in either subgroup H or
subgroup NH. Analysis of single animals classified as hy-
percoagulable (subgroup H) showed that the fibrinogen
level was outside normal limits in 6/7 dogs (median
6.02, min 3.20 and max 8.53), whereas all the dogs clas-
sified as not hypercoagulable (subgroup NH) had levels
within the normal range (median 3.26, min 2.23 and
max 4.43) (Table 3). In addition, the MCEjytcler Was out-
side the normal range in all the hypercoagulable dogs
(median 339, min 257 and max 404) and it was in-
creased only in 3/13 classified as not hypercoagulable
(median 205, min 142 and max 316) (Table 3).

Discussion

The main finding of the present study was that a hypo-
coagulable state was not observed by either 1 or 2 ml/
kg/h of HES 130/0.4 in dogs with hypoalbuminemia. In
contrast to our hypothesis, ROTEM analysis at T1 re-
vealed statistically significant differences in some param-
eters consistent with a trend toward a hypercoagulability
state after CRI at 2 ml/kg/h. In particular, in the in-
TEM® profile a decrease in CFT and an increase in o
angle, and in the ex-TEM" profile an increase in both a
angle and MCF was found (Table 1). No statistical sig-
nificant differences were shown comparing the ROTEM
values of group 1 and group 2 at T1, then we can ex-
clude that these variations have been induced by the dif-
ferent dose used in the group 2, and affirm that the
change could be time dependent. As the dogs in this
study presented with various different diseases, it is pos-
sible that an inflammatory state in the group 2 pro-
gressed during the 24 h of observation from TO to T1
and affected coagulation in a different way. Since there

Table 2 Results of laboratory parameters, before and 24 h after hydroxyethyl starch 130/04 infusion

GROUP 1 (1 ml/kg/h) N=11

GROUP 2 (2 ml/kg/h) N=9

T0 T T0 T
Hematocrit (%) 40 (29-54) 39 * (25-53) 38 (25-50) 35 % (25-55)
Platelet count (x 10EQ9 cell/L) 366 (156-853) 340 (145-800) 397 (125-641) 422 (134-731)
Total Solid (g/L) 0.36 (0.3-0.55) 0.36 (0.25-0.54) 0.32 (0.25-0.5) 0.35 * (0.27-0.5)
Albumin (g/L) 0.16 (0.12-0.19) 0.16 (0.11-0.24) 0.15 (0.13-0.18) 0.14 (0.11-0.22)

Values are expressed as median (minimum-maximum)
*Indicates statistically significant differences between TO and T1 (P < 0.05)
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Table 3 ROTEM results at baseline (N = 20)
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T0 In-TEM® Ex-TEM® Fib-TEM®

G1(N=11) CT CFT MCF  aangle CT  CFT  MCF aangle  CT MCF  aangle MCE platelet Fib Disease
Dog 1 216 85 72 73 43 56 80 80 107 38 73 339 32 APLE
Dog 2 132 104 75 73 43 159 64 61 56 119 25 144 35 APLE
Dog 3 142 54 70 79 39 67 69 76 45 " 70 210 3.2 CPLE
Dog 4 144 52 70 80 27 74 67 75 31 13 73 188 2.7 CPLE
Dog 5 180 132 56 65 61 143 60 62 51 7 ND 142 35 APLE
Dog 6 180 45 75 81 41 38 79 83 38 34 86 325 6.2 PLN
Dog 7 156 47 80 80 53 66 81 79 50 28 83 387 6 CPLE
Dog 8 163 63 75 77 44 83 77 75 41 16 78 316 44 CH
Dog 9 241 50 79 80 61 47 82 81 54 34 79 404 85 CH
Dog 10 268 103 62 69 48 107 68 74 47 14 77 196 33 CPLE
Dog 11 184 66 70 76 46 60 77 78 37 29 80 294 53 APLE
G2(N=9)

