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Simple Summary: Rice, the staple food for more than half of humanity, is grown predominantly
in Asia, the world’s most populous continent with the fastest-growing economy. The present-day
rice industry must not only meet increasing demand but also changing consumer demands, with a
strong emphasis placed on producing high-quality rice. While the rapid development of advanced
genotyping methods can be useful for modern rice breeding programs, some methods (such as
capillary electrophoresis or sequencing) can be costly to apply in laboratories with limited resources.
To address this issue, we developed six novel multiplex polymerase chain reaction (PCR) assays
that employ a standard agarose-based gel electrophoresis system to simultaneously detect at least
two major grain quality (amylose content and fragrance) and biotic stress (blast, sheath blight, and
bacterial leaf blight) genes in rice. One of these assays, which can detect all three targeted biotic
stresses, was found to be useful in screening Malaysian weedy rice that may contain novel sources of
disease resistance. The universal protocol described in this study can be used in routine molecular
laboratories to aid rice breeding initiatives in Malaysia and other resource-constrained countries.

Abstract: While previous research has demonstrated that multiplex polymerase chain reaction (PCR)
can be a cost-effective approach to detect various genes in crops, the availability of multiplex assays
to simultaneously screen both grain quality and biotic stress resistance traits in rice (Oryza sativa) is
limited. In this work, we report six novel multiplex assays that use a universal protocol to detect major
rice grain quality (amylose content and fragrance) and biotic stress (blast, sheath blight, and bacterial
leaf blight) traits with amplified products consisting of up to four primer pairs that can be analyzed
using a standard agarose-based gel electrophoresis system. Recent studies have suggested that weedy
rice has novel sources of disease resistance. However, an intensive screening of weedy biotypes
has not been reported in Malaysia. Accordingly, we employed one of the developed multiplex
assays to screen reported genes or quantitative trait loci (QTLs) associated with blast, sheath blight,
and bacterial leaf blight diseases in 100 weedy rice biotypes collected from five local fields, with
phenotyping performed to validate the genotyping results. In conclusion, our universal multiplex
protocol is effective for the large-scale genotyping of rice genetic resources, and it can be employed in
routine molecular laboratories with limited resources.

Keywords: agarose gel electrophoresis; amylose content; bacterial leaf blight; blast; fragrance;
multiplex polymerase chain reaction; rice; sheath blight; weedy rice

1. Introduction

Most rice (Oryza sativa L.) is grown in Asia, the world’s most populous continent
with the fastest-growing economy [1]. The present-day rice industry must not only meet
increasing demand but also changing consumer demands, with a strong emphasis placed
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on producing high-quality rice, which significantly impacts both palatability and consumer
acceptance. Fragrance (or aroma) is one of the most important grain qualities of rice [2,3].
According to Hu et al. [2], consumers prefer pleasantly fragranced rice, such as Basmati
rice, which has had a large market in Asia for decades despite being more expensive than
nonaromatic rice. In addition, a major grain quality feature that has been consistently
improved to satisfy changing customer demand is the amylose content, which strongly
influences the cooking and eating quality of rice [4,5].

Some developing Asian countries are still reliant on imported rice to meet their
needs because they are yet to achieve 100% rice self-sufficiency. For example, Malaysia,
which imports rice principally from Pakistan, Thailand, and Vietnam, has only achieved
approximately 65% self-sufficiency for its total 2.7-million-ton rice demand as of the early
2020s [6,7]. Rice production in Malaysia has been negatively impacted by several biotic
stresses, notably blast, sheath blight, and bacterial leaf blight diseases caused by the
pathogens Magnaporthe oryzae, Rhizoctonia solani, and Xanthomonas oryzae, respectively [8,9].
Climate change is expected to worsen these issues by generally increasing the risk of
pathogens spreading in rice fields and agricultural ecosystems, thus potentially leading
to greater yield losses [10]. As a result, it is essential to devise radical yet dependable
strategies to boost rice production, quality, and resilience [11].

