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Abstract

Allometric relationships for plants, plant organs and plant parts, have long generated

interest among biologists. Several prominent theoretical models based on biome-

chanical and/or hydraulic arguments have been introduced with mixed support. Here,

I test a more recent offering, flow similarity, which is based on the conservation of

volumetric flow rate and velocity. Using dimensional data for 935 petioles from

43 angiosperm species, I show that both the intraspecific and interspecific petiole

allometries are more closely aligned with the predictions of the flow similarity model

than that of elastic or geometric similarity. Further, allometric covariation among

empirical scaling exponents falls along predicted functions with clustering around the

flow similarity predictions. This work adds to the body of literature highlighting the

importance of hydraulics in understanding the physiological basis of plant allometries,

identifies previously unknown central tendencies in petiole allometry, and helps to

delineate the scope within which the flow similarity model may be applicable.

1 | INTRODUCTION

The study of morphology has a venerable history in biology, with

attempts to model biological form going as far back as Leonardo DaVinci

(Richter, 1970) and Galileo Galilei (Galilei, 1638) and championed early

in the last century by luminaries such as D’Arcy Thompson and Julian

Huxley (Huxley, 1932; Thompson, 1917). This area has seen great inter-

est of late with several prominent models having been published that

invoke physical processes to predict the scaling of biological form

(Banavar et al., 2002, 2014; Savage et al., 2010; West et al., 1999).

For plants, modeling attempts typically invoke hydraulic pro-

cesses (Niklas & Spatz, 2004; Shinozaki et al., 1964), biomechanical

processes (McMahon & Kronauer, 1976), or combinations of the two

(Savage et al., 2010; West et al., 1999). A common feature of many of

these approaches is that they predict branches of differing size will

exhibit self-similarity in their dimensions due to underlying biome-

chanical or hydraulic constraints. For example, the elastic similarity

model (McMahon, 1973; McMahon & Kronauer, 1976) predicts the

maximum height to which an idealized column can extend before it

buckles due to self-loading, which depends on the column radius and

material properties, density, and elastic modulus. The model also pre-

dicts that the ratio of a branch’s length to its deflection due to self-

loading will be constant across branches of different size. A common

null model in biology is that of geometric similarity, which predicts

that biological objects will have allometric exponents similar to those

expected for self-similar geometric shapes such as spheres

(Galilei, 1638; Niklas, 1994). A recent effort that has garnered consid-

erable attention is West, Brown, and Enquist’s fractal similarity model,

which assumes elastic similarity but goes on to make a suite of addi-

tional predictions including the scaling of leaf number and plant mass

(Enquist & Niklas, 2001, 2002; West et al., 1997, 1999). This body of

work has catalyzed great interest in the origin of allometric scaling

relationships, but many have questioned the model’s scope and mech-

anistic underpinnings for plants (Dodds et al., 2001; Muller-Landau
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et al., 2006; Niklas, 2004; Petit & Anfodillo, 2009; Price et al., 2010,

2012).

Recently, Price et al. (2022) introduced a “flow similarity” model,

which similarly predicts scaling relationships between different dimen-

sions (length [l], diameter [d], surface area [SA], and volume [V]) of

branching networks within and across plants. Price et al. (2022)

showed that several parts of plant branching networks including juve-

nile tree stems, interspecific terminal branches, and interspecific peti-

oles have allometric relationships that are generally consistent with

the predictions of the flow similarity model (detailed derivations and

explanation can be found in Price et al., 2022). The model is based on

the Hagen–Poiseuille equation for laminar flow in a cylindrical tube

and relies on two principal model assumptions/constraints, velocity

preservation and the conservation of volumetric flow rate (hence

“flow similarity”) which together predict a constant pressure drop

(note that any two of these constraints predicts the third). Two addi-

tional assumptions, a constant bulk tissue density and an isometric

relationship between internal (xylem) and external branch numbers,

are invoked (exceptions to these assumptions are considered in the

manuscript) to yield a series of predictions including l/ r2, which leads

to SA/V3=4 scaling, and the four additional allometric relationships

described in Table 1. Price et al. (2022) showed that interspecific allo-

metric relationships for leaf petioles were better fit by the flow

similarity model than elastic similarity but did not consider intraspe-

cific petiole allometries or allometric covariation among intraspecific

exponents as is done here.