Dog 12 241 52 77 79 46 51 82 80 45 30 80 383 74 CPLE
Dog 13 279 86 68 73 48 82 69 73 46 14 67 206 2.2 CPLE
Dog 14 198 79 67 74 40 96 67 71 36 22 79 175 42 CPLE
Dog 15 196 51 71 79 43 60 73 78 46 15 76 253 2.7 CPLE
Dog 16 119 41 72 82 30 57 75 79 29 30 81 257 46 CH
Dog 17 188 73 67 75 59 89 69 73 60 15 75 205 35 CH
Dog 18 151 75 64 76 38 72 70 75 38 22 77 205 2.8 CPLE
Dog 19 112 57 73 78 56 81 73 74 31 9 ND 260 24 AD
Dog 20 133 80 62 74 89 86 66 73 92 14 69 178 34 CPLE

G 1 Group 1 (1 ml/kg/h), G 2 Group 2 (2 ml/kg /h), In-TEM® intrinsic thromboelastometry pathway, Ex-TEM® extrinsic thromboelastometry pathway, Fib-TEM®
functional fibrinogen, CT clotting time (s), CFT clot formation time (s), MCF maximum clot firmness (mm), MCEqre: platelets contribution to clot elasticity, Fib
fibrinogen level (g/L), AD hypoadrenocorticism, APLE acute protein losing enteropathy, CH chylothorax, PLN protein losing nephropathy, CPLE protein losing
enteropathy, ND not determined, italicize numbers indicate the hypercoagulable dogs at TO (N=7) and are outside the institutional reference ranges. Institutional
reference ranges: In-TEM® (CT, 126-363 s; CFT, 47-224 s; MCF, 50-75 mm; a angle, 55-81°), Ex-TEM® (CT, 29-92 s; CFT, 54-275 s; MCF, 36-73; a angle, 47-79°), Fib-
TEM® (CT, 14-102 s; MCF, 6-26; a angle, 40-78°)"* and fibrinogen level (1.5-4.50 g/L)

is a well-established link between inflammation and co-
agulation, it might be possible that the inflammatory
processes impaired activation of pro- and anti-coagulant
factors, fibrinolysis, and induced abnormalities in plate-
lets and endothelial components, but in our study we
have not looked into markers for inflammation and anti-
thrombin level [36].

Other hematological factors are known to influence
the ROTEM analysis and may have affected our results.
The CFT, a angle, and MCF can be influenced by some
sample features such as platelet count, fibrinogen con-
centration, and Hct [23]. Our results have not found any
statistically significant difference in platelet count and fi-
brinogen concentration, whereas a statistically significant
reduction in Hct, after 24 h of infusion, was noted in
both groups at T1. Hematocrit can affect ROTEM re-
sults, leading to a hypocoagulable tracing when Hct is
increase or a hypercoagulable tracing when it is de-
creased [37, 38]. Smith et al. [37] hypothesized that a
whole blood sample with a decreased Hct has a greater

concentration of coagulation factors (the plasma to
erythrocyte ratio changes in the ROTEM cup), leading
to an artifactual hypercoagulability tracing when the
blood is analyzed with ROTEM, and vice versa in case of
increased Hct [37, 38]. Although no statistically signifi-
cant difference in variation of Hct between the two
groups was found from TO to T1, the trend toward hy-
percoagulability identified in group 2 could be partially
explained by the lower Hct values reached in this group
at T1 (T1: Group 1, 39% and Group 2, 35% of Hct).
Although the platelet count remained unchanged
between TO and T1 (group 2), authors hypothesized
that an increase in platelet activity could have been
present. Indeed, no alterations were identified in the
fib-TEM® profile, where platelet activity was inhibited.
ROTEM is not a specific tool to evaluate platelet
function, but MCEpjelee could be used to assess the
contribution of platelets activity to clot elasticity, thus
eliminating the influence of fibrinogen. However, no
difference was identified between TO and T1 in
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MCEpjatelet, and then a platelet contribution to hyper-
coagulable trend could be excluded.

