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The onset of neurodegenerative diseases activates inflammation
that leads to progressive neuronal cell death and impairments in
cognition (Alzheimer’s disease) and sight (age-related macular de-
generation [AMD]). How neuroinflammation can be counteracted
is not known. In AMD, amyloid β-peptide (Aβ) accumulates in sub-
retinal drusen. In the 5xFAD retina, we found early functional
deficiencies (ERG) without photoreceptor cell (PRC) death and iden-
tified early insufficiency in biosynthetic pathways of prohomeo-
static/neuroprotective mediators neuroprotectin D1 (NPD1) and
elovanoids (ELVs). To mimic an inflammatory milieu in wild-type
mouse, we triggered retinal pigment epithelium (RPE) damage/PRC
death by subretinally injected oligomeric β-amyloid (OAβ) and ob-
served that ELVs administration counteracted their effects, protecting
these cells. In addition, ELVs prevented OAβ-induced changes in gene
expression engaged in senescence, inflammation, autophagy, extra-
cellular matrix remodeling, and AMD. Moreover, as OAβ targets the
RPE, we used primary human RPE cell cultures and demonstrated that
OAβ caused cell damage, while ELVs protected and restored gene
expression as in mouse. Our data show OAβ activates senescence
as reflected by enhanced expression of p16INK4a, MMP1, p53, p21,
p27, and Il-6, and of senescence-associated phenotype secretome,
followed by RPE and PRC demise, and that ELVs 32 and 34 blunt these
events and elicit protection. In addition, ELVs counteracted OAβ-induced
expression of genes engaged in AMD, autophagy, and extracellular
matrix remodeling. Overall, our data uncovered that ELVs down-
play OAβ-senescence program induction and inflammatory tran-
scriptional events and protect RPE cells and PRC, and therefore
have potential as a possible therapeutic avenue for AMD.
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The onset of the neuroinflammatory response encompasses
synthesis of endogenous mediators aiming to counteract brain

and/or retina damage. Neuroprotectin D1 (NPD1), a docosanoid
derived from an omega-3 essential fatty acid, is neuroprotective
by arresting inflammation initiation, and thus sustaining photo-
receptor cell (PRC) integrity (1), and is deficient in the hippo-
campus CA1 area of early Alzheimer’s disease (AD) (2). Aβ
accumulates in AD. In the 5xFAD retina, Aβ also accumulates, and
although Aβ in AMD sets in motion homeostasis disturbances that
include inflammation and contribute to PRC death (3, 4), it is not
known how to limit Aβ-mediated cell damage. In PRCs, very long
chain polyunsaturated fatty acids (VLC-PUFAs, C > 28) are syn-
thesized by ELOVL4 (elongation of very long chain fatty acid-4) (5,
6) and are necessary for rhodopsin function (7). Mutations on the
ELOVL4 gene (5) cause Stargardt macular dystrophy type 3 with
central vision loss. Recessive ELOVL4 mutations cause seizures,
mental retardation, and spastic quadriplegia, suggesting the impor-
tance of VLC-PUFAs in brain development and physiology, as well
(8). Once VLC-PUFAs are incorporated into specific phosphati-
dylcholine molecular species (PCs) of the photoreceptor cells outer
segments, they arrive to the retinal pigment epithelium (RPE) after
daily PRC disk shedding and phagocytosis. Elovanoids (ELVs) with
32 and 34C are enzymatically synthesized in RPE cells from PC-

released VLC-PUFAs by a phospholipase A1 (9, 10). These novel
lipid mediators have the ability to protect RPE cells from un-
compensated oxidative stress by up-regulating prohomeostatic and
prosurvival protein abundance with attenuation of apoptosis in
photoreceptor cells (9, 10), as well as in neurons (10, 11).
Aβ42 is a component of drusen in AMD, and of senile plaques