In addition to climate-induced stresses, the presence of weedy (or obnoxious red)
rice has been reported to negatively impact rice production in several major rice-growing
regions worldwide, including Malaysia [12,13]. Recent research, however, has revealed
that weedy rice contains novel sources of stress tolerance or resistance, including to some
of the most devastating rice diseases, such as blast, which can eradicate up to 30% of the crop
annually [14]. While weedy rice may outcompete cultivated rice for resources, its competitive
ability and adaptive evolutionary traits, such as stress tolerance and increased seed dispersal,
may be useful to maximize cultivated rice resource use efficiency and yields in the face
of climate change [15]. One viable approach to incorporate resilience into modern rice
with narrow genetic backgrounds is the introgression of alleles from weedy rice with
novel genes that respond to climatic stresses [16]. Although the merits of weedy rice have
been deliberated, challenges remain for the utilization of weedy genetic resources due
to the paucity of research in this field and the current lack of understanding concerning
the biotype variability at different locations within a country or region. Nonetheless, the
availability of the complete rice genome sequence and advances in genetics may help to
close this gap [11,16].

Multiplex polymerase chain reaction (PCR) is a PCR variant that employs two or more
pairs of molecular markers or primers to simultaneously screen multiple genes or loci in
a single PCR system. It is a notable example of a common molecular technique that has
been effectively applied to crop improvement in recent decades [17–19]. Figure 1 illustrates
gel-electrophoresis-based uniplex PCR and multiplex PCR with three different primer
pairs. Despite prior research demonstrating that multiplex PCR can be a cost-effective and
efficient assay to detect various genes in crops, the availability of assays to simultaneously
screen major rice grain quality and biotic stress resistance traits is limited or nonexistent; in
addition, to our knowledge, there are no reports of their utilization or efficacy in detecting
multiple major disease resistance genes in weedy rice [19]. Thus, this is where the novelty
of this study resides. The present study aimed to develop multiplex PCR assays that can
simultaneously detect at least two major grain quality (amylose content and fragrance)
and biotic stress (blast, sheath blight, and bacterial leaf blight) genes in rice using standard
agarose gel electrophoresis. One of the six developed multiplex assays, which can detect
all three biotic stresses, was found to be useful in screening Malaysian weedy rice (O. sativa
f. spontanea). All assays developed in this study can be employed in routine molecular
laboratories, thereby assisting rice breeding initiatives in Malaysia and other developing
countries with limited resources.
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2. Materials and Methods
2.1. Materials

The present study included ten local cultivated rice varieties with diverse grain quality
and disease resistance backgrounds as well as one hundred weedy rice biotypes collected
in three Malaysian states, including Pahang, Selangor, and Perak. The seeds for the culti-
vated varieties were obtained from the Malaysian Agricultural Research and Development
Institute (MARDI). MARDI also provided the isolates of X. oryzae (Xoo), M. oryzae, and
R. solani used in this study for weedy phenotyping.

2.2. Molecular Analyses
2.2.1. DNA Isolation

For each genotype, approximately 5 g of seeds were sown and grown in a green-
house at Rimba Ilmu, Universiti Malaya (3.1311◦ N, 101.6578◦ E), and leaves of 4-week-old
seedlings were harvested for DNA isolation. Total genomic DNA was extracted using
a FavorPrepTM Plant Genomic DNA Extraction Mini Kit following the manufacturer’s
protocol (Favorgen, Ping Tung, Taiwan). DNA quality was assessed using 1% SYBR®Safe
(ThermoFisher Scientific, Waltham, Massachusetts, USA) DNA-stained agarose gel elec-
trophoresed in 1xTris-acetate-ethylenediaminetetraacetic acid (TAE) buffer for 60 min and
was visualized under the AlphaImager Mini Imaging System (ProteinSimple, Santa Clara,
California, USA). The purity of the samples was also determined using a NanoDrop 2000
spectrophotometer (Thermofisher Scientific, Waltham, Massachusetts, USA). To prepare
both uniplex and multiplex PCR samples, 2XGoTaq Green PCR Mastermix (Promega, Madi-
son, WI, USA) was used, which contains optimal concentrations of bacterial-derived Taq
DNA polymerase, MgCl2, dNTP, and reaction buffers.
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2.2.2. Selection of Molecular Markers

Table 1 presents the details of five molecular markers selected in this study, which are
associated with rice amylose content, fragrance, bacterial leaf blight, blast, and sheath blight
resistance [19,20]. The markers were selected based on the availability of genotyping data in
the Gramene database (https://www.gramene.org (accessed on 11 September 2019), their
degree of polymorphisms, and their melting temperature (55 ◦C). Although the efficiency
of each selected marker has been reported in previous studies (Table 1), they have not been
multiplexed in the way that was performed in this study.

