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Abstract: Although Staphylococcus aureus is a major threat to the veterinary, agricultural, and public
health sectors because of its zoonotic potential, studies on its molecular characterisation in intensive
animal production are rare. We phenotypically and genotypically characterised antibiotic-resistant S.
aureus in intensive pig production in South Africa, using the farm-to-fork approach. Samples (n = 461)
were collected from the farm, transport vehicles, and the abattoir using the World Health Organisation
on Integrated Surveillance of Antimicrobial Resistance (WHO-AGISAR) sampling protocol. Bacteria
were isolated using selective media and identified using biochemical tests and polymerase chain
reaction (PCR). Phenotypic resistance was determined using the disk diffusion method. Selected
resistance and virulence genes were investigated using PCR. Clonality among the isolates was
determined using the repetitive element sequence-PCR. In all, 333 presumptive staphylococcal
isolates were obtained, with 141/333 (42.3%) identified as staphylococci biochemically. Ninety-seven
(97; 68.8%) were confirmed as S. aureus using PCR, 52.6% of which were identified as methicillin-
resistant S. aureus (MRSA) through the mecA gene. All the 97 S. aureus isolates (100%) were resistant
to at least one of the antibiotics tested, with the highest resistance observed against erythromycin
and clindamycin (84.50% each), and the lowest observed against amikacin (2.10%); 82.47% (80/97)
were multidrug-resistant with an average multiple antibiotic resistance index of 0.50. Most of the
phenotypically resistant isolates carried at least one of the corresponding resistance genes tested,
ermC being the most detected. hla was the most detected virulence gene (38.14%) and etb was the least
(1.03%). Genetic fingerprinting revealed diverse MRSA isolates along the farm-to-fork continuum,
the major REP types consisting of isolates from different sources suggesting a potential transmission
along the continuum. Resistance to antibiotics used as growth promoters was evidenced by the high
prevalence of MDR isolates with elevated multiple antibiotic resistance indices >0.2, specifically at the
farm, indicating exposure to high antibiotic use environments, necessitating antibiotic stewardship
and proper infection control measures in pig husbandry and intensive pig production.

Keywords: Staphylococcus aureus; antibiotic resistance; foodborne pathogens; multidrug resistance;
MRSA; pig production chain; South Africa; genetic diversity; virulence determinants; molecular epi-
demiology
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1. Introduction

According to recent World Health Organisation estimates, food contamination affects
over 600 million people worldwide, with over 420,000 dying every year [1]. This condition
is further exacerbated by the presence of antibiotic-resistant bacteria in contaminated foods.
Today, antibiotic resistance is a global public health concern [2,3] that poses a severe threat
to human and animal health [4,5]. The escalating antibiotic resistance rate may be attributed
to the excessive and inappropriate antibiotics use in humans and animals, including in
animal husbandry [2,4].

Staphylococcus aureus is a bacterium that exists as either a commensal or pathogen in
humans and animals [6]. Its success as a pathogen may be attributed to the production of
many virulence factors, including enterotoxins, leucocidins, exfoliative toxins, haemolysins,
and immune-modulatory factors [7–9] that promote colonisation, tissue damage, and in-
fection while facilitating the evasion of host defence mechanisms. Moreover, its ability
to resist a wide range of antibiotics has led to limited therapeutic options for treating its
infections [10]. S. aureus has shown resistance to most β-lactam antibiotics, linezolid, dapto-
mycin, and vancomycin, which are the last-resort antibiotics for Gram-positive bacteria [11].
Its resistance mechanisms encompass the enzymatic inactivation of antibiotics, alteration
of the target penicillin-binding proteins that decrease the antibiotic’s binding affinity, and
efflux pumps that remove antibiotics from the bacteria’s cytoplasm. Resistance is acquired
through mutations and horizontal gene transfer of resistance genes on various mobile
genetic elements such as plasmids, bacteriophages, and transposons [10,12]. Methicillin
resistance in S. aureus is mediated by the mecA gene that is harboured by a mobile genetic
element, the staphylococcal cassette chromosome mec (SCCmec) [13].

Epidemiologically, methicillin-resistant S. aureus (MRSA) is divided into three classes,
hospital-acquired MRSA (HA-MRSA), community-associated MRSA (CA-MRSA), and
livestock-associated MRSA (LA-MRSA) [14]. Pigs were identified as important reservoirs
for LA-MRSA as early as 2004, and LA-MRSA lineages have been currently reported
in humans, suggesting a possible transmission from animals to humans, blurring the
epidemiology of MRSA [15].

Antibiotic overuse is the primary driving force of resistance in pig production. Antibi-
otics are used as growth promoters for metaphylaxis and prophylaxis to improve health,
produce high-quality products, and increase overall production yield [16]. In 2016, it was
estimated that South Africa consumes 200,000 tons of pork, which is the second most
consumed source of meat after chicken [17]. Due to high demand, different antibiotics are
extensively used during food animal production [16,18]. The high demand for pork also
imposes the need to adopt intensive production approaches, requiring the farming of many
animals within limited and confined spaces. However, this approach has the downside
of promoting stress and increasing disease transmission within the animal farm [19], thus
requiring extensive antibiotics use to treat sick animals. The use of these antibiotics, in-
cluding the critically important and clinically relevant ones in food animals, can create a
selective environment for the emergence of multidrug-resistant pathogenic strains.

