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ORIGINAL INVESTIGATION

MicroRNA‑19a contributes to the 
epigenetic regulation of tissue factor in diabetes
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Abstract 

Background:  Diabetes mellitus is characterized by chronic vascular disorder and presents a main risk factor for 
cardiovascular mortality. In particular, hyperglycaemia and inflammatory cytokines induce vascular circulating tissue 
factor (TF) that promotes pro-thrombotic conditions in diabetes. It has recently become evident that alterations of 
the post-transcriptional regulation of TF via specific microRNA(miR)s, such as miR-126, contribute to the pathogenesis 
of diabetes and its complications. The endothelial miR-19a is involved in vascular homeostasis and atheroprotection. 
However, its role in diabetes-related thrombogenicity is unknown. Understanding miR-networks regulating procoagu-
lability in diabetes may help to develop new treatment options preventing vascular complications.

Methods and results:  Plasma of 44 patients with known diabetes was assessed for the expression of miR-19a, TF 
protein, TF activity, and markers for vascular inflammation. High miR-19a expression was associated with reduced TF 
protein, TF-mediated procoagulability, and vascular inflammation based on expression of vascular adhesion mol-
ecule-1 and leukocyte count. We found plasma expression of miR-19a to strongly correlate with miR-126. miR-19a 
reduced the TF expression on mRNA and protein level in human microvascular endothelial cells (HMEC) as well as TF 
activity in human monocytes (THP-1), while anti-miR-19a increased the TF expression. Interestingly, miR-19a induced 
VCAM expression in HMEC. However, miR-19a and miR-126 co-transfection reduced total endothelial VCAM expres-
sion and exhibited additive inhibition of a luciferase reporter construct containing the F3 3′UTR.

Conclusions:  While both miRs have differential functions on endothelial VCAM expression, miR-19a and miR-126 
cooperate to exhibit anti-thrombotic properties via regulating vascular TF expression. Modulating the post-transcrip-
tional control of TF in diabetes may provide a future anti-thrombotic and anti-inflammatory therapy.
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Background
Diabetes is characterized by a chronic inflammatory state 
of the vasculature leading to increased cardiovascular 
complications and death [1]. Endothelial dysfunction sus-
tains a procoagulant state resulting in thromboembolic 
events in those patients [2, 3].

Being the receptor for FVIIa, tissue factor (TF) is the 
primary initiator of the coagulation cascade with a crucial 

role in haemostasis [4]. When in contact with coagula-
tion factors, TF promotes FXa generation and thrombin-
induced clotting. Under normal conditions, TF is not 
present in the blood, its expression in the vasculature, 
however, strongly increases upon presence of pro-inflam-
matory cytokines, such as tumor necrosis factor(TNF)
α, or advanced glycolysation end products [5–7]. The 
full length (fl)TF protein is much more thrombogenic 
compared to the alternatively-spliced (as)TF, promot-
ing angiogenesis and cell survival [8, 9]. Blood-borne TF 
is derived from vascular wall cells and monocytes and 
promotes coagulation and vascular inflammation [4, 
10–13]. Notably in diabetes with poor glycaemic control, 

Open Access

Cardiovascular Diabetology

*Correspondence:  ursula.rauch@charite.de 
†Marco Witkowski and Termeh Tabarai contributed equally to this work
1 Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, 
Charité University Medicine Berlin, Hindenburgdamm 30, 12200 Berlin, 
Germany
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12933-018-0678-z&domain=pdf


Page 2 of 11Witkowski et al. Cardiovasc Diabetol  (2018) 17:34 

circulating TF in the blood accounts for heightened coag-
ulability and diabetic complications [14, 15].

Recently, the small non-coding microRNA(miR)s have 
been implicated in diabetes and its cardiovascular com-
plications [16, 17]. Distinct miR expression patterns 
appear to predict the onset of the disease and may help 
stratify the risk for thromboembolic events [18]. How-
ever, mechanistic insights on how those miRs impact dia-
betic vascular complications are lacking.

