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Abstract: The metabolic process of the human body produces a large number of gaseous biomarkers.
The tracking and monitoring of certain diseases can be achieved through the detection of these
markers. Due to the superior specific surface area, large functional groups, good optical transparency,
conductivity and interlayer spacing, graphene, and its derivatives are widely used in gas sensing.
Herein, the development of graphene and its derivatives in gas-phase biomarker detection was
reviewed in terms of the detection principle and the latest detection methods and applications in
several common gases, etc. Finally, we summarized the commonly used materials, preparation
methods, response mechanisms for NO, NH3, H2S, and volatile organic gas VOCs, and other gas
detection, and proposed the challenges and prospective applications in this field.
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1. Introduction

The development of malignant tumors in the body changes the metabolic process,
and metabolites can be excreted from the body in various ways. For example, there are
volatile and semi-volatile metabolites in exhaled gas. Therefore, the analysis of some
specific metabolites in the exhaled air can be used as evidence for diagnosing possible
diseases in the human body [1–3]. The breath of a healthy person is primarily composed
of nitrogen, carbon dioxide, unconsumed oxygen, and water vapor. For example, the
detection of nitric oxide (NO) in the breath indicates that the patient has chronic obstructive
pulmonary disease [4,5]. The production of ammonia gas (NH3) is usually associated with
renal dysfunction [6,7]. Hydrogen sulfide (H2S), as a volatile sulfide compound (VSC), is a
metabolite of microorganisms in the tongue coating, and is considered to be the leading
cause of inflammation in the mouth [8]. There are more than 100 additional gas components
with different concentrations in different patients. Table 1 summarizes the relationship
between the content of biomarkers of some diseases in the exhaled breath of normal humans
and patients.
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Table 1. The relationship between the types and concentrations of exhaled gas and human diseases.

Diseases Gas Normal Range Symptoms Range References

bromopnea Hydrogen sulfide <0.1 ppm 0.1–0.5 ppm [8]
renal disease Trimethylamine <1.75 ppb 1.75–38.02 ppb [9]

Isoprene 28–144 ppb 57–329.8 ppb [9]
diabetes Acetone 300–900 ppb ≥1800 ppb [10]

Ammonia 74–2935 ppb 2935–6770 ppb [11]
lung cancer Methanol 157–344 ppb >344 ppb [12]

Ethanol 96–2848 ppb >2848 ppb [12]
Toluene 1–18 ppb ≥18 ppb [13]
Benzene 1.1–3.5 ppb >3.5 ppb [12]

asthma Nitric oxide <25 ppb >50 ppb [14]
cancer Cyclohexane 0.1–15 ppb >15 ppb [15]

Chloroform <10 ppb ≥10 ppb [15]
Traditional methods for monitoring breath biomarkers include gas chromatogra mphy–mass spectrometry
(GC-MS) [16], selective ion flow tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrom-
etry (PTR-MS) [17], ion mobility spectroscopy (IMS) [17], enzyme immunoassay [18], polymerase chain reaction,
and new antibody microarray technology, etc. [19]. At present, nanomaterials are being developed rapidly to
improve the sensitivity, selectivity, and portability of breath detection. For example, Das et al. prepared a sensor
of barium hexaferrite oxide nanoparticles (BaFe12O19) [6] for detecting trace ammonia vapor in human exhalation
with a biomarker of kidney disease. Aghaei et al. used first-principles density functional theory calculations and
non-equilibrium Green’s function theory to study graphene-like carbon boron nitride (BC6N) in human breath
analysis as a high-performance volatile organic compound (VOC) sensor [20]. Zhang et al. comprehensively
introduced the developments in semiconductor gas sensors made from two-dimensional materials, and their
potential application in disease diagnosis [21].

Graphene (G) and its derivatives such as graphene oxide (GO) and reduced graphene
oxide (rGO), etc. have been reported to show good sensing performance and are promising
gas-sensitive materials. This is due to their excellent specific surface area (2630 m2/g),
high carrier mobility (2 × 105 cm2/Vos), and good thermal stability (oxidation resistance
650 ◦C) [22–25]. Many oxygen-containing functional groups (-OH, -COOH, -O, -C=O)
on the surface of graphene and its derivatives endow them with vital gas adsorbing
ability via potent polar effect. After adsorbing gas, graphene can adjust its own electronic
distribution, change the local carrier concentration, and cause a stepped difference in
resistance. The degree of resistivity differences caused by different gases is affected by
the type of gas. An electron acceptor (such as NO2, H2O, I2) or an electron donor (such
as NH3, CO, ethanol) will show different responsiveness characteristics, providing the
scientific basis for researchers to develop graphene-based medical gas sensors [26]. To
expand the optical sensing of GOs, Mei et al. developed fluorescent graphenes by covalent
surface modification of graphene using alkyl amines. The surface defects induced by
alkyl amines which changed the energy levels of the GO and thereby promoted blue light
emissions [27]. In addition, due to the optical transparency (97.7%) and femtosecond visual
response characteristics of graphene, it can adequately reflect visible light [28]. The periodic
directional arrangement of the multilayer solid phase will generate visible structural color
via the interference of light reflected from different interfaces. Furthermore, the ultra-thin
two-dimensional (2D) single-layer structure of graphene is also beneficial to accurately
studying the effect of layer spacing on the structural color.

Our research group prepared a visually colored graphene oxide (GO) film using
dip-coating technology, which showed a good response to humidity in the visible light
range [28]. Subsequently, the humidity sensing performance of GO film coated on a
metalized polyethylene terephthalate (mPET) substrate was also discussed, providing the
possibility for the application of flexible, visible devices in personal physiological state
monitoring [29]. By adjusting the concentration of the GO solution, films of different
thicknesses were prepared, and the colorimetric and quantitative detection of absolute
ethanol gas could be realized [29]. Further study on the effect of adding polymer on
selective gas detection showed that the prepared GO/polystyrene sulfonate (GO/PSS) film
could achieve an ultra-fast response to NO2 gas at room temperature [30].