Despite the safety issues associated with drug-resistant bacterial contaminants in food,
there are limited studies on antibiotic-resistant S. aureus in intensive pig production or
the possibility of transmission to humans in South Africa. Furthermore, no study has
investigated this along the pig farm-to-fork continuum in Africa. Therefore, we elucidated
the molecular epidemiology of antibiotic-resistant S. aureus in an intensive pig production
chain in uMgungundlovu District KwaZulu-Natal, South Africa, using the farm-to-fork
approach. This study would provide the foundations for implementing measures to
curb antibiotic use in food animals and identify areas along the continuum that may be
prioritised in such interventions.
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2. Results
2.1. Staphylococcus Aureus Detection Rate in the Pig Production Chain

A total of 333 presumptive staphylococcal isolates were obtained throughout the
pig production chain based on culture characteristics. However, the biochemical analysis
yielded 141 (42.3%) Staphylococcus isolates, of which 97 (68.8%) were confirmed as S. aureus
through PCR. The least number of S. aureus isolates was obtained on Week 4 from litter and
faecal samples. Most S. aureus isolates were obtained on Week 7, while no isolates were
obtained on Week 9. In addition, no isolates were recovered from caecal samples (Table 1).

Table 1. Distribution of presumptive staphylococcal isolates obtained throughout the study.

Week Production Stage Source No. Collected

Weeks 1–17 Farm (n = 293) Faeces 117
Slurry 119

Human (Nasal) 57
Week 18 Transport (n = 4) Before Loading 4

After Loading 4
Week 18 Abattoir (n = 32) Carcass Rinsate 12

Caecal contents 0
Retail Meat (Whole Carcass) 4

Retail Meat (Head) 8
Retail Meat (Thigh) 8

Total 333

Furthermore, 51 (52.6%) of the 97 S. aureus isolates were positive for the mecA gene,
confirming them as MSRA.

2.2. Antibiotic Susceptibility Profiles

The antimicrobial susceptibility was only performed on PCR-confirmed S. aureus isolates.
These isolates displayed varying percentages of resistance to the various antibiotics tested
(Figure 1). The highest resistance was observed against clindamycin (84.50%) and erythromycin
(84.50%), while the lowest resistance was against amikacin (2.10%). Overall, all the isolates
(100%) were resistant to at least one of the 20 antibiotics tested. There was substantial resistance
to the glycopeptide antibiotics, vancomycin (69.10%), and teicoplanin (51.50%).
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Figure 1. Overall percentage resistance of S. aureus. AMP = ampicillin, PENG = penicillin-G, CIP = 
ciprofloxacin, MXF = moxifloxacin, LVX = levofloxacin, LZD = linezolid, FOX = cefoxitin, AMK = 
amikacin, GEN = gentamicin, TGC = tigecycline, TET = tetracycline, DOX = doxycycline, ERY = 
erythromycin, CLI = clindamycin, RIF = rifampicin, SXT = sulfamethoxazole-trimethoprim, NIT = 
nitrofurantoin, CHL = chloramphenicol, TEC = teicoplanin, VAN = vancomycin. 

Furthermore, when stratified by sampling source, isolates obtained from transport 
samples were 100% resistant to erythromycin, clindamycin, and tetracycline, while faecal 
samples showed 100% resistance to penicillin-G (Figure 2). 

0.0 20.0 40.0 60.0 80.0 100.0

ERY
CLI

PENG
TET

DOX
VAN
AMP

RIF
SXT
TEC
LZD
CHL
NIT

MXF
FOX
TGC
GEN
LVX
CIP

AMK

Percentage resistance

A
nt

ib
io

tic
 p

an
el

Figure 1. Overall percentage resistance of S. aureus. AMP = ampicillin, PENG = penicillin-G,
CIP = ciprofloxacin, MXF = moxifloxacin, LVX = levofloxacin, LZD = linezolid, FOX = cefoxitin,
AMK = amikacin, GEN = gentamicin, TGC = tigecycline, TET = tetracycline, DOX = doxycycline,
ERY = erythromycin, CLI = clindamycin, RIF = rifampicin, SXT = sulfamethoxazole-trimethoprim,
NIT = nitrofurantoin, CHL = chloramphenicol, TEC = teicoplanin, VAN = vancomycin.

Furthermore, when stratified by sampling source, isolates obtained from transport
samples were 100% resistant to erythromycin, clindamycin, and tetracycline, while faecal
samples showed 100% resistance to penicillin-G (Figure 2).
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Figure 2. Percentage resistance of S. aureus isolates stratified by source. AMP = ampicillin, PENG = penicillin-G, CIP = ciproflox-
acin, MXF = moxifloxacin, LVX = levofloxacin, LZD = linezolid, FOX = cefoxitin, AMK = amikacin, GEN = gentamicin, TGC = 
tigecycline, TET = tetracycline, DOX = doxycycline, ERY = erythromycin, CLI = clindamycin, RIF = rifampicin, SXT = sulfameth-
oxazole-trimethoprim, NIT = nitrofurantoin, CHL = chloramphenicol, TEC: teicoplanin, VAN = vancomycin. 