Table 1. Details of molecular markers employed for PCR analysis.

Category Trait Locus/
Loci Chr. Marker Name Ref Primer Sequences (5’-3’)

Grain quality

Amylose levels Wx 6 Wx-SSR [20,21] F’ -CTTTGTCTATCTCAAGACAC
R’ -TTGCAGATGTTCTTCCTGATG

Fragrance Fgr 8 fgr-SNP [20,21]

EAP -AGTGCTTTACAAAGTCCCGC
ESP -TTGTTTGGAGCTTGCTGATG
IFAP -CATAGGAGCAGCTGAAATA TATACC
INSP -CTGGTAAAAAGATTATGGCTTCA

Biotic stresses

Bacterial leaf
blight Xa21 11 pTA248 [22] F’ -AGACGCGGAAGGGTGGTTCCCGGA

R’ -AGACGCGGTAATCGAAAGATGAAA

Blast Piz 6 RM8225 [23] F’ -ATGCGTGTTCAGAAATTAGG
R’ -TTGTTGTATACCTCATCGACAG

Sheath blight qSBR11-3,
QRlh11 11 RM202 [24] F’ -CAGATTGGAGATGAAGTCCTCC

R’ -CCAGCAAGCATGTCAATGTA

Chr.—Chromosome; F’—Forward; R’—Reverse; EAP—External Antisense Primer; ESP—External Sense Primer;
IFAP—Internal Fragrant Antisense Primer; INSP—Internal Nonfragrant Sense Primer; Ref—Reference(s).

2.2.3. Uniplex and Multiplex Polymerase Chain Reaction (PCR)

Each of the five selected primer sets were analyzed individually via uniplex PCR
using the Veriti 96-well thermal cycler (Applied Biosystems, Waltham, MA, USA) (Table 2).
To validate the results obtained from the uniplex PCR analyses, the amplified products
were sequenced using an ABI3100 DNA sequencer (Applied Biosystems, Waltham, MA,
USA) in a commercial sequencing facility (Apical Scientific, Seri Kembangan, Malaysia).

Table 2. Description of thermal cycling parameters for uniplex and multiplex PCR reactions.

Optimization Uniplex
(Quality Traits)

Uniplex
(Biotic Stress Traits) Multiplex

Thermal cycling profile Cheng et al. [20] Mohd Hanafiah et al. [19] McCouch et al. [25]
Initial denaturation 95 ◦C (4.00 min) 94 ◦C (5.00 min) 94 ◦C (5.00 min)
Cycle number 34 35 35
Denaturation 94 ◦C (0.75 min) 94 ◦C (1.00 min) 94 ◦C (1.00 min)
Annealing 55 ◦C (0.75 min) 55 ◦C (1.00 min) 55 ◦C (1.00 min)
Extension 72 ◦C (0.75 min) 72 ◦C (2.00 min) 72 ◦C (2.00 min)
Final extension 72 ◦C (5.00 min) 72 ◦C (5.00 min) 72 ◦C (5.00 min)

Concentration of each primer 0.4 µM
(Wx-SSR or fgr-SNP)

0.4 µM
(pTA248, RM8225, or RM202) 0.4 µM

Concentration of DNA template 50 ng 50 ng 50 ng
Final reaction volume 20 µL 20 µL 20 µL

Multiplex PCRs were performed on commercial rice varieties using at least two primer
pairs associated with two or more quality and disease resistance traits (Supplementary
Material Table S1), with distinct banding patterns between positive and negative controls.
To screen weedy rice biotypes, multiplex PCR assays with at least two primer pairs linked
to disease resistance traits that displayed distinct banding patterns between positive and
negative controls were utilized. Each PCR sample contained a total reaction volume of
20 µL, which included 10 µL of premixed, ready-to-use 2XGoTaq Green PCR Mastermix

https://www.gramene.org
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(Promega, Madison, WI, USA), 0.4 mL of each primer, 50 ng of template DNA, and double-
distilled water. Table 3 shows the control varieties and the expected product sizes for each
of the target-trait primer pairs.