In short, film interference structural color shows its superiority and importance to gas
sensing due to its simple material preparation, stable physical color, and energy-saving,



Biosensors 2022, 12, 48 3 of 20

and in providing a new method of medical diagnosis. Herein, we focused on the recent
progress of the detection and application of graphene and its derivatives in exhaled gas
sensing, as shown in Figure 1, discussed from the perspectives of sensing mechanism,
material preparation methods, and applications in medical health diagnosis.
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2. Sensing Principle
2.1. Charge Transfer Response Mechanism

The sensing principle of graphene-based gas-sensitive materials is mainly charge
transfer. That is, the sensing material itself acts as a charge acceptor or donor. When
exposed to different atmospheres, charge transfer occurs between the sensitive material
and the adsorbed gas. Different directions and amounts of charge transfer cause various
changes in material resistance. Purging the sensitive material with inert gas can replace the
adsorbed gas molecules to produce desorption. The resistance of the sensitive material can
be restored to its original state.

Adsorbed oxygen means that oxygen molecules in the gas phase are adsorbed on
the surface of the metal oxide due to chemical adsorption. In the operating temperature
range (200–500 ◦C), many metal oxide materials respond to gas by adsorbing oxygen or
cooperating with oxygen. In the gas-sensing mechanism, negative oxygen ions such as
O2
−, O−, and O2

− were formed on the surface of the metal oxide and worked as electron
donors to provide electrons to the adsorbed gas, resulting in an increase in the conductivity
of the metal oxide material and a decrease in resistance [30]. The adsorption of oxygen
plays a vital role in metal oxide gas sensing materials such as ZnO, SnO2, etc. [31].

O2 + e− → O2
−

H2S +
3
2

O2
− → H2S + SO2 +

3
2

e−

For example, Deng et al. prepared Cu2O nanowire–rGO (Cu2O NW–rGO) composites
by using rGO to induce and stabilize the superstructure [32]. As shown in Figure 2a, when
the material is contacted with oxidizing NO2 gas, the gas molecules will receive electrons
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from the “activated” surface oxygen ions, promoting an increase in hole conductivity in the
Cu2O device.

NO2 + e− → NO2
−

When detecting NO2, the composite material current can change significantly as
compared with rGO and Cu2O NW (Figure 2b).
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Figure 2. (a) Schematic diagram of Cu2O–rGO sensing mechanism for NO2. (b) Relative current changes
of Cu2O NW, rGO–Cu2O, and rGO based devices when exposing to different concentrations of NO2 [32].
Copyright (2021), used with permission from the American Chemical Society. (c) Schematic diagram of
carbon dioxide adsorption/desorption with argon purging the graphene surface [33]. Copyright (2018),
used with permission from Elsevier. (d) Schematic diagram of the sensing mechanism and energy band
change of the charge transfer between the double-layer graphene gas-sensitive material and NO2 [34].
Copyright (2017), used with permission from Elsevier.

Fan et al. studied the charge transfer mechanism between CO2 and double-layer
graphene [33]. Here, CO2 acts as an electron acceptor to bind onto graphene. This work
qualitatively studied the influence of two different adsorbent types on the electronic struc-
ture of double-layer graphene (indicated by the difference in charge density). The adsorp-
tion of electron acceptor CO2 will increase the charge on the surface of the double-layer
graphene and increase the conductivity. When purging with dry argon (Figure 2c), the
argon molecules replace the electron acceptor CO2 gas molecules that adsorbed on the
graphene surface, resulting in the desorption of CO2 molecules, thereby reducing the
charge concentration on the graphene surface and causing a resistance increase. Seekaewa
et al. studied the sensing mechanism of single-layer, double-layer, and multilayer graphene
based on the charge transfer for NO2 [34]. As shown in Figure 2d, the double-layer
graphene exhibits a significant Fermi-level shift and conduction bands intersect at the
K point before gas adsorption. After adsorption, NO2 molecules that adsorbed on the
graphene extract more electrons from the valence band to convert themselves into NO2

−,
resulting an increase in the hole density of the graphene film and a decreased Fermi level.
In addition, as the number of graphene layers increases, the number of holes will also
increase. Therefore, when the gas is adsorbed, the wider valence band of the double-layer
and multilayer graphene will generate more electrons, resulting in a smaller resistivity.
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This explains why the resistance of the adsorbed n-type gas decreases drastically as the
number of graphene layers increases.

2.2. Response Mechanism of Field-Effect Transistor

When the graphene sensing material is prepared in a field-effect transistor (FET), the
sensing principle is mainly dependent on the resistivity (R) and the back gate voltage (Vbg),
and the peak value corresponds to the neutral point of the charge (CNP peak), which
is defined by the Fermi level across the Dirac point, and the total charge in graphene at
the Dirac point should be zero. Ideally, the movement of the CNP peak in the sensor is
caused by the doping of adsorbed molecules. Under the effects of air and water, the actual
graphene FET sensor usually exhibits lags in its sensing performance [35,36].