of AD (12, 13). In AMD, Aβ contributes to inflammation, per-
turbed RPE morphology and function, and PRC integrity (14,
15). The 5xFAD transgenic mouse carries mutations associated
with early-onset familial AD, and although it displays several
unspecific changes, it shows PRC degeneration (16, 17). We first
investigated the 5xFAD retinal phospholipid profile seeking to
understand the availability of precursors of lipid mediators pre-
ceding the expression of PRC degeneration in the 5xFAD mice.
Next, we studied the consequences of subretinal administration
of oligomeric Aβ (OAβ), one of the most cytotoxic forms of Aβ,
in wild-type (WT) mice on RPE and PRC, as well as on the
expression of genes involved in senescence, autophagy, AMD,
extracellular matrix (ECM) remodeling, and apoptosis. Also, we
exposed human RPE cells in culture to OAβ and assessed similar
endpoints. Finally, we evaluated whether or not ELVs modify OAβ-
induced gene expression, including the senescence program and
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senescence-associated secretory phenotype (SASP), to in turn,
protect the RPE and sustain PRC integrity.

Results
5xFAD Mouse Retina and RPE Reveal Deficits in the Pathways Leading
to NPD1 and ELVs Biosynthesis. When cleaved by PLA2 and PLA1,
acyl chains of a phosphatidylcholine with DHA (at sn2) and VLC-
PUFAs,n-3 (at sn1) lead to the synthesis of NPD1 and ELVs,
respectively (10). To ascertain the availability of these PCs in the
5xFAD retinas and RPE, heat map analyses were performed. Two
PC clusters emerged from these analyses: short chain (<48C) and
saturated (<6 double bonds; group 1), and a less abundant cluster
(group 2), when comparing the 5xFAD vs. WT (Fig. 1A). This
means that 5xFAD retina has relatively less PC-containing VLC-
PUFAs. However, principal component analysis did not reveal any
sensible difference, since all discriminable makers for 5xFAD and

WT mouse were short chain-containing PCs (Fig. 1 B and C).
Hence, we performed a random forest classification with the criteria
that the higher time used for the phosphatidylcholines, the more PC
contribution to the variation of 5xFAD toWTwould be highlighted.
As a result, we found a dense distribution of high-time-used PCs in
the VLC-PUFA-containing PC area (Fig. 1D), which supported the
heat map analysis observation. Therefore, PCs were presented in 3
groups: DHA- and VLC-PUFA-containing PCs, DHA-containing
PCs, and AA-containing PCs. Structures and m/z of PCs are
depicted (SI Appendix, Fig. S2). The 5xFAD depicted decreases of
both DHA- and VLC-PUFA-containing PCs, including PC54:12,
PC56:12, and PC58:12 (Fig. 1E), and DHA-containing PCs, in-
cluding PC36:8, PC38:8, and PC44:12 (Fig. 1F). In contrast, PCs
containing AA, including PC36:4, PC38:4, and PC36:5, were in-
creased in the 5xFAD retina (Fig. 1G), suggesting that the balance
of n-6/n-3 (AA, DHA, and VLC-PUFA) was altered. Next, we
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Fig. 1. Deficiency of VLC-PUFAs in phosphatidylcholine molecular species in the retina of the 5xFAD. (A) PCs heat map analysis of 6-mo-old 5xFAD (n = 6) and wild-
type (n = 6). Twomain clusters of PCs evolved with distinct features. Group 1 depicts abundant PCs in 5xFAD, whereas group 2 shows PCs prevalent inWT, with most
PCs containing VLC-PUFAs. (B) Principal component analysis for PCs illustrates 2 populations (WT-black and 5xFAD-red) scatter across the principal component 1.
Thus, the loading score for the principal component 1 is essential to identify distinct PCs for the difference betweenWT and 5xFAD. (C) The loading score (absolute
values) of PCs to the principal component 1. The higher loading score, the more contribution of the PCs into principal component to distinguish WT and 5xFAD (SI
Appendix, Fig. S1A). Ten short-chain PUFAs (<48C) contained in PCs are found in the top 12 most loading score PCs (C), while the VLC-PUFAs contained in PCs
contribute 2 (58:1 and 58:12). (D) The time used in random forest classification for PCs of WT and 5xFAD. The higher time used, the more valuable of the PCs in WT
and 5xFAD difference (SI Appendix, Fig. S1B). VLC-PUFAs contained PCs contribute 7 of 12 top times used in this classification (D). (E–G) Box plot for
VLC-PUFAs (E ), DHA (F ), and AA (G) containing PCs. The WT has more VLC-PUFAs and DHA containing PCs, while the 5xFAD has more AA-contained PCs.
(*P < 0.05, Student t test).