Table 3. Local rice checks for selected quality and biotic stress traits and the expected sizes of their
PCR products.

Trait Primer Positive
Control Description

Expected
Product Size

(bp)

Negative
Control Description

Expected
Product Size

(bp)

Amylose levels Wx-SSR MRQ74 >25% amylose ~110 MR219 <25% amylose ~130

Fragrance fgr-SNP MRQ74 Fragrant ~250 MR219 Nonfragrant ~350

Bacterial leaf
blight pTA248 MR219 Resistant ~700 Ria Susceptible ~600

Blast RM8225 Mahsuri
Mutant; Ria Resistant ~200 MR219 Susceptible ~220

Sheath blight RM202 Pulut Hitam 9;
Ria Resistant ~160 MR219 Susceptible ~180

2.3. Gel-Based Genotyping

Uniplex and multiplex PCR products were electrophoresed on SYBR® Safe-stained
(Thermofisher Scientific, Waltham, MA, USA) 3% standard agarose and 4% high-resolution
agarose, respectively, and visualized under the AlphaImager Mini Imaging System (Pro-
teinSimple, Santa Clara, CA, USA). The gels were prepared by mixing 4.5 g of standard
agarose (Hydragene, USA) and 6 g of high-resolution agarose (Gene Xpress, Subang Jaya,
Malaysia) in 150 ml of 1 × TAE buffer, and amplified products were electrophoresed for
2.5 h at 100 V (for standard agarose gel) or 3 h at 120 V (for high-resolution agarose gel). The
sizes of the products was estimated using 100 bp and 50 bp DNA size markers (SMOBIO,
Hsinchu, Taiwan).

2.4. Phenotyping for Biotic Stresses in Weedy Rice Biotypes

Phenotyping for cultivated rice varieties was not conducted because the phenotypes
of the control and some selected varieties for the targeted traits had been reported in
earlier studies [19,20,26,27]. Therefore, only the weedy rice evaluated in this study was
phenotyped. As a control, two rice checks (MR219 and Ria) were included. The severity
of each targeted disease was determined based on the Standard Evaluation System scale
(SES) [28] formulated by the International Rice Research Institute (IRRI) (Table 4).

Table 4. Description of phenotype scoring for rice diseases according to the Standard Evaluation
System (SES) for rice [28].

Biotic Stress
Score

0 1 3 5 7 9

Disease scale Highly resistant
(HR) Resistant (R) Moderately

resistant (MR)
Moderately

susceptible (MS) Susceptible (S) Highly
susceptible (HS)

Blast No lesion
Uniform or

scattered brown
specks

Small lesion ~1
mm in diameter

1–2 mm elliptical
lesions

Broad
spindle-shaped

lesion with
yellow, brown, or

purple margin

Rapidly
coalescing small,
whitish, grayish,
or bluish lesions
without distinct

margins
Sheath blight No lesion <20% lesion 20–30% lesion 31–45% lesion 46–65% lesion >65% lesion
Bacterial leaf
blight No lesion 1–5% lesion 6–12% lesion 13–25% lesion 26–50% lesion >50% lesion
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2.4.1. Blast

An inoculum of M. oryzae was prepared following Hayashi et al. [29]. Seedlings at
the 5-6 leaf stage were inoculated by spraying with a conidial suspension containing 105

(100,000) conidia per ml, as determined by a hemacytometer. To aid the adhesion of the
inoculum to the leaves, a drop of Tween 20 was added. Reactions to blast disease were
graded following the SES scale (Table 4).

2.4.2. Sheath Blight

An inoculum of R. solani was prepared following Jia et al. [30]. To ensure that the
presence of the soilborne R. solani inoculum had no effect on our results, the soil was first
sterilized with steam. Each seedling was inoculated with a mycelial disc, which was placed
at the base of the stem and forced up to allow the mycelium to touch the plant. Sheath
blight disease reactions were classified according to the SES scale (Table 4) as well as by
measuring lesion length.