We and others have shown that miRs control TF 
expression on the post-transcriptional level [4, 19, 20, 
22]. It can be assumed that specific miR signatures in the 
healthy vasculature contribute to the control of blood-
borne TF expression and alterations in this regulatory 
network may promote thromboembolic events. In line, 
we found that the endothelial-derived miR-126, that is 
reduced under diabetic conditions [21], prevents TF-
dependent procoagulability in diabetes [22]. In addition, 
miR-19a, a member of the miR-17-92 cluster, was shown 
to impact post-transcriptional TF regulation in cancer 
cells in vitro [20]. However, beyond its role as an onco-
miR, the high expression of miR-19a in endothelial cells 
(ECs) suggests a central role in endothelial homeosta-
sis. Indeed, miR-19a is involved in vascular functions, 
including angiogenesis [23], EC apoptosis [24] or athero-
protection via flow-regulated control of endothelial pro-
liferation [25]. On one hand, reduced levels of circulating 
miR-19a in patients with diabetes-related complications, 
such as ischemic stroke, point out a potential role in the 
pathogenesis of thromboembolism [26]. On the other 
hand, miR-19a regulates glycogen synthesis and is down 
regulated in leptin receptor-deficient mice suggesting a 
protective role in diabetes [27]. Whether vascular expres-
sion of miR-19a reduces procoagulability in diabetes has 
not been studied yet.

In the present study, we sought to investigate the role of 
circulating miR-19a in the post-transcriptional control of 
vascular TF expression in poorly controlled diabetes.

Research design and methods
Patient study
The study protocol was approved by the local ethics com-
mittee and was performed in accordance to the ethics 
principles in the Declaration of Helsinki. Prior to partici-
pation in the study each patient gave a written informed 
consent. 44 patients with known diabetes mellitus type 
2 (hereinafter referred to as diabetes) admitted for poor 
glycaemic control at the Heart and Diabetes Center NRW 
Bad Oeynhausen, Germany, were included in the study 
[28]. To assess the impact of miR-19a expression, the 
patients were divided into two groups according to their 
miR-19a expression (lower than the median of miR-19a 
expression, n =  22; higher than the median of miR-19a 

expression, n =  22). Table  1 describes the patient char-
acteristics. Peripheral blood was obtained by venepunc-
ture into heparin, citrate or EDTA tubes upon admission. 
miR-19a expression was measured via TaqMan PCR in 
citrated blood plasma. Protein amounts for TF, VCAM-
1, Intercellular adhesion molecule (ICAM)-1, endothelin, 
and E-selectin in citrated plasma were assessed using a 
specific ELISA system. TF activity in plasma was ana-
lysed by a factor Xa chromogenic assay.

ELISA experiments
The TF plasma concentrations as well as levels of VCAM-
1, ICAM-1, endothelin, and e-selectin were assessed by 
using a specific ELISA system from American Diagnos-
tica according to manufactures instructions [29].

TF activity
The measurement of TF activity was performed as 
described before using a self-designed assay [30–32]. To 

Table 1  Patient characteristics

ACE angiotensin-converting enzyme, AT II angiotensin II, BMI body mass 
index, CAD coronary artery disease, CRP c-reactive protein, HbA1c glycated 
haemoglobin, MI myocardial infarction, PAD peripheral artery disease

Characteristics Low miR-19a High miR-19a p value

miR-19a 0.620 ± 0.07 4.537 ± 0.98 < 0.0001

miR-126 2.386 ± 0.31 13.26 ± 2.80 < 0.0001

Sex (m/f ) 15/7 18/4 n.s.

Age (years) 67 ± 1.7 62 ± 1.9 < 0.05

History of stroke (%) 13.6 9.0 n.s.

History of MI (%) 18.1 4.5 n.s.

CAD (%) 50.0 31.8 n.s.

Hypertension (%) 100 100 n.s.

PAD (%) 27.2 22.7 n.s.