Leaves and supporting petioles typically develop from primordia

below the shoot apical meristem and undergo numerous rounds of cell

division and enlargement before reaching full expansion. Growing pet-

ioles serve two primary roles, supporting the mass of leaf tissue and

delivering resources to and from leaves. Most studies of petiole bio-

mechanics to date have been either ecological, that is, how resource

or stress gradients influence petiole form and function (Anten

et al., 2010; Niklas, 1996), or have compared the mechanical behavior

of basic petiole types or shapes (Etnier & Villani, 2007). For example,

Niklas showed that the leaves of simple and palmately compound spe-

cies behave effectively as non-tapered, cantilevered columns and

behave differently from pinnately compound leaves (Niklas, 1991).

Vogel examined the resistance to twisting and bending in the leaves

of several species and showed that noncircular petioles tend to be

more flexible in twisting than circular ones (Vogel, 1992).

Despite interest in this area, many basic questions remain regard-

ing the geometry and design of leaf petioles. Do the petioles from dif-

ferent species have similar geometries? For example, if one were to

examine the allometry of leaf petioles over the course of leaf expan-

sion within and across species, do different species have similar

T AB L E 1 Dimensional variables, model predictions, and empirical results. The first two rows represent the dimensional variables in question
and row three the expression from the model for the relationship between the two. Rows 4–6 are the predictions from the three models
evaluated (flow similarity when α = 2). Rows 7–10 represent intraspecific results and rows 11–16 the number and percent of the intraspecific
results supporting each model. Rows 17–20 are the interspecific slope results with 21–23 the bootstrap results for the same.

Y-variable Length Surface area Diameter Length Diameter Length
X-variable Diameter Volume Volume Volume Surface area Surface area

Expression L = Dα SA = V(α + 1)/(α + 2) D = V1/(α + 2) L = Vα/(α + 2) D = SA1/(α + 1) L = SAα/(α + 1)

Flow similarity 2 3/4 1/4 1/2 1/3 2/3

Elastic similarity 2/3 5/8 3/8 1/4 3/5 2/5

Geometric similarity 1 2/3 1/3 1/3 1/2 1/2

Mean intraspecific slope 1.842 0.731 0.281 0.478 0.391 0.647

Lower 95% CI 1.458 0.701 0.252 0.421 0.337 0.592

Upper 95% CI 2.346 0.763 0.315 0.545 0.455 0.710

Mean R2 .726 .991 .930 .906 .879 .952

Number intra supporting flow 21 23 16 24 18 24

Percent intra supporting flow 0.49 0.53 0.37 0.56 0.42 0.56

Number intra supporting elastic 2 3 5 1 3 1

Percent intra supporting elastic 0.05 0.07 0.12 0.02 0.07 0.02

Number intra supporting geometric 9 11 15 7 13 7

Percent intra supporting geometric 0.21 0.26 0.35 0.16 0.30 0.16

Interspecific slope 1.979 0.759 0.282 0.558 0.371 0.735

Lower 95% CI 1.880 0.751 0.274 0.542 0.358 0.721

Upper 95% CI 2.084 0.767 0.290 0.574 0.386 0.749

R 2 .348 .972 .797 .793 .648 .910

Mean bootstrap slope 2.001 0.761 0.281 0.562 0.369 0.738

Bootstrap lower 95% CI 1.969 0.758 0.278 0.557 0.363 0.734

Bootstrap upper 95% CI 2.046 0.764 0.283 0.569 0.373 0.744
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scaling exponents or is there wide variation in the allometry of petiole

morphology? Looking across species, do we see systematic covaria-

tion of these intraspecific scaling exponents? Further, are the central

tendencies for collections of empirical intraspecific or interspecific

allometric exponents consistent with the expectations for any of the

aforementioned scaling models?

Here, I address these and other questions by examining intraspe-

cific allometric relationships among the linear dimensions of petioles of

43 temperate angiosperm species. Using the method of multiple work-

ing hypotheses (Chamberlain, 1897; Platt, 1964), I show that the flow

similarity model shows greater agreement with the allometric data at

both inter and intraspecific levels than either elastic or geometric simi-

larity. I also show that covariation among allometric exponents is in

strong agreement with model predictions (Price & Weitz, 2011). The

implications of this work for scaling in plants, and the potential broader

ecological and evolutionary contexts are discussed.