2.4.3. Bacterial Leaf Blight

An inoculum of X. oryzae (Xoo) was prepared following Ke et al [31]. The leaf clipping
method described by Kauffman et al. [32] was used to inoculate the bacteria along 4–5 cm
of the leaf tip. The inoculation was performed in the afternoon, between 03:00 p.m. and
05:00 p.m., to avoid high environmental heat and evaporation. Reactions to bacterial leaf blight
disease were scored based on the SES scale (Table 4) and lesion length measurements [33].

2.5. Data Analysis

Genotype data were used to calculate parameters related to genetic diversity, including
the observed allele number per sampling location (Na), the number of effective alleles (Ne),
the observed heterozygosity (Ho), the expected heterozygosity (He), the unbiased expected
heterozygosity (uHe), and Shannon’s diversity index (I), using GenAlEx 6 [34,35].

3. Results
3.1. Uniplex PCR and DNA Sequencing

The current study tested five sets of molecular markers that had previously shown
functional polymorphisms for each of the target traits, including Wx-SSR, fgr-SNP, pTA248,
RM8225, and RM202 [19–24]. All of the selected markers showed functional polymorphisms
with expected sizes of amplified products (Table 5), indicating that they can be employed
for multiplexing. The amplified regions on local checks (Table 3) were analyzed using both
uniplex PCR and sequencing (Supplementary Materials Figures S1–S5), with the latter used
for validation.

Table 5. Amplified product size (bp) from uniplex PCR analysis of ten selected local rice varieties.

Trait
Variety

Amylose Levels Fragrance Bacterial Leaf Blight Blast Sheath Blight

Wx-SSR fgr-SNP pTA248 RM8225 RM202

MR219 ~130 (NH) ~350 (NF) ~700 (R) ~220 (S) ~180 (S)
MRQ74 ~110 (H) ~250 (F) ~700 (R) ~200 (R) ~180 (S)
Ria ~110 (H) ~350 (NF) ~600 (S) ~200 (R) ~160 (R)
Mahsuri Mutant ~110 (H) ~350 (NF) ~700 (R) ~200 (R) ~180 (S)
Pulut Hitam 9 ~130 (NH) ~350 (NF) ~700 (R) ~200 (R) ~160 (R)
Pulut Malaysia 1 ~130 (NH) ~350 (NF) ~600 (S) ~200 (R) ~160 (R)
MR106 ~110 (H) ~350 (NF) ~700 (R) ~200 (R) ~160 (R)
MR167 ~110 (H) ~350 (NF) ~700 (R) ~200 (R) ~180 (S)
MR185 ~110 (H) ~350 (NF) ~700 (R) ~200 (R) ~160 (R)
MR220 ~130 (NH) ~350 (NF) ~700 (R) ~220 (S) ~180 (S)

H: High amylose; NH: Non-high amylose; F: Fragrant; NF: Nonfragrant; R: Resistant; S: Susceptible.
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3.2. Multiplex PCR
3.2.1. Screening of Local Cultivated Varieties

All the primers that were tested using uniplex PCR were then used to develop mul-
tiplex PCR assays. Table 5 shows the sizes of the amplified products of cultivated rice
varieties from six multiplex PCRs (Supplementary Material Table S1). Gel images for two
(Supplementary Materials Figures S6–S9) or more primer pairs showed clear resolution of
products from all developed multiplex assays in 4% high-resolution agarose gel. This study
developed two multiple assays with more than two primer sets; one of the assays used
three sets of primers (pTA248, RM8225, and RM202) to represent each of the three biotic
stresses (Figure 2), while the other used four sets of primers (fgr-SNP, Wx-SSR, RM8225,
and RM202) to detect both quality traits and two biotic stresses (Figure 3).
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Figure 2. Amplified multiplex products from pTA248, RM8225, and RM202, associated with bacterial
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(resistance)), and sheath blight (~180 bp (susceptible) and ~160 bp (resistance)) resistance genes,
respectively. Lanes 1–2: 100 bp and 50 bp ladders; Lanes 3–12: MR219, Mahsuri Mutant, Pulut Hitam
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and ~110 bp (>25% amylose)), blast (~220 bp (susceptible) and ~200 bp (resistance)), and sheath blight
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3.2.2. Screening of Local Weedy Rice Biotypes