Diabetic neuropathy (%) 81.8 77.2 n.s.

Diabetes years 15 ± 2.3 11 ± 2.1 n.s.

BMI (kg/m2) 30.2 ± 1.3 34.2 ± 1.7 n.s.

CRP (mg/dL) 0.83 ± 0.2 1.0 ± 0.5 n.s.

HbA1c (%) 7.7 ± 0.2 8.7 ± 0.3 n.s.

HbA1c (mmol/mol) 61.1 ± 3.1 72.3 ± 3.9 n.s.

Fasting blood glucose (mg/
dL)

144 ± 12 146 ± 6 n.s.

ACE-inhibitor (%) 40.9 50.0 n.s.

AT II antagonist (%) 31.8 31.8 n.s.

Diuretics (%) 54.5 72.7 n.s.

Statins (%) 54.5 50.0 n.s.

Anti-diabetic drugs: insulin 
(%)

72.7 68.1 n.s.

Metformin (%) 36.3 68.1 < 0.05

Sulfonylureas (%) 27.2 4.5 < 0.05

Acarbose (%) 13.0 9.0 n.s.

Glinides (%) 4.5 13.6 n.s.
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determine the TF activity 20 µL citrate plasma was added 
to 160 µL of a solution containing 2 nM FVIIa, 150 nM 
factor X, and 5 mmol/L CaCl2. The generation of FXa was 
stopped after 30 min by adding EDTA buffer (50 mmol/L 
Bicine, pH 8.5, 100  mmol/L NaCl, 25  mmol/L EDTA, 
1 mg/mL BSA). Then spectrozyme (0.5 mmol/L final con-
centration), the chromogenic substrate of FXa, was added 
to each sample. The optical density was determined at 
405 nm by using an ELISA plate reader at 37 °C (Molecu-
lar Devices). TF activity units were assessed by a standard 
curve. The standard curve is constructed by plotting the 
mean slope absorbance value measured for each lipidated 
TF standard against its corresponding concentration [pg/
mL]. The activity (generation of Factor Xa) exhibited by 
1 pg of lipidated TF corresponds to 1 arbitrary TF-activ-
ity unit. The recombinant FVIIa (NovoSeven) was kindly 
provided by Novo Nordisk.

Cell culture
HMEC ordered from ATCC were maintained in MCBD 
131 medium (Gibco) +  10% FBS (Gibco) +  100  U/mL 
penicillin/streptomycin (PAA)  +  2  mM l-Glutamin 
(PAA) +  0.05 mg/mL Hydrocortison. HMEC were used 
for experiments until the 15th passage. Human embry-
onic kidney (HEK) cells were cultured in DMEM + 10% 
FBS + 100U/mL penicillin/streptomycin.

THP-1 cells were grown in RPMI 1640 medium 
(Gibco) + 10% FBS + 1% penicillin/streptomycin.

Transfection and stimulation experiments
HMEC cells were transfected with 200  nM negative 
control mimic (miRIDIAN micro RNA, Dharmacon), 
an inhibitor negative control (miRIDIAN micro RNA, 
Dharmacon), 200  nM miR-19a mimic (hsa-miR-19a-3p, 
HMI0344, MISSION miRNA mimic, Sigma), 200  nM 
anti-miR-19a (hsa-miR-19a-3p inhibitor, HSTUD0343, 
MISSION, Sigma) or a miR-126 mimic (has-miR-126-3p, 
MISSION miRNA mimic, Sigma) using the siRNA trans-
fection reagent interferin (VWR) according to manufac-
turer’s protocol. 24 h post transfection cells were starved 
in MCBD 131 medium (Gibco) for 2 h and then stimu-
lated with 10 ng/mL TNF-α for 2 h for gene expression 
analysis and 6  h for protein expression of the TF splice 
variants. THP-1 cells were stimulated with LPS (10  µg/
mL) and miR expression and TF activity was assessed.