2 | MATERIALS AND METHODS

Nine hundred thirty-five leaves from 43 species for a mean of �22

individuals per species were collected during the summer of 2007

within the greater Atlanta region (Lat/Long 33� 750–84� 380). Data

were collected initially as part of a study on the allometry of leaf sur-

face area (Price et al., 2009), but only petiole diameters were used;

petiole length, surface area, and volume were not reported nor inter-

preted. Species were chosen based on local availability. Initially, we

had hoped to analyze differences between simple and compound

leaves, but following data collection, there were not enough com-

pound leaved species for a meaningful statistical comparison; thus, I

have lumped both types together here. The petioles of all species

were approximately cylindrical in nature.

For each fresh leaf, petiole length, including the rachis in six

compound leaved species, was measured with a ruler, and petiole

diameter (just beyond any existing pulvinus) was measured twice at

the base with digital calipers. For each species, as large a range of

leaf and petiole sizes as could be found was collected, with repre-

sentative sampling across the size range. Each petiole was assumed

to have a cylindrical shape, and surface area and volume were esti-

mated from the length and diameter measures using standard geo-

metric formulas.

Bivariate relationship among the four dimensional variables (l, d,

SA, V) were estimated using standardized major axis regression (SMA).

Regression exponents were estimated using the software package

F I GU R E 1 Bivariate relationships between

the four dimensional variables considered, petiole
length, basal diameter, surface area, and volume.
Colored lines represent SMA fits to individual
species data and are included to help visualize the
ordinal spread (panel a) or lack thereof (panel b) in
each plot. Note that despite the fact that for a
given petiole diameter there exists close to two
orders of magnitude of variability in petiole length,
all species collapse around what appears to be a
single surface area to volume function.
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SMATR (Falster et al., 2003). SMA regression is typically used in allo-

metric studies where both variables have associated measurement

error and one wants to test if a slope equals a certain value, as is the

case here (Warton et al., 2006). All data were log transformed before

regression fitting to meet the regression assumption of homogeneity

of variance. Regression functions were fit to individual species data

(intraspecific) and to all data together (interspecific). As there are mul-

tiple comparisons for each intraspecific model test, I utilize a Holm–

Bonferroni correction for family-wise error rate (Groppe, 2022;

Holm, 1979) and report the corrected number of significance tests for

each of the three models evaluated.

For interspecific regressions, species were represented by differ-

ent numbers of individuals ranging from 18 to 40 leaves per species.

To ensure that differences in sample size did not influence interspe-

cific slope estimates, I employed a bootstrapping approach. Eighteen

individuals were drawn at random from each species, and an SMA

regression line was fit to each interspecific relationship. This proce-

dure was repeated 10,000 times to yield a distribution of slope esti-

mates from which I could calculate a mean interspecific slope and

95% confidence intervals.

Among the four dimensional variables measured or estimated

here (n), length, diameter, surface area, and volume, per the binomial

coefficient (n!/(n � k)! k!), there are six possible pairwise (k) combina-

tions. Similarly, there are 15 pairwise relationships among the six allo-

metric exponents. Previous work (Price et al., 2022) has shown that if

one represents the length versus diameter allometric relationship as

L/Dα, where α represents the scaling exponent, one can predict

covariation functions as a function α, among all of the aforementioned

15 pairwise allometric exponent relationships.

I evaluated these predicted covariation functions by plotting the

observed allometric exponents and predicted functions together. The

fit of the predicted function to data was assessed by the coefficient of

determination (R2) using the standard formula R2 = 1 � (SSRes/SSTot).

SSRes refers to the residual sum of squares and is given by

SSRes ¼
P

yi� fið Þ2, where yi corresponds to each observed value and

fi corresponds to the predicted value from the covariation function.

SSTot refers to the sum of squares total and is given by

SSTot ¼
P

yi�yð Þ2, where y refers to the mean observed y value.

3 | RESULTS

The six intraspecific allometric relationships across the four dimen-

sional variables typically had high coefficients of determination (R2)

(Figure 1, Table 1). The mean R2 over all 258 bivariate relationships

examined was .9 (Table 1). The weakest relationship was length versus

diameter with a mean intraspecific R2 of .73, and the strongest rela-

tionship was surface area versus volume with a mean R2 of .99 (which

is not surprising as both surface area and volume are estimated from

length and diameter).