Bartošík et al. found that the p-doping of graphene FET sensors is caused by the
capture of graphene due to the chemical adsorption of water on the graphene–SiO2 inter-
face [37]. As shown in Figure 3a, when water molecules are physically adsorbed on the
graphene surface at higher relative humidity (RH%), the water molecules are captured by
graphene due to chemical adsorption on the graphene–SiO2 interface. The Fermi level in
the graphene cone is lower than the Dirac point (Figure 3b). At this time, the primary carrier
of the source-drain current (Isd) is the hole. After the positive gate voltage is applied, the
electrons immediately flow into the graphene, inducing the Fermi level to move upward to
a position close to the Dirac point, resulting in a significant increase in resistance. When
the electrons in the graphene are gradually captured by physically adsorbed water, they
diffuse more profoundly into the water droplets (Figure 3c). In the continuous process
(Figure 3d), the Fermi level moves further down from the Dirac point, leading to a decrease
in resistance. Because the capture and diffusion of electrons in water is slow, therefore,
under higher RH%, the greater the amount of physically adsorbed water, the more electrons
can be captured, and the faster the resistance drops.
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Figure 3. (a) Schematic diagram of the initial state of a graphene FET after physical interaction of electrons
with water; (b) electrons change immediately after the gate voltage is applied; (c,d) schematic diagram of
the state when a more extended grid voltage is applied (c) at lower and (d) at higher relative humidity [37].
Copyright (2020), used with permission from Elsevier. (e) The principle of thin-film interference structure;
(f) schematic diagram of VOC gas–sensing mechanism based on gas intercalation and visual response [26].
Copyright (2018), used with permission from Elsevier.

2.3. Thin-Film Interference Response Mechanism

The physical color of the thin-film interference structure is produced due to the regular
arrangement of photonic crystals (PC) [38]. Dielectric materials with different refractive
indexes will selectively reflect light of specific wavelengths due to the different periodic
arrangements of the photonic crystals. The photonic crystal includes dielectric microstruc-
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tures with one-dimensional, two-dimensional, or three-dimensional periodicity [34,39].
Sensors based on photonic crystals (PC) do not require any additional electrical test systems.
They exhibit vivid color conversion and possess high sensitivity and good reversibility,
making them a promising real-time gas monitoring sensor material [40,41]. Gas sensor
materials based on thin-film interference include polymer electrolytes [42,43], cholesteric
liquid crystal [44], graphene oxide, and a composite material containing cobalt chloride [45].
Our group reported the preparation of a GO-based thin-film interference gas sensor with
optical colorimetric sensing characteristics. A simple dip-coating technique was used to
prepare GO film with visual colorimetric properties [26]. By adjusting the solution concen-
tration, the above film could show other colors. As shown in Figure 3e, the light reflected
at different interfaces overlaps the light path and phase interference, showing visual color.
GO is rich in negatively charged carboxyl groups. The hydroxyl groups in ethanol with a
lone pair of electrons can be easily diffused and inserted into the GO layers. As shown in
Figure 3f, it can be understood that the intercalation leads to an increase in the interlayer
spacing and thus produces different visualized colors.

3. Gas Monitoring for Medical Diagnosis
3.1. Nitric Oxide

Nitric oxide (NO) is synthesized by L-arginine through nitric oxide synthase (NOS) in
various cells such as neutrophils, red blood cells, endothelial cells, macrophages, and nerve
cells. The determination of NO content in exhaled air has been used as a marker for judging
the degree of acute respiratory infection and inflammation in respiratory diseases [12]. The
presence of NO in exhaled gases can be used for rapid detection of lung infections [46],
including new coronary pneumonia [47], asthma [48], allergic rhinitis [49] severe acute
respiratory syndrome (SARS) [50], and chronic obstructive pulmonary disease [51]. At the
same time, continuous monitoring of NO is also essential for coronary heart disease [52],
Alzheimer’s disease [53], and mental illness [54]. Jiang et al. reported on a chlorinated
graphene FET and its application in monitoring of NO under specified physiological
requirements [55]. To facilitate naked eye-based on-site detection, Zhou et al. recently
developed ratiometric fluorescent probes with distinctive color changes to monitor exhaled
nitric oxide to indicate the clinical course of asthma [56]. The fluorescent nanoprobe was
also integrated with smartphone analysis for rapid and sensitive detection of exhaled NO.

Deng et al. synthesized an antimony tetroxide (Sb2O4) nanoflower/rGO nanocompos-
ite material using a simple and environmentally friendly solvothermal method [57]. As
shown in Figure 4a, the combination of highly electroactive Sb2O4 nanoflowers and rGO
with a larger specific surface area shows a synergistic effect on the recognition of NO. It can
detect the NO released by living cells in real time, effectively distinguishing normal and
tumor cells. In this case, the reactive Sb4+ and rGO help to achieve rapid electron transfer
and the nanoflower structure provides a three-dimensional high-speed channel for NO,
making the distance across which the NO must travel to reach the reaction center very
short, and thereby obtaining a high mass transfer rate. The Sb2O4/rGO hybridization has a
low detection limit for NO in the range of 3.98 nm~0.772 µM (3.98 nM). Real-time detection
of NO found that the NO released by tumor cells is five times that of normal skin cells.
Mathew et al. prepared a Pt-electrochemical reduction graphene oxide (erGO) modified
glassy carbon electrode (GCE) by using a simple green synthesis method using a sequential
electrochemical process [58]. The effect of the preparation route on the NO sensor was also
studied. Pt and erGO were deposited on the GCE in different orders. The material was
prepared by coating Pt NPs on the erGO surface as SQ-I was Pt–erGO, and by coating erGO
on the Pt NPs surface as SQ-II was erGO–Pt. Different preparation routes have significant
differences in sensitivity, accuracy, selectivity, and stability. Compared with bare GCE and
SQ-II electrodes, the SQ-I electrode showed a lower charge transfer resistance, and the
electron transfer rate on the surface of the SQ-I electrode was faster than that of the SQ-II
electrode. Pt nanoparticles on the surface of a Pt-modified erGO matrix electrode could
coordinate with NO and effectively transfer electrons, thus improving the sensitivity to
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NO. Thus, the SQ-I electrode is more suitable for electrochemical detection of NO. Com-
pared with a bare electrode, the current response of Pt–erGO (SQ-I) to NO is increased
by ~15 times. The sensitivity of Pt–erGO/GCE to NO is 8.40 µA−1 cm−2 µM−1; the linear
range is 0.25–40 µM, the lowest limit is 52 nM, and the response time is 0.7 s. In addition,
it has good selectivity for NO. Pt–erGO/GCE is expected to be a candidate material for
future clinical application due to its good stability, repeatability, and practicability.
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and superoxide dismutase (SOD) using terbium ion as metal [59]. Copyright (2021), used with
permission from Wiley.