Dual luciferase reporter assay
To perform the dual luciferase reporter assay, HEK were 
co-transfected with 200  nM control miR, miR-19a or 
miR-126 mimic and a luciferase reporter vector, miTar-
getTM 3′UTR target clone pEZX-MT01 harbouring the 
F3-3′UTR (GeneCopoeia) using interferin (VWR). The 
reporter plasmid expresses renilla luciferase as a house 

keeping control and firefly luciferase combined with the 
TF-3′UTR as a reporter for the miR-mediated repression 
of the TF mRNA. 24  h post transfection the luciferase 
assay was performed using the dual luciferase reporter 
system (Promega) according to manufacturer’s protocol 
and the ratio firefly/renilla luciferase activity was meas-
ured using a luminometer.

Real‑time PCR and western blot analysis
For real-time PCR, total mRNA was isolated with peq-
GOLD Trifast (Peqlab) for cell culture experiments 
or using the mirVana Paris Kit (Life Technologies) for 
patient blood plasma. Gene expression was determined 
using self-designed FAM-tagged TaqMan® gene expres-
sion assays (life Technologies) for flTF and asTF (for 
details see [33]). The expression of miR-19a and miR-
126 was analysed with a FAM tagged TaqMan® gene 
expression assay (hsa-miR-19a-3p—000395 and hsa-
miR-126-3p—002228). Relative gene expression was 
determined via the comparative C(t) (ΔΔCt) method with 
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)- 
Hs99999905_m1 as endogenous control for mRNA and 
U6 snRNA—001973 for miR as endogenous control. 
Western blots were performed as described before [11]. 
Antibodies were used for flTF (4  µg/mL, 4501, Sekisui 
Diagnostics), asTF (1  µg/mL, self-generated), VCAM-1 
(concentration 0.6 µg/mL, E1E8X, cell signalling) as well 
as GAPDH (0.6 µg/mL, CB1001, Calbiochem).

Statistical analysis
The statistical analyses have been performed using the 
commercially available software GraphPad Prism 5. In 
the patient cohort a Mann–Whitney U test has been per-
formed for pairwise comparisons between two independ-
ent groups. Spearman’s correlation coefficient analysis 
was used to assess associations between several parame-
ters of the cohort. In cell culture experiments differences 
between two groups were examined using Student’s t 
test (2-tailed). For comparisons of 1 parameter between 
more than two groups a 1-way ANOVA with the Tur-
key’s post hoc test was performed. Data are represented 
as mean ± SEM. p values < 0.05 were considered statisti-
cally significant.

Results
Plasma miR‑19a expression correlates with reduced 
TF‑related thrombogenicity in patients with diabetes
To assess a potential role of miR-19a in diabetes related 
thrombogenicity we conducted a study enrolling 44 indi-
viduals with known diabetes admitted for insufficient 
glycaemic control (mean HbA1c for all patients was 
8.2 ± 0.23% or 66.7 ± 2.64 mmol/mol). In all patients, we 
observed a broad range of miR-19a expression (from 0.03 
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to  >  20 miR-19a expression normalized to U6 snRNA). 
According to the plasma miR-19a expression, the patients 
were divided into two groups with either high miR-19a 
expression (n  =  22) above the median (1.258 miR-19a 
expression level) or low miR-19a expression below the 
median (n = 22) (Table 1). Quantitative RT-PCR revealed 
a significant difference in miR-19a expression in both 
groups (Fig. 1a). Except for age, there were no differences 
in the two groups regarding body mass index, diabe-
tes duration, fasting blood glucose, or HbA1c. However, 
in the group with high miR-19a expression the patients 
were younger and a higher percentage of treatment with 
metformin and a lower percentage of sulfonylurea treat-
ment was seen. Interestingly, the patients with low miR-
19a expression showed more thromboembolic events, 
which was however not statistically significant in this 
cohort (Table 1).