F I G UR E 2 Frequency distributions
for the slopes of the six intraspecific
allometric relationships. All distributions
are approximately model and fairly
symmetric. Note that the mean value for
each distribution (red line) is closest to the
flow similarity model expectation in all
cases.
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Out of 258 pairwise relationships, 185 (�72%) had slope esti-

mates whose 95% confidence intervals included the prediction from

the flow similarity model (Table 1) following the Holm–Bonferroni

correction. By comparison, 127 out of 258 (�49%) and 35 out of

258 (�14%) relationships had confidence intervals that included the

geometric similarity and elastic similarity model predictions, respec-

tively (Table 1).

Interspecific allometric relationships had similar slopes to the

mean intraspecific values, with higher variance as would be expected

(Table 1). Bootstrap slope estimates were very close to those obtained

without bootstrapping; thus, differences in sample size had little influ-

ence on interspecific slope estimates here.

The distribution of slopes in panels a–f (Figure 2) are all modal

and while no normality tests were performed (such tests are noto-

riously sensitive to single outliers and small sample sizes), all distri-

butions look fairly normal. Species with higher correlation

coefficients (R 2) tended to cluster more closely to model predic-

tions (Figure 3).

The agreement between predicted covariation functions and

observed allometric exponents is quite good. As is seen in Figure 4,

the predicted function has the same curvature as the data in all cases.

The amount of variation in the data explained by the predicted func-

tion (R2) is generally high, with a minimum value of .49 (Figure 4, panel

k), and a maximum value of .99 (Figure 4, panels i and n). The mean R2

value across all 15 functions is .85.

4 | DISCUSSION

Allometric relationships among petiole dimensions are generally quite

strong. As seen in Figure 1 and Table 1, the slopes are all fairly similar

to one another and typically have high R2 values. While panels a and c–

f in Figure 1 all have around one to two orders of magnitude variability

in the Y-variable for any given X-variable, for the relationship between

surface area and volume (panel b), all data collapse substantially. One

might expect the relationship between surface area and volume to be

constrained as both are estimated as a function of length and diameter.

However, there is no a priori theoretical reason based on geometry

alone why slopes would converge around a single value (save geometric

similarity that assumes a self-similar shape). The smallest surface area

one could have for a given volume is of course a sphere, but petioles

are frequently better approximated by cylinders or conical frustums.

While biologically unrealistic, one could have an extremely thin cylinder

with minimal volume and very large surface area; thus, from a strictly

theoretical standpoint, there is a lower (2/3 for self–similar objects) but

no upper bound for the slope values in Figure 1b.

F I GU R E 3 Bivariate plots for the six
allometric relationships considered. Each
observed allometric exponent is plotted
as a function of its corresponding R2 value

for each relationship. Point colors
correspond to the mean distance to all
other points and thus indicate
neighborhood density. Note that as the R2

values increase, the points tend to
converge at or near the expectation for
the flow similarity model although for
panels c and e there is also a modest
clustering near the expectation for the
geometric similarity model as well.
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Generally, there is very good agreement between the mean intra-

specific slope and the predicted value from the flow similarity model.

In contrast, there is less agreement with the elastic or geometric simi-

larity models, with geometric similarity outperforming elastic similarity

(Table 1 and Figure 2). Moreover, as the R2 values for each relation-

ship increase, they appear to converge on values close to those pre-

dicted by flow similarity (Figure 3). This aspect of allometric data is

often ignored and suggests that some of the slopes that are different

than expected may be due to poor correlations, and perhaps worth

re-examining in those species.

As seen in Figure 4, there is strong agreement between predicted

covariation functions and observed data. This is perhaps not surprising

as each predicted function forms a continuum that represents the

expectation for all possible series of self-similar cylinders, specifically

all possible values of α (Table S1). The model–data agreement tells us

not only that many petioles may be well approximated by self-similar

cylinders but also helps to delineate what parts of the theoretical mor-

phospace are occupied and which are not. For example, no length ver-

sus diameter exponents exceeded a value of 4. While larger data

collections might better delineate the range of this and the other

exponents, it is clear that we are unlikely to find values on the order

of 10 or 100. By evaluating mechanistic models such as those dis-

cussed here (flow, elastic, or geometric similarity), we can begin to

question what constrains petioles to be within this range of the mor-

phospace and not another.

Another benefit to delineating the theoretical covariation space is

that one can begin to ask questions with a more ecological or evolu-

tionary focus. For example, if one were to examine the petiole or

branch allometry of a group of species from a single genus or family,

one could begin to examine how shifts along these interrelated covari-

ation functions corresponded to adaptation within the group. As

another example, one might envision a study looking at the mean

exponent values for groups of species found in different environ-

ments to see if there are systematic shifts along these functions asso-

ciated with variability along resource or stress gradients.