Inspired by self-limiting nano-components, Qu et al. assembled graphene quantum
dots (GQDs) and superoxide dismutase (SOD) into monodisperse superparticles (SPs) [59].
As shown in Figure 4b, graphene quantum dots (GQDs) and superoxide dismutase (SOD)
were assembled to synthesize GQD–Tb3+–SOD SPs, and were coated on a glass plate for
NO sensing test. Superoxide dismutase (SOD) can alternately catalyze the dismutation
of superoxide anion free radicals (O2−), usually with copper as the active center. When
Cu(II) in SOD is reduced to Cu(I), the fluorescence of the optically active component Tb3+

fluorophore is enhanced, which is tightly sandwiched by protein and GQD. Tb3+ combines
graphene quantum dots (GQDs) and SOD to realize effective energy transfer, thereby “turn-
ing on” detection of NO, and realizing reliable monitoring as low as 600 molecules/mL. It
is verified that the sensor can achieve ultra-sensitive detection of NO with a concentration
as low as 10 × 10–12 M. The sensor opens up a new direction in using self-limiting nano-
components. The high sensitivity and non-invasiveness of SP detection means it is widely
used in home health monitoring.

Xu et al. constructed an ultra-sensitive NO gas sensor by long-period fiber grating
(LFPG) which was covered with GO on a long-period fiber grating (LFPG) that had good
sensitivity by refractive index (SRI) changes [60]. The GO was coated on the long-period
fiber grating (LPFG) (Figure 5a). It can be seen that NO adsorption on the GO depends on
two adsorption processes. NO is oxidized by epoxy groups to generate nitrogen dioxide.
These complex processes cause NO to be completely removed from the GO surface. The
sensor can identify 0–400 ppm NO with high sensitivity. To create more active centers,
adjust the band gap of the composite material, and effectively improve the catalytic activity,
Qiu et al. used metal oxide nanocrystals (ZnO) to dope redox graphene with nitrogen
(N–rGO). These promote the interaction with the attached metal oxides, create more active
centers for gas adsorption, and reduce the hydrolysis rate of Zn(OAc)2 by adding different
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amounts of NH4OH dropwise to achieve controllable nucleation. In the experiment, the
volume of NH4OH was controlled to be 0.1, 0.3, and 0.5 mL, and the corresponding
products were named NGZ–0.1, NGZ–0.3, and NGZ–0.5 to obtain N–rGO/ZnO (NGZ)
hybrid material [61]. At low temperatures, the gas-sensitive response of ZnO nanocrystals
on the surface of N–rGO to NO is much better than that of ZnO microcrystals aggregated
or formed on the surface of N–rGO alone. The resistance of the zinc oxide channel with
a heterojunction in Conduction path 1 in Figure 5b,c is much larger than that of the N–
RGO channel in Conduction path 2 (R1� R2). Because metal oxide nanoparticles with a
smaller particle size have a p–n heterojunction in NGZ–0.3, which has a strong adsorption
effect on NO, the sensitivity of NGZ–0.3 to NO is much greater than that of NGZ–0.1 and
NGZ–0.5. Table 2 summarizes the progress of NO-sensing materials, detection limits, and
response/recovery time in recent years.
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Figure 5. (a) The structure of GO–LPFG and the response mechanism to NO [60]. Copyright (2019),
used with permission from Elsevier. (b) Physical model of NGZ–0.3 (the volume of NH4OH is 0.3 mL)
composite material N–rGO/ZnO (NGZ); (c) physical model of NGZ–0.1 or NGZ–0.5 (NH4OH volume
0.1 and 0.5 mL) composite material [61]. Copyright (2020), used with permission from Elsevier.

Table 2. The detection range and response time of other graphene composite materials to NO, NH3 gas.

Material Gas Detection Limit Response/Restore Time Reference

Pd–rGO NO 2–420 ppb 1000 s–1 h [62]
Sub–graphene–hemin NO 0.3 nM 47–54 ms [55]

GQD–Tb3+–SOD NO 600 molecules/mL 500 s [59]
LPFG coated with GO NO 0–400 ppm 23.6 min/N.A. [60]

N–rGO/ZnO NO 100 ppb 522/303 s [61]
300 ppb 478/410 s
800 ppb 284/473 s

Graphene/PS brush NH3 ≥4.88 ppb 150 s/N.A. [63]
PPy NH3 7.6 ppm 105/182 s [7]

PPy/GO NH3 0.90 ppm 81/116 s
PPy/rGO NH3 0.035 ppm 72/151 s
PPy/srGO NH3 0.00020 ppm 48/234 s
PPy–rGO NH3 10 ppm ~100 s [64]

PPy/SnO2/GNR NH3 ≥0.6 ppm ~100 s/200 s [65]
MoOx/GFET NH3 ≥310 ppb 356 s [66]
PUF–PPy–GO NH3 1.1–182 ppm ~7/13 s [67]

GO–PANI NH3 1 ppm ~5/10 min [68]
N.A.: not available.