The patients with a high miR-19a expression showed 
significantly lower protein levels of TF in  the blood as 
compared to patients with a low miR-19a expression 

(Fig.  1b). Accordingly, TF activity assessed as FXa gen-
eration was significantly decreased in patients with 
high miR-19a levels as compared to the group with low 
miR-19a levels (Fig. 1c). In line with these observations, 
miR-19a plasma levels showed a significant negative cor-
relation with the TF protein (not shown) and TF activity 
in all patients (Fig. 1 d).

Endothelial miR‑19a correlates with miR‑126: implication 
in vascular inflammation
To investigate the role of miR-19a in vascular inflamma-
tion as part of the pathogenesis of diabetes, pro-inflam-
matory factors were assessed. miR-19a expression was 
associated with a reduced grade of vascular inflamma-
tion. In the group of patients with high miR-19a expres-
sion we observed a lower protein amount of VCAM-1 but 
not endothelin (data not shown) or E-selectin (Fig. 2a, c). 
High miR-19a expression was associated with a lower 
leucocyte count than in the group with low miR-19a 
expression (Fig. 2b). In the group with enriched plasma 

Fig. 1  Plasma miR-19a correlates with reduced TF protein and TF-mediated thrombogenicity in patients with diabetes. a Expression of miR-19a 
in both groups with either low or high miR-19a expression. Differences in b TF protein and c TF activity in the plasma depending on low or high 
miR-19a plasma expression. d Correlation between miR-19a and TF activity. Data are expressed as mean ± SEM. n = 44, *p < 0.05, **p < 0.005, 
***p<0.0001
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miR-19a levels we also observed an increased expression 
of miR-126 (Table 1). Both miRs showed a significant cor-
relation in the plasma of patients with diabetes (Fig. 2d).

miR‑19a down regulates asTF and flTF in HMEC‑1 cells
To further assess the miR-mediated regulation of TF 
expression within the endothelium, HMEC were culti-
vated. ECs do not express considerable amounts of TF 
under basal condition, while TNF-α strongly induces 
endothelial TF expression. In the following experiments, 
TNF-α served as an inducer for TF expression under 
inflammatory conditions. We found a high expression of 
miR-19a in HMEC that was reduced upon stimulation 
with TNF-α (Fig. 3a).

To assess the impact of miR-19a on both TF isoforms, 
HMEC were transfected with a control mimic or miR-19a 
and the cells were then left untreated or stimulated with 
TNF-α. Transfection efficiency was confirmed via real-
time PCR. The mRNA of asTF and flTF was significantly 
reduced in HMEC transfected with miR-19a compared 

to cells transfected with the control mimic under basal 
conditions and 2 h post stimulation with TNF-α (Fig. 3b, 
c). In Line, transfection of a specific inhibitor of miR-19a 
(anti-miR-19a) led to an increase of both asTF and flTF 
mRNA (Fig. 3d, e). Due to the low TF protein amounts 
under basal conditions, western blot analysis was per-
formed in HMEC under inflammatory conditions. Upon 
TNF-α treatment, flTF protein was increased, whereas 
asTF was only mildly induced. Transfection of miR-19a 
exhibited a reduction in flTF and asTF protein compared 
to a control mimic after 6  h of stimulation with TNF-α 
(Fig.  3f and Additional file  1: Figure S1A, B with densi-
tometric analysis). Accordingly, anti-miR-19a caused an 
increase in flTF and asTF protein (Fig. 3f and Additional 
file 1: Figure S1C, D).

miR‑19a controls TF procoagulant activity in THP‑1 cells
In addition to the vessel wall, monocytes are considered 
the most important source of TF activity in the blood. 
The human monocytic cell line THP-1 robustly expressed 