24318 | www.pnas.org/cgi/doi/10.1073/pnas.1912959116 Do et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912959116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912959116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912959116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912959116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1912959116


observed that DHA and VLC-PUFA contained in PCs were de-
ficient in 5xFAD retina (Fig. 1 A–G), unlike in RPE (Fig. 2 A–D).
The PC38:6 content was higher in the RPE of 5xFAD (contrast to
the retina; Fig. 2E), and the PC40:6 was similar in 5xFAD and WT
(Fig. 2E). PC44:12, however, was lower in the 5xFAD RPE, as in
the retina. Furthermore, the relative abundance of PCs differs in
retina and RPE. In retina, VLC-PUFA containing PCs amounted
to 3% of total PC, while these PCs were less than 0.3% in the RPE.
Similarly, PC44:12 was 5% in the retina and less than 0.5% in the

RPE. Thus, PCs containing DHA and VLC-PUFA are more abun-
dant in PRCs than RPE. Despite the small contribution of these PCs
in RPE, our results clearly unveiled a deficiency of VLC-PUFA-
containing PCs in the 5xFAD RPE.
ELVs are generated from VLC-PUFAs stored in PC54:12 and

PC56:12, present in limited amounts in the 5xFAD retina and
RPE (Figs. 1 and 2). We found that the free pool size of 32:6n3
and 34:6n3 are increased, reflecting release from the sn-1 position
of the PC54:12 and PC56:12, respectively. We next explore the
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subsequent, lipoxygenase-catalyzed enzymatic epoxidation to form the
epoxide intermediate, followed by the hydrolase-catalyzed enzymatic
hydrolysis, resulting in synthesis of di-hydroxylated ELV-N32 or ELV-
N34 with the Z,E,E triene moiety (Fig. 3A). Thus, the expression of
15-lipoxygenase-1 in 5xFAD RPE is less than in WT, whereas in
the retina, there are no differences between the 2 genotypes (Fig. 3 C
and D), in agreement with NPD1 abundance that is lower in 5xFAD
RPE and unchanged in the retina (Fig. 3B). In contrast, ELOVL4,
an enzyme that elongates EPA or DHA, is only expressed in
PRC and is lower in 5xFAD, correlating with the smaller pool
size of 32:6n3 and 34:6n3, as well as of the monohydroxy stable
derivatives of ELVs hydroperoxide precursors (Fig. 3 B–D).
Therefore, lipids, as well as the expression of 2 key enzymes in-
volved in the ELVs and NPD1 pathways, are markedly depressed
in retina and RPE in early ages of retinal pathology development
in the 5xFAD.

Early Abnormal Retina Function Preceding PRC Loss in 5xFAD. The
b-wave ERG analysis of 6-mo-old 5xFAD mice discloses a loss of
visual sensitivity (Fig. 4A). However, retinal ultrastructure, the RPE
cell/Bruch’s membrane interface, the outer segment basal region of
disk synthesis, the integrity of the outer limiting membrane, elon-
gate inner segment mitochondria (no fission profiles), and PRC tip
release and phagocytosis by the RPE (Fig. 4B) demonstrated the
lack of abnormalities. Furthermore, histology did not show PRC
loss of 5xFAD (Fig. 4C). In contrast, immunofluorescence micros-
copy showed that in 5xFAD, the Aβ is mainly accumulated in the
retina under the RPE, as in AMD phenotype of drusen (Fig. 4D).