3.2. Nitrogen Hydride

The production of NH3 in the human body is related to protein metabolism. Proteins
are degraded into non-storable amino acids to be used or metabolized, which leads to the
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formation of NH3 [38,56]. Ammonia (NH3) itself is a toxic and irritating gas. Its accumula-
tion in the human body promotes acidosis in the blood, causes enzyme denaturation, and
ultimately leads to death. When the concentration of exhaled ammonia exceeds 2935 ppb,
it means that the kidney urea cycle is out of balance. Due to the gas exchange between
blood, alveoli, and air, a small amount of ammonia is exhaled in the breath. The main
mechanism of ammonia metabolism is the excretion of the urine after the detoxification
process, which is the renal urea cycle. In this process, NH3 is converted into the less toxic
soluble compound urea [13]. If the kidneys cannot filter the urea in the blood, urea will
enter the body’s gas circulation with the blood, and the NH3 concentration in the breath
will increase [13,69,70]. This is why patients with chronic kidney disease (CKD) exhale
ammonia gas.

Compared with G, oxygen-containing groups on the surface of GO can enhance the gas
sensitivity by interacting with polar gas molecules. There are still some oxygen-containing
functional groups on the surface of rGO. To distinguish the influence of polar water molecules
on NH3 detection, Kim et al. studied the response of graphene gas sensors under two different
humidity (RH%) conditions [63]. A passivation layer of polystyrene (PS) brush was used on
the surface of silicon dioxide to cover the hydroxyl groups in SiO2/Si.

When the humidity increased from 5% to 50%, the response of graphene field-effect
transistors (FETs) on the bare brush and PS brush to NH3 decreased slightly (by about
9%). The weakening of the response under relative humidity indicates that the presence of
water molecules partially limits the adsorption of NH3. The long-term sensing behavior of
the graphene sensor under NH3, CO2, and relative humidity conditions was monitored
through saturation experiments, and the cross-sensitivity of the graphene sensor under
CO2 and comparable humidity conditions was verified. The key reason for the excellent
cross-sensitivity of the graphene FET gas sensor on the PS brush is the reduction in substrate-
induced doping.

Sun et al. used a more straightforward method to prepare a polypyrrole (PPy) and
rGO composite material through covalent bonding via in-situ chemical oxidation polymer-
ization [64]. The PPy/rGO was coated on a flexible PET film to construct a flexible and
cost-effective NH3 sensing film. The 5 wt.% rGO–PPy hybrid sensor not only had the high-
est response sensitivity to 1–10 ppm NH3, but the response sensitivity was 2.5 times that of
pure PPy. Figure 6a shows that the improvement in gas sensitivity may be attributed to the
π–π stacking and the formation of hydrogen bonds between PPy and rGO, resulting in a
larger surface area and fast carrier transport after the two are recombined. Shahmoradi et al.
used an in-situ chemical oxidative polymerization method to prepare polypyrrole (PPy)
composites with graphene oxide (GO), reduced graphene oxide (rGO), or p-benzenesulfonic
acid sulfonated reduced graphene oxide (srGO) [7]. The sensor response process is shown
in Figure 6b. The effect of the working temperature of different nanocomposite materials at
four temperatures (28, 40, 50, and 60 ◦C) on the sensor’s performance was studied. The
PPy/srGO sensor showed the highest detection sensitivity, which was 0.20 ppb~12 ppm
NH3. The response principle is attributed to the charge transfer mechanism between NH3
and the nanocomposite surface. The electron transfer process of NH3 molecules to the
surface of the p-type polypyrrole sensor is depleted, resulting in an increase in resistance.
On the other hand, p-type rGO is donated to electrons. When the PPy/srGO sensor is
exposed to NH3 gas, a hydrogen bond interaction was generated between NH3 and bare
PPy and also between NH3 and srGO; thereby the electrical resistance was increased. Hsieh
et al. further improved the hybrid system of PPy and graphene. They prepared a polypyr-
role (PPy)/tin oxide (SnO2)/graphene nanoribbon (GNR) ternary nanocomposite by using
an in-situ chemical oxidation polymerization method [65]. The results showed that the
response sensitivity of the PPy/SnO2/GNR sensor containing 3 wt% SnO2 nanoparticles in
1 ppm NH3 is about three times that of pure PPy. Figure 6c shows that the PPy-coated SnO2
and GNR can form covalent bonds. The larger specific surface area contributed by SnO2
and GNR could further enhance the contact site with PPy and provide many adsorption
sites for NH3 gas. The band gaps of PPy and SnO2 are 2.81 eV and 3.709 eV, respectively.
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Thus, the p–n heterojunction formed between p-type PPy and n-type SnO2 benefits the
formation of a self-established depletion layer electric field at the PPy/SnO2 heterojunction.
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Falak et al. used a simple and contamination-free shadow mask approach to hybridize
an ultra-thin MoOx layer with a single layer of graphene with different molybdenum oxide
coverage [66]. The MoOx/GFET (graphene field-effect tube) showed a response recovery
time of 356 s to 12 ppm NH3, and a lower detection limit of 310 ppb. The excellent sensing
and recovery performance of the MoOx/GFET sensor is mainly attributed to the effective
adjustment of the height of the Schottky barrier. The energy band in Figure 7a indicates
the changes in hole density and Fermi energy caused by NH3 exposure. Under the bias
voltage from −50 V to +75 V, the positive change in the back-gate voltage (VGS) causes the
Fermi energy valence band to move upward to make it closer to the energy level of NH3,
resulting in a smaller energy difference and less charge transfer between NH3 and p-type
GFET sensors.