The poorer performance of the geometric similarity model simply

indicates that strictly proportional relationships between the petiole

dimensions are not maintained as petioles get larger. The poor perfor-

mance of the elastic similarity model suggests that its underlying

mechanisms may not have a strong influence on petiole form, or at

least that other constraints or selective pressures play a stronger role

in shaping petiole allometry. It is not currently known whether biome-

chanical or hydraulic drivers have a stronger influence on petiole form

in this context. The flow similarity approach is based primarily on

hydraulics and suggests that biomechanics become more important as

plants get large and the influence of self-loading increases (Price

et al., 2022). In species that have inordinately large petioles (i.e., palm

leaves), we might anticipate a shift in the allometry toward slopes

more consistent with elastic similarity. This study helps to delineate

the scope of the model as the data do seem to support its applicability

F I GU R E 4 Predicted covariation functions for the 15 possible pairwise relationships among allometric exponents with the prediction from
the flow similarity model (when α = 2, Table 1) represented by a black cross. The blue line in each panel represents the predicted covariation
function (Table S1); the points represent observed combinations of exponents for the 43 species. Point colors correspond to the mean distance to
all other points and thus indicate neighborhood density. R2 values for each covariation relationship are shown in each panel. Note the fairly strong
agreement between model predictions and observed data.
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for petioles, the allometry of which may be more influenced by

hydraulics.

The flow similarity model was developed for bifurcating networks,

which can include petioles. However, as discussed in Price et al.

(2022), selection may also be acting on hydraulic traits that reflect the

species level hydraulic constraints. Specifically, it has been shown that

branching that follows l/ r2 scaling preserves sapwood specific con-

ductivity (KS), defined as KS ¼ Ql
ΔPr2s

, where rs is the sapwood radius.

Conservation of sapwood specific conductivity has been shown in ter-

minal branches of trees (McDowell et al., 2002; Sellin et al., 2008) but

to my knowledge has not been measured intraspecifically in petioles.

This work utilizes petioles of increasing size collected at the same

time, but one could similarly examine the dimensions growing petioles

over time. One would likely find strong agreement between such time

series data and the data presented herein.

The relatively good agreement between the flow similarity pre-

dictions and data provides tentative support for the underlying

modeling approach. Combined with the results in Price et al. (2022)

for terminal stems and saplings, the work presented here helps to

delineate the scope of the flow similarity model. However, as

recently discussed in the context of testing metabolic scaling theory

(Price et al., 2012), subsequent tests of the simplifying assumptions

and modeling constraints are required to determine what mecha-

nisms ultimately drive branch and petiole form. With respect to the

assumption of a constant bulk tissue density, it seems reasonable to

assume that within a species, petiole tissue density would not vary

much, but empirical support for this would be useful. Further, stud-

ies examining petiole specific conductivity, in those species in which

is its empirically tractable, would help to determine the extent to

which this is a species-specific trait. Additional tests examining flow

velocities and pressure changes within and across petioles of differ-

ing sizes might help delineate if the underlying mechanism is consis-

tent with those the model invokes.

As discussed in Price et al. (2022), the simplifying assumptions of

the flow similarity model are most closely met when the dimensions

of the plant parts in question (stems, petioles, veins) are governed

more by hydraulics than biomechanical demands as might be observed

in small plants or the distal portions of large plants. As plants increase

in size, the demands of self-loading will likely drive scaling relation-

ships toward elastic similarity and scaling relationship for large size

ranges and data collections may become nonlinear with slope esti-

mates falling between flow similarity and elastic similarity predictions

(see discussion in Price et al., 2022).

5 | CONCLUSIONS

Scaling hypotheses based on physical first principles have a long his-

tory in biology (Niklas, 1994). The flow similarity model adds to this

body of work by considering the allometric relationships that might

emerge under relatively simple and arguably parsimonious model con-

straints, the conservation of volume flow rate and velocity. The data

presented herein demonstrate that petiole allometries are more

consistent with the flow similarity model than other prominent scaling

models. However, the model is not intended to be universal, and vio-

lations of its simplifying assumptions are expected, particularly as

trees or leaves become large. Thus, subsequent tests that help to

delineate the scope within which the model might help us understand

the scaling of plant form are of value in determining it usefulness.
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