ELVs Protect RPE and PRC against OAβ-Induced Toxicity. Because of
the early deficits in the prohomeostatic pathways leading to ELVs
synthesis in 5xFAD retina, and the ensuing retinal degeneration,
we next asked whether ELVs would protect against the effect of
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OAβ, a most cytotoxic Aβ peptide (18). Six-month-old WT mice
subretinally injected with OAβ demonstrated PRC degeneration
(Fig. 5 A and C). Fundus (left side) and corresponding optical
coherence tomography (OCT; right side) images are depicted.
The PRC layer underwent cell loss from 105 μm thickness for the
noninjected retina to 35 μm for the OAβ-injected retina. Non-
injected, PBS-injected, and ELV-N32, ELV-N34-injected mice did
not yield PRC degeneration (Fig. 5 C and D). The ZO-1 staining
of flat-mounted RPE revealed that OAβ disrupted tight junctions
and triggered cell damage. We coinjected ELV-N32 or ELV-N34
with OAβ, followed by topical application of the ELVs over the
course of 7 d (Fig. 5A), resulting in restoration of RPE mor-
phology (Fig. 5B) and protection of PRC (Fig. 5 C and D). The
mice injected with PBS or ELVs alone showed a small reduction
of ONL, likely because of mechanical stress after subretinal in-
jection (Fig. 5 C and D). These results demonstrate that ELVs
preserve the integrity of PRC, which denotes the ability of these
lipid mediators to counteract cellular injury sustained by OAβ
toxicity.

ELVs Counteract OAβ-Induced Senescence, Autophagy, AMD, and ECM
Remodeling Gene Expression Disruptions in RPE and Apoptotic Gene
Expression in Retina. To search for the mechanism or mechanisms
involved in ELVs protection against OAβ-mediated damage, isolated
RPE and retina were subjected to quantitative PCR. We selected
to survey genes that were involved in senescence (19, 20), auto-
phagy (21), AMD (22, 23), and ECM remodeling (24) on day 3
postinjection in the RPE (Fig. 5 E–G). In addition, we explored
cell death-related genes that encode the proteins Bax, Bad, Casp3,
Dapk1, and Fas in the retina (Fig. 5I). The OAβ-mediated up-
regulation of senescence, autophagy, AMD, and some ECM
remodeling gene expression was counteracted by ELVs (Fig. 5).
Certain matrix metalloproteinases (1b, 10, 14, 7) were not affected
by OAβ. In addition, in the RPE, the protein abundance of the key
senescence p16INK4a (Fig. 5H) correlates with those on its gene
expression (Fig. 5E).

ELVs Protect Human RPE Cells from OAβ-Induced Senescence and
Other Gene Transcription Disruptions. Because 5xFAD mice dis-
play RPE tight junction disruptions on Aβ accumulation (16), we
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used a primary human RPE cell in culture challenged with OAβ
to assess damage and to evaluate possible ELV-N32 or ELV-N34
protection (Fig. 6A). After 7 d incubation, OAβ altered RPE cell
morphology and activated SASP, as revealed by the SA-β-Gal
staining (Fig. 6 B and C), as well as enhanced the expression of a
set of senescence genes (Fig. 5E), AMD, matrix metalloproteinases,
and autophagy-related genes (Fig. 6D). A point of interest is that
some matrix metalloproteinases were affected, but not all were
expressed in RPE cells. In other cells, SASP is primarily proin-
flammatory and has been shown to comprise chemokines, metal-
loproteinases, proteases, cytokines (e.g., TNF-α, IL-6, and IL-8),
and insulin-like growth factor binding proteins. The senescence
genes studied are p16INK4a (Cdkn2a), p21CIP1(Cdkn1A), p27KIP

(Cdkn1B), p53 (Tp53 or TRP53), IL6, and MMP1. ELV-N32 and
ELV-N34 reverted these effects (Fig. 6 B–D).