Javadian-Sara et al. explored a microwave-based open-loop resonator (SRR) sensor
based on the nanocomposite prepared by the in-situ polymerization of polyaniline (PANI)
on the surface of GO [68], as shown in Figure 7b. At room temperature, it has a high sensi-
tivity of 0.038 dB ppm−1 to low concentration (1–25 ppm) ammonia, a response/recovery
time of 150/400 s, and a sensitivity of 0.0045 dB ppm−1 to high concentrations (>25 ppm).
As shown in Figure 7c, when the GO(10%)–PANI nanocomposite is exposed to ammonia
gas, due to the acid-base interaction between PANI and ammonia gas, the PANI changes
from a conductive form to a non-conductive state. Ammonia gas acts as a base to reduce the
aniline ion R–NH+ carriers of PANI through deprotonation, showing a strong de-doping
effect and enhancing the internal resistance of PANI. The prepared sensor can selectively
detect ammonia in the atmosphere of other higher concentrations of dangerous gases and
across a wider range of RH% (15–90%). The response signal can be repeated after 30 days
with less than 0.32% variation.
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The high efficiency of graphene-based sensor components can be achieved by de-
signing and optimizing their preparation processes, but graphene-based sensors for the
physiological analysis of ammonia in breath are still being studied.
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3.3. Sulfide Gas

The cause of bad breath is multifactorial, involving various body organs (mouth, lungs,
and stomach). About 90% of all types of bad breath can be classified as intraoral bad breath,
which stems from oral-related pathological conditions (dental periodontitis and gingivitis)
and physiological characteristics, especially the microbial coating on the tongue [71,72].
The microorganisms in the tongue coating produce a variety of metabolites, including
volatile sulfides (VSCs), such as methyl mercaptan (CH3SH), hydrogen sulfide (H2S), and
dimethyl sulfide (CH3SCH3) [8,73,74].

Song et al. loaded SnO2 quantum wires (QWS) with a diameter of less than 4 nm
onto graphene oxide (GO) through simple mechanical mixing [75]. The prepared sensor
has a fast dynamic response to the detection of ppb H2S at 70 ◦C and 85% RH%. The
lower limit can reach 61 ppb with good response/recovery performance. In addition, the
GO–loaded SnO2 QWS has solution processability after oleic acid (OA) and oleylamine
(OLM) treatment, and it can be loaded on a paper base flexible H2S sensor. As shown in
Figure 8a, the adsorption of oxygen causes electrons in the conduction band of the SnO2
QW to be deprived, causing the energy band to bend and increasing the resistance. The H2S
gas can react with the oxygen adsorbed on the surface, and it is oxidized to sulfur dioxide,
making the electrons return to the SnO2 QW. In this case, it helps to adjust the surface state
of the band structure, so that SnO2 QWs generate more oxygen adsorption sites. At the
same time, GO acts as an electron migration channel, which improves the sensitivity of
selection. Shewale et al. used a simple air-jet deposition method to uniformly modify GO
on copper-doped zinc oxide (CZO) nanostructured films [76]. As shown in Figure 8b, the
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3CZO/rGO sensor doped with ZnO/rGO (mass fraction of 3 wt% copper nitrate aqueous
solution) is fixed on the ceramic microheater with thermal paste. To accurately measure
the temperature of the gas sensor, a highly sensitive temperature sensor is installed on
the surface of the microheater. The synthesized 3CZO/rGO nanocomposite sensor shows
better gas sensitivity to H2S at room temperature (24 ◦C) than undoped ZnO/rGO, and a
better response to H2S. The response and recovery time to 100 ppm H2S are, respectively,
14 s and 32 s, which dramatically improves the potential application of nanocomposite
sensors in medical diagnosis. The recent applications of other graphene and its derivatives
in the detection of H2S gas biomarkers were summarized in Table 3.

Table 3. The detection range and response/recovery time of graphene composites to H2S gas.

Material Gas Detection Limit Response/Recover Time (s) References

SnO2@GO H2S 200 ppb 9/23 (54%RH) [75]
H2S 6/21 (93.6%RH)

ZnO/rGO H2S 136 ppb 14/32 [76]
rGO/GaN H2S 100 ppm ~800 [77]

(rGO) –NiO(NiOBNG) H2S 1 ppm 31/49 [78]
H2S 20 ppm 38/44
H2S 50 ppm 28/75

β–Ga2O3/rGO H2S 3 ppm N.A. [79]
WO3/rGO H2S 32.7 ppb 340/180 [80]

GQD–SnO2 QNP/ZnO H2S 0.1 ppm 14/13 [81]
N.A.: not available.

Reddeppa et al. reported a rGO/GaN nanorod (NRs) hybrid system for hydrogen
(H2) and hydrogen sulfide (H2S) gas sensing at room temperature [77]. Figure 8c shows
the prepared (rGO)/GaN NRs hybrids. As shown in Figure 8d, the surface of the GaN
nanorods has a wavy structure without the rGO film, and the spin-coated reduced graphene
oxide layer does not penetrate between the nanorods. Compared with pure GaN NRs,
rGO/GaN NRs have better gas sensitivity.