A total of 100 weedy rice biotypes were tested for disease resistance traits using one
of the developed multiplex assays, which included primer sets for blast (RM8225), sheath
blight (RM202), and bacterial leaf blight (pTA248). The multiplex product sizes of the
100 weedy rice biotypes separated on 4% high-resolution agarose gels are provided in
Supplementary Table S2. Figure 4 shows one of the gel images produced by the multiplex
assay involving four local checks and fourteen weedy rice biotypes.
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Figure 4. Examples of amplified multiplex pTA248, RM8225, and RM202 products separated using
4% high-resolution agarose gel electrophoresis at 120 V for 3 h, associated with bacterial leaf blight
(~600 bp (susceptible) and ~700 bp (resistance)), blast (~220 bp (susceptible) and ~200 bp (resistance)),
and sheath blight (~180 bp (susceptible) and ~160 bp (resistance)) resistance genes, respectively.
Lanes 1–2: 100 bp and 50 bp ladders; Lanes 3–6 (rice checks): MR219, Mahsuri Mutant, Pulut Hitam 9,
and Ria; Lanes 7–20 (weedy rice biotypes): WR20, WR21, WR22, WR23, WR24, WR25, WR26, WR27,
WR28, WR29, WR30, WR31, WR07, and WR16.

The genotyping analysis revealed that 12%, 19%, and 89% of the weedy rice biotypes
were resistant to sheath blight, blast, and bacterial leaf blight, respectively (Figure 5). Sheath
blight had the highest heterozygosity (14%), followed by bacterial leaf blight and blast.
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Figure 5. Frequency distribution of weedy rice biotypes associated with major rice diseases in
Malaysia. Resistant and susceptible genotypes were determined based on molecular screening.

Figure 6 shows the allelic frequency of markers RM202, RM8225, and pTA248 for the
100 weedy rice biotypes collected in various locations. All biotypes collected in Sungai Besar
and Sungai Leman, Selangor, had 700 bp product sizes, indicating resistance to bacterial
leaf blight. Among the studied weedy rice biotypes, the highest Shannon’s information
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index was 0.62 for blast disease detected by marker RM8225 in Sungai Burung, Selangor
(Table 6).
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stresses.

Greenhouse phenotyping was performed to validate the genotyping results, primarily
using the SES scale developed by IRRI for all three biotic stresses (sheath blight, blast, and
bacterial leaf blight) [28]. Figure 7 shows the symptoms and genotype–phenotype analysis
for our weedy rice population based on a random subset of eight weedy rice biotypes.
The disease score, scale index, and genotypes of the selected biotypes were compared to
two local rice checks, MR219 and Ria (Table 3, Figure 7B). The decision to use a subset
to represent the weedy population was made following previous rice research, such as
Tian et al. [36] and Li et al. [37], which employed 15 and 30 inoculated greenhouse-grown
plants, respectively, to represent larger populations in their studies, which consisted of
more than 400 accessions, for disease verification. Based on the reported sample group of
the weedy population (Figure 7B), we obtained 75% accuracy in predicting the phenotypes
of weedy rice biotypes using the genotype data from our developed multiplex assay. It is
important to note that the percentage of accuracy can vary depending on a variety of factors,
including the phenotyping scale [38]. According to Furbank and Tester [39], extensive
phenotyping on a large scale is considered onerous. The cost of large-scale phenotyping
may not be justified by the benefits it may provide [40].
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Table 6. Genetic diversity of weedy rice samples based on three loci associated with sheath blight,
blast, and bacterial leaf blight diseases in five different rice fields in Malaysia.