Discussion
AMD and AD display accumulation of Aβ in the retina and brain,
respectively. Aβ-based antibody, as well as anti-inflammatory ther-
apies for AD, have been largely unsuccessful; therefore, there is a
need to understand mechanisms and identify specific agents that
limit Aβ neurotoxicity (25–28). RPE sustains PRC integrity, and its
dysfunction sets in motion PRC death in retinal degenerative dis-
eases, including AMD. Here we show that OAβ drives RPE and
PRC pathology, both in vivo in a rodent and in primary human RPE
cell culture. Early in the pathogenesis of 5xFAD PRC degeneration,
we report deficits in precursors and pathways for NPD1 and ELVs
biosynthesis. These deficits precede ECM and histology signs of
PRC damage, while ERG already displays impairments. These find-
ings uncover potential prodromal alterations of key prohomeostatic
lipid signaling during onset and early disease progression. Aside from
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being used as biomarkers, they can also be explored as therapeutic
targets for AMD.
There is not clear evidence in genetic animal models that blocking

Aβ formation results in reduced AMD pathology. However, there
are studies aiming to inhibit Aβ in the eye experimentally to pro-
tect PRC. For example, Liu et al. (29) showed that 10 mo of Aβ
vaccination inhibits retinal deposits, but causes retinal amyloid
angiopathy characterized by microglial infiltration and astro-
gliosis in AD-transgenic mice. A drawback to this is the fact that
active immunization can cause severe adverse effects.
It is not clear how many patients with AD develop AMD, nor

vice versa. However, there is a correlation between AD and eye
diseases other than AMD that includes glaucoma and suscepti-
bility to diabetic retinopathy (30). Evolving key signaling disease
mechanisms, include CFH, APOE (31–33), and the matrix metal-
loproteinase pathway (34). Our data show that subretinal OAβ in-
jection in mice triggers RPE cell damage and PRC loss after 7 d. To
test the soundness of the Aβ deleterious effects on the RPE, we
used human RPE cells in primary cultures and showed that it sets in
motion similar damage as in the in vivo rodent. Moreover, both in
the rodent model in vivo and in human cells in vitro, the changes
in gene expression profiles were similar. Aβ synthesis takes place in
the RPE (35–38) and accumulates in drusen; it is becoming evident
that amyloid precursor protein processing dysfunctions lead as well
to accumulation of the peptide within the retina also adjacent to

ganglion cells, and to the inner nuclear layer (39–41), and its
synthesis, abundance, secretion, and aggregation increases in an age-
dependent fashion (39). Our subretinal injection of Aβ here reca-
pitulates some conditions associated with pathology of AMD
particularly targeting the RPE.
The finding that OAβ-induced RPE and PRC death in wild-type

mice in vivo was counteracted by ELVs uncovers additional bio-
activity of these specific downstream mediators from omega-3 fatty
acids. Mechanistically, neuroinflammatory disruptions are involved
in early stages of AMD pathology, and several studies have used
dietary supplementation with omega-3 fatty acids (42–46), which
have not yielded clear benefits, likely because the supply of these
critical fatty acids to the PRC and synapses involves complex steps
that include gut, liver, blood stream transport, cellular uptake, and
so on (47, 48). A rational therapeutic approach for AMD would be
to use mediators from omega-3 fatty acids that have neuroprotective
bioactivity.
The present study identifies ELVs 32 and 34 as downregulatory