Shanmugasundaram et al. prepared a hierarchical mesoporous nickel oxide (NiO)
nanodisk and boron nitrogen co-doped rGO–NiO (NiOBNG) nanodisk composite [78].
The NiOBNG sensor has a sensor response of 82% to 100 ppm H2S, and the detection
limit is 24 ppb. At 150 ◦C, the NiOBNG showed good selectivity to 20 ppm hydrogen
sulfide compared with 100 ppm NH3, H2, CO, nitrous oxide, ethanol, and methanol.
The responsiveness of the NiOBNG sensor has been increased by two times and three
times, respectively, which is attributed to the catalytic active centers of boron and nitrogen-
doped rGO. Deji et al. simulated the adsorption of hydrogen sulfide (H2S) gas on the
surface of undoped armchair graphene nanoribbon (AGNRs) and doped osmium graphene
nanoribbon (Os–AGNRs) [81]. Using DFT theory, the adsorption energy of osmium-
doped AGNRs, unilateral doping, center doping, and bilateral doping were studied. The
adsorption energy results show that the adsorption energy of undoped AGNRs is about
−0.25 eV and it is not sensitive to H2S, whereas the adsorption energies of unilateral
and bilateral doped AGNRs are −6.67 eV and −9.67 eV, respectively. The density of
states analysis shows that the electronic properties of the bilateral doped Os–AGNRs have
changed significantly. In addition, the material changes from the original semiconductor to
metal after adsorbing H2S molecules in the case of doping on both sides. This drastically
changing electronic behavior gives the new double-edge doped Os–AGNRs potential
for H2S gas adsorption and sensing applications. Shao et al. reported a self-assembled
graphene quantum dot (GQD) functional hierarchical SnO2 nanoparticle (SnO2 QNP)/zinc
oxide nanosheet (ZnO) [82]. The strong synergistic effect between p-type GQD and n-type
SnO2 and ZnO makes the p–n heterojunction effectively increase the resistance caused by
the change of oxygen adsorption. Compared with the original ZnO and SnO2/ZnO sensors,
the SnO2 QNP/ZnO nanostructures modified by GQD have a very high response to H2S:
the response S to 0.1 ppm H2S is 15.9 (the resistance of the sensor that is exposed to air (Ra)
divided by the resistance when it is exposed to the target analyte (Rg)). They also have a
fast response/recovery time (14/13 s).
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Figure 8. (a) Schematic diagram of H2S adsorption mechanism based on SnO2@GO gas sensor [75].
Copyright (2020), used with permission from Elsevier. (b) CZO/rGO sensor structure [76]. Copyright
(2020), used with permission from Elsevier. (c) Schematic diagram of rGO)/GaN nanorods (NRS);
(d) scanning electron microscope (SEM) image of rGO/GaN nanorod (NRS) composite material [77].
Copyright (2020), used with permission from Wiley. (e) Schematic diagram of band configuration at
the interface of the GQD–SnO2/ZnO [81]. Copyright (2021), used with permission from the American
Chemical Society.

3.4. VOCs

Volatile organic compounds (VOCs) can be generated through various biochemi-
cal pathways. The detection of VOC biomarkers can be realized by measuring changes
in the electrical, optical, chemical, and chromatic properties of sensitive materials that
interact with VOC molecules [83]. Probiotics can regulate intestinal problems and main-
tain the body’s intestinal homeostasis. It is possible to diagnose the balance of human
probiotics by detecting changes in the concentration of trimethylamine (TMA) in exha-
lation [9]. Yu et al. reported the real-time monitoring of TMA in respiration based on
the 11–mercaptoundecanoic acid (11–MUA)—Au nanoparticles (AuNPs)/rGO composite
material microgravimetric method [84]. The sensor shows that the lower limit of detection
is 5 ppm, and the response time is 30 s. Hexanal and 5-methylundecane are biomarkers of
multiple sclerosis (such as Alzheimer’s disease (AD) and Parkinson’s disease (PD)) [85].
Mazzatenta et al. reported the real-time detection of AD fingerprints in exhalation. A
significant change in the accumulated VOC fingerprints was detected in the breath of an
AD patient [86]. It was proposed that the expiratory VOC was based on the biomarker
concentration that gradually changes with the progression of the disease to distinguish the
substages of AD. A sensor array based on single-walled carbon nanotubes and polycyclic
aromatic hydrocarbons was used to detect VOC biomarkers of AD. Direct analysis of breath
showed 85.3% sensitivity, 70.6% specificity, and 80.4% accuracy. The recent applications
of other graphene and its derivatives in the detection of organic volatile gases that can be
used as markers for cancer and other diseases were summarized in Table 4.
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Table 4. The detection range and response/recovery time of graphene composite materials to VOC gases.

Materials Gas Detection Limit Response/Recovery Time (s) References

Au NPs–rGO TMA ≥5 ppm ~30 [84]
C60–g–CNT ethanol ≥400 ppb ~300/400 [11]

methanol ≥400 ppb ~300/400
acetone ≥400 ppb ~300/400

chloroform ≥400 ppb ~300/400
toluene ≥400 ppb ~300/400

cyclohexane ≥400 ppb ~300/400
C60–g–rGO ethanol ≥400 ppb ~300/400 [11]

methanol ≥400 ppb ~300/400
acetone ≥400 ppb ~300/400

chloroform ≥400 ppb ~300/400
toluene ≥400 ppb ~300/400

cyclohexane ≥400 ppb ~300/400
(Parylene C and GO) MS toluene 100–300 ppm 164/412 [87]

eG acetaldehyd ≥10 ppm N.A. [88]
GO thin film ethanol >80 ppm N.A.
rGO/SnO2 acetone 0.25–30 ppm 24/30 (5 ppm) [89]

SnxTi1−xO2/GO toluene 100 ppb N.A. [90]
acetone 200 ppb N.A.

Ag/Fe3O4/rGO acetone 35.81–50 ppm ~50/70 [91]
SiNW/rGO acetaldehyd 1 ppm 30/180 [92]

cyclohexane 1 ppm 30/60~120

N.A.: not available.

Ghazi et al. developed a GO microfluidic gas sensor by: (1) 3D printing microchannels
coated with a 5-µm-thick parylene carbon layer (propylene polymer). Then, the xylene was
used to provide a chemically inert barrier layer. (2) The modified microchannel was coated
with GO to improve the specific surface area to volume ratio of the micro-features [87]. The
performance was improved. The sensing setup of the microfluidic gas sensor is shown in
Figure 9a. Compared with ordinary gas sensors, its selectivity to toluene, ethanol, methanol,
pentanol, propanol, and hexane increased by 64.4% on average (Figure 9b).