Location Diseases N Na Ne I Ho He uHe

Pekan, Pahang
Sheath blight

25
2.000 1.625 0.573 0.120 0.385 0.393

Blast 2.000 1.368 0.440 0.080 0.269 0.274
Bacterial leaf blight 2.000 1.403 0.462 0.000 0.287 0.294

Sungai Burung,
Selangor

Sheath blight
16

2.000 1.133 0.234 0.000 0.117 0.121
Blast 2.000 1.753 0.621 0.000 0.430 0.444

Bacterial leaf blight 2.000 1.301 0.393 0.000 0.231 0.239

Sungai Leman,
Selangor

Sheath blight
8

1.000 1.000 0.000 0.000 0.000 0.000
Blast 1.000 1.000 0.000 0.000 0.000 0.000

Bacterial leaf blight 1.000 1.000 0.000 0.000 0.000 0.000

Sungai Besar,
Selangor

Sheath blight
37

2.000 1.339 0.420 0.027 0.253 0.257
Blast 2.000 1.651 0.584 0.000 0.394 0.400

Bacterial leaf blight 1.000 1.000 0.000 0.000 0.000 0.000

Seberang Perak,
Perak

Sheath blight
14

2.000 1.690 0.598 0.286 0.408 0.423
Blast 2.000 1.508 0.520 0.000 0.337 0.349

Bacterial leaf blight 2.000 1.153 0.257 0.000 0.133 0.138

N: Sample size; Na: Number of alleles; Ne: Number of effective alleles; I: Shannon’s information index; Ho:
Observed heterozygosity; He: Expected heterozygosity; uHe: Unbiased expected heterozygosity.
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Figure 7. (A) Symptoms of sheath blight, blast, and bacterial leaf blight in weedy rice biotypes and
(B) disease score, scale index, and genotype (S, susceptible; R, resistant) on two local rice checks,
MR219 and Ria, and eight selected weedy rice samples.

4. Discussion

Rice breeders frequently aim to improve multiple key agronomic traits, including
quality and disease resistance, via marker-assisted breeding, which typically involves
the screening of a large number of breeding materials [19,41–43]. While many advanced
methods for analyzing rice genotypes have been developed, such as capillary electrophore-
sis and direct DNA sequencing after PCR amplification, they are often expensive and
require specialized tools or equipment (such as fluorescence readers and sequencers) that
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are not readily available in routine molecular laboratories, particularly in developing or
underdeveloped countries [19]. In order to save the cost of genotyping, with no expense
required to purify the DNA, we developed six convenient agarose-based multiple PCR
assays to analyze multiple genes in a single PCR tube, which can determine up to four
rice genes (Figures 2 and 3) for major grain quality (amylose content and fragrance) and
biotic stress resistance traits (bacterial leaf blight, blast, and sheath blight) where the alleles
differ by less than 20 bp (Table 5). These multiplex assays can be used in a variety of rice
breeding programs aimed at improving major grain quality, biotic stress resistance, or both.
To test the effectiveness of the selected primer sets, uniplex PCRs were performed on local
traditional and improved rice varieties with diverse grain quality and disease resistance
backgrounds, and the results for the control varieties were validated through sequencing
(Supplementary Materials Figures S1–S5). The uniplex PCR results were consistent with
previous studies [19,20,41,44].

According to Vieira et al. [45], DNA-based markers such as simple sequence repeats
(SSRs) and single-nucleotide polymorphisms (SNPs) are among the most dependable and
stable tools for the discrimination of rice varieties. We discovered that the thermal cycling
profile designed by McCouch et al. [25] to map rice SSRs works effectively for all of the
multiplex assays developed in this study, which used several different molecular markers,
including SSR, SNP, and sequence-tagged site (STS). The current study used a single PCR
cycle and a fixed agarose gel preparation and running protocol, providing a universal
genotyping assay for the target traits. This implies that the same protocol can be used to
screen for other rice genes containing functional molecular markers. Regardless of the
types of molecular markers used, the melting temperature (Tm) for all six multiplex assays
was 55 ◦C. Researchers can avoid testing an exhaustive set of primers for the reported
traits by using the developed assays, which can be easily employed in current and future
breeding programs in Malaysia and Asia. According to our genotyping results, traditional
Malaysian rice has shown good resistance to the major diseases, particularly Pulut Hitam 9,
which is resistant to all three diseases (Table 5; Figures 2 and 3). Because Pulut Hitam 9 is a
waxy rice, it can be used as a donor parent for the development of low-amylose or waxy
rice with disease resistance [3,4,9].