Our findings differ from those reported in previous in
vitro and in vivo studies that evaluated the effects of
HES 130/0.4 on hemostasis by means of viscoelastic
techniques (ROTEM and ROTEG). In two in vitro stud-
ies, when whole blood samples were diluted with HES
130/04 (1:22, 1:9, 1:4), a hypocoagulable ROTEM
tracing was found only at the highest dilution (1:4, mim-
icking in vivo administration of 30 ml/kg) [11, 14].
Whereas, an impairment of secondary hemostasis has
been identified after 1:5.5 dilution (comparable to a fluid
dose of 20 ml/Kg) using ROTEG analysis [12]. The re-
sults of in vitro studies cannot be directly extrapolated
to predict in vivo results, as the effect that a HES solu-
tion may have on hemostasis is largely determined by its
in vivo pharmacokinetics [39].

Only three in vivo studies evaluating changes in
hemostasis following HES 130/0.4 administration, are
currently available in literature. One evaluated platelet
function, whereas the other two assessed viscoelastic
properties of whole blood [17, 18, 20]. Gauthier et al.
[17] found a significant prolongation of aPTT and a
hypocoagulable ROTEG after administration of HES
130/0.4 (bolus of 40 ml/kg over 30 min) in healthy dogs
and dogs with induced systemic inflammatory response
syndrome [17]. Reutler et al. [20] detected by means of
ROTEM an impairment of whole blood coagulation after
administration of a single bolus of HES (15 ml/kg over
30—40 min) in dogs undergoing general anesthesia for
arthroscopy or imaging studies [20]. Comparison be-
tween our study and those mentioned above is difficult,
because of the differences in study populations, rate and
volume infused. The dogs in the present study were af-
fected by naturally occurring diseases that cause hypoal-
buminemia, whereas the sample populations in the other
studies were healthy, anesthetized dogs or dogs with
experimentally induced disease. In addition, the chosen
method of HES administration, implied different
infusion rate; during bolus the total amount of dose (15 or
40 ml/kg) is infused over a short period of time, resulting
in an increase in intravascular volume (especially in
hemodynamically stable dogs) and a greater hemodilution
as compared with the administration as a CRI, where the
total volume (24 or 48 ml/Kg) is equally divided over 24 h.
Moreover, different rates are associated with a diverse de-
gree of tissue accumulation and elimination [5].

At the time of inclusion in this study, only 7/20 dogs
had a ROTEM tracing indicating hypercoagulability, and
defined as a ROTEM profile with more than one param-
eter outside the institutional reference range. The fi-
brinogen level was normal at TO and the MCEjacelet
altered in 3 patients in the NH group. Differently in the
H group, the fibrinogen level and the MCEjeler Were
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outside the upper range in 6/7 and 7/7 animals, respect-
ively (Table 3). These results indicate an influence of the
fibrinogen amount on the ROTEM tracing and an in-
crease in the platelet aggregation, which can partially
explain the hypercoagulbility detected at TO. In literature
has been reported that an increase in platelet activity is as-
sociated with hypoalbuminemia in dogs with PLN [30, 40,
41]. Since there were no statistical significant differences
from TO to T1 in group H and group NH, in ROTEM re-
sults and MCEpjaceler We can excluded the possibility that
the hypercoagulability trend, seen at T1 in the group 2,
was affected by the hypercoagulable patients.

Using ROTEG analysis, recent studies in dogs affected
by PLE and PLN have identified hypercoagulability in
the majority of them [25-27]. Due to the differences in
the studies populations and the criteria for assessing hy-
percoagulability, a comparison with our study is not pos-
sible [25-27]. Until today, no standardized definition of
hypercoagulability by ROTEM analysis in dogs has been
established, although the PROVETS guidelines were is-
sued in the attempt to achieve conformity across studies
using viscoelastic techniques [42]. As there is insufficient
evidence to recommend a definition of hypercoagulabil-
ity in companion animals, the definition is left to the
authors’ discretion [42].