It is understood that the abnormal concentrations of toluene exhaled by lung cancer
patients are in the hundreds of ppb, whereas the normal concentration is about 1–18 ppb.
Pargoletti et al. synthesized a SnxTi1−xO2/GO–based material through a simple hydrother-
mal method, where x is the content ratio of tin [90]. When using 32:1 SnO2/GO and
32:1 TiO2/GO, there is excellent selectivity to acetone at a level of 100 ppb. However,
when compared with titanium, when a solid solution with a higher tin content (such as
32:1 Sn0.55Ti0.45O2/GO) is used, it shows a higher performance for the larger non-polar
molecule toluene at 350 ◦C. Tung et al. prepared three different graphene-MOF hybrid
nanocomposites, including
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Figure 9. (a) Schematic illustration of the microfluidic gas sensor; (b) the sensing intensity of the
microfluidic gas sensor for different VOCs [87]. Copyright (2022), used with permission from the
American Chemical Society. (c) Response of graphene and MOF hybrid nanocomposite on exhaled gas;
(d) the schematic diagram of the hydrogen bond affinity between copper benzene–1,3,5–tricarboxylate
(Cu–BTC) and chloroform molecules [93]. Copyright (2020), used with permission from the American
Chemical Society.

Coppere–benzene–1,3,5–tricarboxylate (PG–Cu BTC)), zirconium 1,4–dicarboxybenzene
1,4–dicarboxylate (PG–UIO 66) and 2-methylimidazole zinc salt (PG–ZIF 8). They used
this for chemoresistance sensing of VOC biomarkers [93]. As shown in Figure 9c, the
PG–Cu–BTC sensor was tested against VOC biomarkers, and it showed good selectivity
to chloroform. The selectivity principle (Figure 9d) is attributed to the hydrogen bond
between the chloroform molecule and Cu-BTC.

Diabetes mellitus (DM) is a metabolic disease characterized by high blood sugar
caused by insufficient insulin secretion (type I DM), insufficient insulin action (type II
DM), or both. Due to hyperglycemia conditions (high blood sugar levels when fasting
GI is greater than 7 mmol/L), the excess sugar cannot be metabolized, which induces the
decarboxylation of acetoacetate and the dehydrogenation of isopropanol. Large amounts
of isopropanol in the liver can produce acetone [94]. The acetone produced in the blood
can diffuse through the lungs to the airways, because acetone has a blood/air partition
coefficient of 341 at body temperature, and diffuses through urine. Therefore, diabetes can
be diagnosed by testing the concentration of acetone in the breath at present [95]. Studies
have determined that the average concentration of acetone in the breath of healthy people
is 300–900 ppb, and the abnormal concentration of acetone in the breath of diabetes patients
exceeds 1800 ppb.

Kalidoss et al. discussed the influence of the synthesis route on material properties.
The solvothermal method (GS-I) was used to prepare rGO/SnO2 composite material
through chemical synthesis and the hydrothermal method (GS-II) was used to prepare it
through mechanical mixing [89]. At a working temperature of 200 ◦C, GS-I has a larger
specific surface area and surface energy than GS-II. Research results show that GS-I is more
suitable for acetone sensing in exhalation and can clearly distinguish between health and
diabetes. The response mechanism to acetone can be attributed to the synergistic effect of
the rGO/SnO2 interface. Yempally et al. prepared a quantum resistance vapor sensor made
of graphene and cellulose acetate matrix, ultrasonically mixed and reacted for 30 min [96].
The nanostructures were formed through layer-by-layer scattering to distinguish only
1 ppm of acetone vapor, which simplifies the propagation of the analyte to the nano-
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junction, thereby improving the sensitivity. The sensor showed good response to acetone,
ethanol, methanol, and water with concentrations ranging from 1 to 100 ppm. The signal-
to-noise ratio of 1 ppm of acetone is about 15 ppm, which can be used to non-invasively
monitor the blood glucose level of diabetic patients. Graphene-based materials provide
higher sensitivity and faster recovery in VOC sensing. Chemically modified graphene has
the advantages of mass production, high yield, and easy control of function, which can be
widely used in the preparation of graphene-based volatile organic compound sensors.

4. Conclusions and Perspectives

Graphene-based composite smart sensors have high activity against several disease-
marking gases, and have been widely studied in medical diagnosis. In this article, we
reviewed composite materials based on graphene and graphene derivatives (including
graphene oxide (GO), reduced graphene oxide (rGO), and sulfonated reduced graphene
oxide (srGO)). Preparation methods (mechanical mixing, hydrothermal synthesis, solvother-
mal, vacuum annealing, post-synthesis humidity treatment technology, vapor deposition
CVD, self-assembly, etc.) and the sensing performance for NO, NH3, H2S, and volatile
organic gas VOCs (toluene, acetone, cyclohexane, chloroform, etc.) were also included. Gas-
sensing mechanisms such as formaldehyde, ethanol, methanol, trimethylamine, etc., includ-
ing the direct electron transfer mechanism, Fermi level mechanism, and color mechanism
of thin-film interference mechanisms, and their applications in detecting disease-related
gases were elaborated and discussed in detail. Although graphene-based sensors have
high sensitivity, they still face many challenges, such as repeatability, selectivity, dispersion,
and functional group stability, that need to be further optimized.

In addition, there are factors that are difficult to control in the preparation of materials:
for example, it is difficult to control the number of layers, functionality, and specific
chemical structure of graphene. A series of complicated processes are still required in
the device manufacturing and sensing process. For example, for graphene synthesized
by chemical vapor deposition (CVD), transferring graphene flakes is also a challenge.
In addition to these challenges, another serious challenge is cross-sensitivity. Because a
sensing environment with a mixture of gases with a similar structure or belonging to the
same family may interfere with the response of the sensor, for example, the detection
of NO in the exhaled gas and the water molecules carried by the exhaled gas will also
affect the sensing. For an ideal sensor, its detection limit should be lower than the range
of gases breathed out by a healthy human body and have a clear linear relationship to
better detect disease markers in the breath. A correct understanding of the interaction
between graphene-based materials and biological systems and their adverse effects is also
necessary for the further development and safe use of graphene-based medical exhalation
gas diagnosis.
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