Fig. 2  miR-19a is associated with reduced vascular inflammation and correlates with miR-126 in patients with diabetes. Relation between the 
expressions of a the inflammatory protein VCAM-1, b leukocytes, and c E-selectin in patients with either low or high miR-19a expression. d Positive 
correlation of miR-19a and miR-126 in the patients with diabetes. Data are expressed as mean ± SEM. n = 44, for A and C n = 36, *p < 0.05
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miR-19a. Treatment of the cells with LPS led to a reduc-
tion of miR-19a (Fig. 4a). To study the impact of miR-19a 
on monocyte TF expression, THP-1 cells were cultivated 
and transfected with miR-19a or anti-miR-19a. The trans-
fection efficiency was confirmed by Taqman PCR. Next, 
the cells were stimulated with LPS for 2 or 6  h and TF 
mRNA and procoagulant activity assessed using Taqman 
PCR or a FX chromogenic assay, respectively. Transfec-
tion of miR-19a exhibited a strong decrease in asTF and 
flTF mRNA (Fig. 4b, c). Moreover, miR-19a reduced the 
TF procoagulant activity as compared to a control mimic 
after LPS stimulation (Fig. 4d). In contrast, anti-miR-19a 
increased asTF mRNA, flTF mRNA, and the FXa genera-
tion under the same conditions (Fig. 4e–g).

miR‑19a and miR‑126 in concert impact endothelial 
VCAM1 expression
To analyse the miR-mediated impact on cell adhesion 
molecules, HMEC were transfected with miR-19a. The 
cells were then left untreated or VCAM1 was induced 
via TNF-α. Interestingly, miR-19a transfection resulted 
in an increase in VCAM1 mRNA under basal conditions 
and 2  h post treatment with TNF-α (Fig.  5a). Since our 
patient data revealed a strong correlation of miR-19a 
and miR-126, we investigated VCAM expression in the 
presence of both miRs under inflammatory conditions. 
In contrast to miR-19a, miR-126 led to a reduction in 
VCAM mRNA. Importantly, when miR-19a and miR-126 
were co transfected, no increase in VCAM1 mRNA could 
be seen (Fig. 5a).

Fig. 3  miR-19a reduces the expression of both asTF and flTF in ECs. miR-19a expression in HMEC stimulated with 10 ng/mL TNF-α for 2 or 4 h 
(a). HMEC were cultured for 24 h and then transfected with a control mimic or miR-19a as well as an inhibitor control or anti-miR-19a. 24 h post 
transfection the cells were left untreated or stimulated with 10 ng/mL TNF-α. b, d asTF and c, e flTF mRNA under basal conditions and 2 h after 
stimulation with TNF-α. f Representative western blot shows the protein expression of flTF and asTF upon transfection with miR-19a or anti-miR-19a 
and their specific controls 6 h post TNF-α stimulation. Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, n ≥ 5
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Since under basal conditions no VCAM1 protein was 
detectable, the western blot protein measurements were 
performed under inflammatory conditions. Following 
treatment with TNF-α for 6  h we observed an increase 
in VCAM1 upon miR-19a transfection while miR-126 
reduced VCAM1 protein. When both miRs were co 
transfected an overall reduction in VCAM1 protein was 
observed (Fig. 5b and Additional file 1: Figure S1E).

Both miR‑19a and miR‑126 exhibit concomitant inhibition 
of the F3 3′UTR
To analyse whether miR-19a and miR-126, which we 
found to be co expressed in the patients with diabetes, 
exhibit a cumulative effect on the 3′untranslated region 
(UTR) of the TF (F3) transcript, a luciferase assay was 
performed in HEK cells. Transfection of miR-19a or miR-
126 together with a luciferase-reporter construct con-
taining the F3-3′UTR caused a reduction in luciferase 
activity (Fig.  6a) confirming the miR-depending repres-
sion of the TF mRNA. When both, miR-19a and miR-
126, were co transfected, a further reduction in luciferase 
activity was observed.