Weedy rice (O. sativa), also known locally as “padi angin” (due to its easily shattered
seeds), is one of the most dominant and competitive weed species found in rice planting
areas worldwide [46]. Recent reports showed that weedy rice contains novel sources of
disease resistance [14], including broad-spectrum resistance to blast, the most explosive
and potentially damaging rice disease worldwide [47]. Our research revealed that the vast
majority of the studied weedy rice biotypes were genetically resistant to bacterial leaf blight
disease (Figure 5; Table S2). This indicates that weedy rice can be an effective option to
screen the specific beneficial genes and cross-over with a rice cultivar to produce a new bac-
terial leaf blight resistant rice variety. To date, there are more than 42 resistance genes that
have been identified and used in rice plant breeding from various Oryza spp. [48]. Among
the bacterial leaf blight resistance genes identified is Xa21, which was originally introgressed
from a wild rice accession, O. longistaminata, and mapped to chromosome 11 [49,50]. Addi-
tionally, the weedy rice biotypes in our study also demonstrated some level of resistance to
blast and sheath blight (Figure 5). A recent study conducted by Goad et al. [51] suggested
that blast and sheath blight resistance varies by genotype in weedy rice populations, with
indica types being more resistant than japonica types. The greater the genetic diversity in a
population, the higher the Shannon’s index [52]. In Sungai Leman, Selangor, Shannon’s
information index was zero for all three diseases (Table 6). This could be because only eight
samples (N = 8) were collected from this particular location, and the limited sample size
might not accurately reflect the genetic diversity of the population [53]. We recommend
that weedy population genetics studies use larger sample sizes to better capture the genetic
diversity of populations in a specific location.

To the best of our knowledge, none of the six multiplex assays developed in this study
were previously reported, particularly for screening weedy rice biotypes. Our universal
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multiplex protocol is rapid (detecting up to four genes in a single PCR run), easy to employ,
and cost-effective because no specialized laboratory equipment is required. Our results are
consistent with the findings of Duan et al. [54], who reported a high-specificity universal
multiplex PCR assay capable of detecting multiple pathogens associated with human
bacterial meningitis. We believe that agarose-gel-based multiplex PCR is one of the best
approaches for genotyping a large number of parents (varieties), progeny, and/or weedy
rice populations in molecular laboratories with limited resources. However, if funding is
not a constraint, advanced genotyping methods such as capillary electrophoresis, real-time
detection, or direct sequencing would be better alternatives, as they allow quick screening
for alleles that differ by as little as 1 bp. The advanced methods are also slightly less labor-
intensive because they can be automated and do not involve the use of agarose gel, although
they require qualified laboratory personnel or skilled researchers to run the equipment and
interpret the data [55,56]. Our study found that 89% of the tested weedy biotypes were
resistant to bacterial leaf blight, indicating the potential to introduce resistance alleles from
local weedy biotypes into cultivated rice varieties that are susceptible to the disease. Given
that rice and weedy rice are closely related and have a low breeding barrier [53], we urge
that the potential and genetic diversity of weedy rice be explored further for use in rice
breeding programs.

5. Conclusions

In the postgenomic era, where functional markers are more widely available to breed-
ers to employ, a simple and cost-effective genotyping method is in high demand, partic-
ularly for those working in developing and underdeveloped countries that have limited
resources. Our agarose-based multiplex PCR assays require three pieces of conventional
equipment: a PCR thermocycler, an electrophoresis system, and a gel imager, all of which
are typically readily available in any molecular or genotyping laboratory. The assays have
been shown to be effective for the molecular analysis of major grain quality and biotic
stresses in both cultivated and weedy rice, regardless of the types of markers used. We be-
lieve that the developed assays will aid in accelerated marker-assisted breeding in many
breeding programs throughout Asia.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life12101542/s1, Figures S1–S5: Partial sequences and amplified
PCR products of primer sets; Figures S6–S9: Amplified multiplex products from two primer sets
associated with major rice quality and/or disease resistance traits; Table S1: Description of six PCR-
based multiplex assays developed in this study; Table S2: Description of multiplex PCR results for
100 weedy rice biotypes.
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