An increased risk of thromboembolic events has been
reported for dogs affected by PLN or PLE. The under-
lying cause of hypercoagulability remains incompletely
understood; potentially involved mechanisms are loss of
antithrombin and increased platelet aggregation [30, 40,
41]. Since we did not measure antithrombin activity, we
are unable to determine its influence on our ROTEM re-
sults. Although multiple mechanisms have been involved
in hypercoagulable state [31, 32], the incidence of
thromboembolism dramatically increases when serum
albumin concentration is less than 2.0-2.5 g/dL, in hu-
man patients with PLN [31, 32]. In contrast, veterinary
studies have shown that hypercoagulability identified
with ROTEM analysis does not appear to be correlated
with hypoalbuminemia [25-27], and only a weak correl-
ation between serum albumin concentration and anti-
thrombin activity has been identified in hypercoagulable
dogs, indicating that albumin level cannot reliably pre-
dict it [25-27, 43, 44]. These findings highlight that the
prothrombotic state in dogs is not related only to hypo-
albuminemia but to other abnormalities as well.

Refractometric evaluation was used to measure the TS
concentration. Our results showed a statistically signifi-
cant increase in TS after 24 h (T1) of HES 130/0.4 as a
CRI at 2 ml/kg/h (Group 2). Bumpus et al. [45] reported
that after the addition of a large volume of hetastarch
(after an in vitro dilution of 1:4 corresponding to in vivo
22 ml/kg) the refractometer reading of TS increased
[45]. Although the in vitro dosage administered in the
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aforementioned study differs from dosages used in the
study herein, the higher dose of HES used in the group
2 may have interfered with the refractometric reading.
Furthermore, the refractometer reading of HES 130/0.4
is 4.5 mg/dl, the same as that of the products used in
the study by Bumpus et al. [45].

This study has several limitations. The small sample
size, limits the ability to generalize the results obtained.
Moreover, the clinicians were not blinded to the HES
doses administered, which could have introduced a bias.
The study population included dogs with diverse dis-
eases, which might have several degrees of inflammation
and different effect on hemostasis. In addition, we did
not have a control group without treatment or treated
only with a CRI of isotonic crystalloids, to determine
whether the changes in hemostasis could be consequent
to the progression of disease/inflammation or also re-
lated to the crystalloid infusion. In this regard, because
the total amount of 24-h administration of crystalloids
solution was not recorded, the influence of this variable
could not be assessed.

Further studies on larger samples of dogs with natur-
ally occurring disease causing hypoalbuminemia are
needed to create disease categories and take into ac-
count the amount of infused crystalloid.

The assessment of HES 130/0.4 pharmacokinetics in
dog could allow understanding the amount of its accu-
mulation and the rate of elimination, especially when
the colloid is administered as a CRL In this context it
would be important to evaluate the risks and benefits as-
sociated with HES therapy and its efficacy in providing
oncotic support.

Another important field of research is to investigate
the prevalence of hypercoagulability in hypoalbumin-
emic dogs, to better understand the impact of the
underlying disease on the prothrombotic state and to
correctly identify which hypoalbuminemic dogs could
really benefit from anticoagulant therapy. Finally, fur-
ther research for investigate the contribution of plate-
let function to hypercoagulable state, by means
specific tools such as the PFA-100 or platelet aggreg-
ometer, would be interesting.

Conclusion

Our findings suggest that CRI of HES 130/0.4
(1-2 ml/kg/h over 24 h) does not cause hypocoagul-
ability in hypoalbuminemic dogs. A trend toward hy-
percoagulability, probably related to the underlying
disease and associated degree of inflammation, was
noted in group 2 at T1. Although all dogs were
hyoalbuminemic, only 7/20 were hypercoagulable at
TO, confirming the lack of correlation between albu-
min level and prothrombotic state.
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