Discussion
In this study, we showed that plasma miR-19a expression 
correlates with reduced TF protein expression and activ-
ity in patients with diabetes. High miR-19a levels were 

Fig. 4  miR-19a reduces TF procoagulant activity in human monocytic cells miR-19a expression in THP-1 cells stimulated with 10 μg/mL LPS for 2 or 
4 h (a). THP-1 cells were transfected with either a control mimic or miR-19 as well as an inhibitor control or anti-miR-19a. 24 h post transfection cells 
were stimulated with 10 μg/mL LPS and TF mRNA and TF activity assessed by real-time PCR and a FXa chromogenic assay, respectively. b, e asTF 
and c, f flTF mRNA 2 h following stimulation with LPS. d, g TF activity 6 h post stimulation with LPS. Data are represented as mean ± SEM. *p < 0.05, 
**p < 0.01, ***p < 0.001, n ≥ 4

Fig. 5  miR-19a induces endothelial VCAM1 expression, which is 
counter acted by miR-126. HMEC were cultured overnight and 
then transfected with a control mimic, miR-19, miR-126, or both 
miR-19a and miR-126 together. 24 h post transfection the cells were 
left untreated or stimulated with 10 ng/mL TNF-α. a VCAM1 mRNA 
expression analysed by real-time PCR. b Representative western blot 
shows the protein expression of VCAM1 6 h post TNF-α stimula-
tion. Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, $ 
p < 0.0001 vs. miR-19a TNF-α, § n.s. vs. co miR TNF-α, n ≥ 4
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associated with reduced vascular inflammation assessed 
by VCAM-1 protein expression and leukocyte count. A 
strong correlation was observed between miR-19a and 
the TF-inhibitory miR-126. We found miR-19a to reduce 
the TF expression on mRNA and protein level in human 
ECs as well as TF activity in THP-1. Our data were con-
firmed by use of anti-miR-19a. While both miRs had a 
differential effect on VCAM1 expression, miR-19a and 
miR-126 cooperatively inhibited the F3-3′UTR in vitro.

miR‑19a targets the TF 3′UTR: Reduced procoagulability 
in diabetes
Expressed by a pro-inflammatory vascular environment, TF 
is a main contributor to elevated thrombogenicity in cardio-
vascular diseases and associated with thromboembolic vas-
cular complications [34, 35]. Notably, patients with poorly 
controlled diabetes have a high mortality. These individuals 
show increased TF activity in the blood and circulating TF 
is associated with disease progression [14, 36, 37].

Fig. 6  miR-19a and miR-126 cooperatively supress the TF 3′UTR. Hek cells were co transfected with a TF-3′UTR-harbouring reporter plasmid and a 
control miR, miR-19a, miR-126, or miR-19a and miR-126 together. After 24 h (a) the firefly luciferase activity was measured and normalized to renilla 
luciferase activity. b Illustration of the predicted binding sites for miR-19a and miR-126 within the 3′UTR of the TF transcript using the online soft-
ware RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi). Data are represented as mean ± SEM. **p < 0.01, n ≥ 4

http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi


Page 9 of 11Witkowski et al. Cardiovasc Diabetol  (2018) 17:34 

Zhang et al. first reported the post-transcriptional reg-
ulation of TF by miR-19a, a member of the miR-17-92 
cluster, in cancer cells [20]. Being investigated as an onco-
gene at first place, the miR-17-92 cluster has just been 
brought to the focus of vascular biology. Members appear 
to be involved in vascular functions, including ischemia 
responses and angiogenesis [23, 38]. For instance, miR-
19b was found to inhibit EC apoptosis [39] and together 
with miR-20a participates in the control of monocytic 
TF, which is defective in patients with antiphospholipid 
syndrome and systemic lupus erythematosus [40]. In the 
light of previous reports and our data, increased vascu-
lar TF expression can no longer be considered a result 
of induced transcription alone but also a consequence of 
lacking post-transcriptional control.