mediators of OAβ-evoked senescence, as shown by SASP and the
expression of senescence-related genes in RPE. Under these con-
ditions, the up-regulated expression of autophagy- and AMD-
related genes, including human complement factor (49) and extra-
cellular matrix genes, were beneficially targeted by ELVs as well.
Thus, the similarities on the OAβ elicited effects in RPE cells in
culture and in RPE and PRC in vivo, including the ELV-targeted
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protection, suggest relevance to the human retina. Surprisingly, we
observed that OAβ injection caused apoptosis-related cell death
signaling in photoreceptor cells, not senescence. However, it is
important to note that ELVs prevented both OAβ-induced se-
nescence in RPE and OAβ-induced PRC apoptosis.
In conclusion, we uncovered early deficits of prohomeostatic

pathways before PRC death in the 5xFAD mice, highlighted by
decreased abundance of PC molecular species in RPE (particularly
those containing VLC-PUFAs) and in retina (those containing
DHA and VLC-PUFAs). Also, the pool size of free VLC-PUFAs
and stable derivatives of precursors 27- and 29-monohydoxy and of
ELV-N32 and ELV-N34, respectively, were found to be depleted.
Moreover, the retina displays deficiencies in key enzymes of the
pathways for the synthesis of prohomeostatic/neuroprotective
NPD1 and ELVs without overt PRC damage or loss, but shows
functional impairments. ELVs counteracted the cytotoxicity of
OAβ subretinally administered in WT mice leading to RPE tight
junction disruptions followed by PRC cell death. Our data show
that OAβ activates a senescence program reflected by enhanced
gene expression of Cdkn2a, Mmp1a, Trp53, Cdkn1a, Cdkn1b, Il-
6, and SASP secretome, followed by RPE and PRC demise (Fig.
7), and that ELV-N32 and ELV-N34 blunt these events and elicit
protection to both cells. P16INK4a protein abundance is also
targeted. The RPE cell is terminally differentiated and originated
from the neuroepithelium. In this connection, senescent neurons
in aged mice and models of AD (50) and astrocytes (51, 52) also
express senescence and develop secretory SASP that fuel
neuroinflammation in nearby cells (53–55). This is likely the case in

our present study, where neighbor cells may be targeted by
SASP neurotoxic actions, inducing photoreceptor paracrine se-
nescence. Therefore, SASP from RPE cells may be autocrine
and paracrine, altering the homeostasis of the interphoto-
receptor matrix microenvironment (Fig. 7) as a consequence, and
creating an inflammatory milieu that contributes to loss of function
associated with aging (56), age-related pathologies (56) AD, and
likely AMD. Furthermore, ELVs restore expression of ECM re-
modeling matrix metalloproteinases altered by OAβ treatment,
pointing to an additional disturbance in the interphotoreceptor
matrix. The inflammation set in motion may be a low-grade,
sterile, chronic proinflammatory condition similar to inflam-
maging that is also linked to senescence of the immune system
(56, 57). In addition, ELVs counteracted OAβ-induced expression
of genes engaged in AMD and autophagy. It remains to be defined
whether the ELVs targeted events on gene transcription (Fig. 7) to
inform novel unifying regulatory mechanisms to sustain health span
during aging and neurodegenerative diseases (56, 58). Several
forms of retinal degenerative diseases, including retinitis pigmentosa
and other inherited retinal degenerations, may underlie these
mechanisms, and ELVs might halt the onset or slow down dis-
ease progression. Although further research is needed, our results,
overall, show the potential of ELVs as a possible therapeutic avenue
of exploration for AMD.

Materials and Methods
Materials and methods used in this study are described in detail in SI Ap-
pendix, SI Materials and Methods. This information includes animals, lipid
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extraction, and LC-MS/MS-based lipidomic analysis, primary human RPE
culture, Aβ (1 to 42) oligomerization, senescence-associated secretory phe-
notype by β-Gal staining, protein extraction and Western blot analysis, RNA
isolation and quantitative PCR analysis, immunofluorescence and confocal
microscopy, and statistics.

Data Availability. The data reported in this paper have been deposited in
Dryad (DOI: 10.5061/dryad.59zw3r233) (59).
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