Here, we demonstrate that miR-19a reduces expres-
sion of TF in endothelial and monocytic cells by bind-
ing to the TF transcript in  vitro and provide evidence 
that miR-19a contributes to the control of TF-mediated 
thrombogenicity in diabetes. Our data suggest that a 
reduction in endothelial miR-19a leads to increased TF 
expression and may put patients at risk for thromboem-
bolic events. Accordingly, low circulating miR-19a levels 
in the blood were found in patients with coronary artery 
disease or ischemic stroke compared to controls [26, 41]. 
However, other studies reported that miR-19a and 19b 
are increased in patients with acute myocardial infarction 
but suggested a protective role in this setting [42, 43].

miR‑19a and miR‑126 are co‑expressed in diabetes 
and have cooperative and differential functions
Vascular inflammation is a hallmark of diabetes and was 
shown to precede the onset of the disease [44]. Inter-
estingly, we found that miR-19a induced the expres-
sion of VCAM1 in endothelial cells. In line, Akhtar 
et  al. reported a hypoxia-induced cell adhesion medi-
ated by miR-19a [45]. Mechanistically, hampering of a 
(nuclear factor)NFkB negative regulon as employed by 
miR-19b may be an explanation for our in  vitro find-
ings [46]. However, in the patient cohort miR-19a was 
associated with reduced levels of VCAM. On one hand, 
miR-19a was shown to also promote anti-inflammatory 
responses, such as direct targeting of the TNF-α mRNA 
with subsequent upstream control of the TNFα/NFkB 
axis [47]. Moreover, down regulation of endothelial TF 
protein by miR-19a also hampers the pro-inflammatory 
singling via protease activated receptors [12]. On the 
other hand, we found miR-126 co expressed with miR-
19a in the patients. miR-126 directly targets the VCAM1 
mRNA and is even higher expressed in the endothelium 
than miR-19a what may explain the findings in the our 

patients [48]. Regulation of miR-19a and miR-126 expres-
sion by the glucose-sensitive transcription factor Ets-1 
and Ets-2 in ECs could be responsible for the co expres-
sion in the patients [49–51].

Finally, miR-19a and miR-126 exhibited a cooperative 
suppression of the TF transcript in a luciferase reporter 
assay. In line, deletion of the binding sites for miR-19a/b 
and miR 20a/b in the TF 3′UTR had a cumulative effect 
on the reporter activity in RAW 264.7 cells compared to 
either deletion alone [52]. As shown in Fig. 6b the bind-
ing sites of both miRs are closely related to each other. 
Grimson et  al. demonstrated that two different miRs 
exert a cooperative effect on a transcript given a limited 
spacing between the two miR bindings sites and sug-
gested cooperative contacts with repressive machinery 
or removal of occlusive mRNA structures as the underly-
ing mechanism [53]. Our data highlight the cooperative 
function of miRs to exert (patho)biological functions, 
including control of thrombogenicity by targeting the TF 
3′UTR. In line, Zampetaki et  al. found various miRs to 
be strongly co-expressed in cardiovascular diseases [54]. 
Alterations in the expression pattern of vascular protec-
tive miRs may hence put patients at risk for thromboem-
bolic complications.

Limitations
In the group with high miR-19a expression, more 
patients received metformin compared to the group 
with low miR-19a expression. Metformin was found to 
reduce pro-inflammatory cascades in vascular cells [55] 
and decreased TF expression in monocytes in vitro [56]. 
Vice versa, in the group with high miR-19a expression 
fewer patients were treated with sulfonylurea. These dif-
ferences between the two groups may have biased the 
findings in this study. Moreover, the measurement of TF 
protein in the plasma using the ELISA from Sekisui Diag-
nostics may overestimate the TF levels in some settings 
[57]. However, in addition we used an “in-house” assay to 
quantify TF activity to overcome these limitations.

Conclusion
In summary, our study demonstrates that miR-19a 
decreases procoagulant activity in ECs and monocytes 
and correlated with reduced TF-dependent throm-
bogenicity in patients with diabetes. The induction of 
endothelial VCAM1 in vitro may explain the context-spe-
cific role of miR-19a in cardiovascular diseases. However, 
in the clinical setting of diabetes, co expression of miR-
126 with miR-19a leads to control of vascular inflamma-
tion and potentiates the post-transcriptional regulation 
of vascular TF.
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