2.3. Multidrug Resistance and Risk Assessment Parameters 
Out of 97 S. aureus isolates, multidrug resistance (MDR) was recorded in 82.47% 

(80/97) of the isolates, which were mostly from the farm (faeces, slurry, and litter) and the 
least being from humans (Figure 3). 
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Figure 2. Percentage resistance of S. aureus isolates stratified by source. AMP = ampicillin, PENG = penicillin-G,
CIP = ciprofloxacin, MXF = moxifloxacin, LVX = levofloxacin, LZD = linezolid, FOX = cefoxitin, AMK = amikacin,
GEN = gentamicin, TGC = tigecycline, TET = tetracycline, DOX = doxycycline, ERY = erythromycin, CLI = clindamycin,
RIF = rifampicin, SXT = sulfamethoxazole-trimethoprim, NIT = nitrofurantoin, CHL = chloramphenicol, TEC: teicoplanin,
VAN = vancomycin.

2.3. Multidrug Resistance and Risk Assessment Parameters

Out of 97 S. aureus isolates, multidrug resistance (MDR) was recorded in 82.47%
(80/97) of the isolates, which were mostly from the farm (faeces, slurry, and litter) and the
least being from humans (Figure 3).
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Figure 3. The overall distribution of multidrug-resistant S. aureus isolates along the pig production chain.

The isolates displayed varying resistance patterns that were grouped into 56 different
antibiograms, LZD-RIF-ERY-CLI-AMP-PEN-SXT-MXF-TET-DOX-NIT-CHL-VAN-TEC be-
ing the most common pattern (Table S1). Most MDR isolates (66; 82.50%) were resistant to
six or more tested antibiotics (Table S1). No isolate was pan-drug resistant (i.e., showing
resistance to all antibiotics tested in this study).

The overall MARI for all the isolates in the current study ranged between 0.02 and
0.95. However, most isolates recorded an MAR (multiple antibiotic resistance) index of
0.80 throughout the production chain. The highest MARI (0.95) was recorded on the farm;
this isolate was resistant to 19 of the 20 antibiotics tested (Table S1). On the farm, the
MARI ranged between 0.20 and 0.95 (mean = 0.50). The transport system ranged between
0.20 and 0.30 (mean = 0.25), while at the abattoir, isolates recorded MARIs of 0.75 and 0.80.
The two MDR human isolates had MARIs of 0.50 (hands) and 0.85 (nasal).

2.4. Detection of Antibiotic Resistance and Virulence Genes

The tested resistance genes were detected at varying percentages in the isolates that
showed phenotypic resistance to the corresponding antibiotics or antibiotic classes (Table 2).
For example, the ermC gene was detected in 97.56% (80/82) of the isolates that were
phenotypically resistant to erythromycin. The vancomycin resistance genes, vanA and
vanB, were not detected, although phenotypic resistance was observed. There was no
correlation between the antimicrobial resistance genes (ARGs) from the different sampling
points and sources.
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Table 2. Prevalence of antibiotic resistance and virulence genes in S. aureus isolates.

Resistance Gene * Prevalence Virulence Genes ** Prevalence

tetM 27 (35.05%) hla 37 (38.14%)
tetK 56 (72.73%) hld 21 (21.65%)
blaZ 71 (88.75%) sea 0 (0.00%)
mecA 51 (63.75%) seb 3 (3.09%)
ermC 80 (97.56%) sed 2 (2.06%)
msrA 15 (18.29%) eta 0 (0.00%)

aac (6′)-aph (2”) 5 (62.50%) etb 1 (1.03%)
vanA 0 (0.00%) lukS/F-PVL 29 (29.90%)
vanB 0 (0.00%) tst 11 (11.34%)

* The following genes confer resistance to the corresponding antibiotics and were tested in isolates that displayed
phenotypic resistance to these antibiotics: tetM and tetK (tetracycline; n = 77), blaZ (penicillins; n = 80) ermC,
msrA (erythromycin; n = 82), aac(6′)-aph(2′’) (gentamicin; n = 8), vanA and vanB (vancomycin; n = 67), and mecA
(methicillin/cefoxitin/β-lactams; n = 80). ** The following virulence genes encode the corresponding protein:
hla and hld (α and δ hemolysins), eta and etb (exfoliative toxins), sea, seb and sed (staphylococcal enterotoxins),
lukS/F-PVL (leucocidin), tst (toxic-shock syndrome/exotoxin).

The distribution of virulence genes was hla (39%), hld (23%), seb (3%), sed (2%), etb (1%),
LukS/F-PV (30%), and tst (11%). The most common virulence factor was the α-hemolysin
cytotoxin encoded by the hla gene (Table 2). Low prevalence was recorded for exfoliating
toxins encoded by etb and staphylococcal enterotoxin genes seb and sed. Virulence genes eta
and sea were not detected.

2.5. Repetitive Element Palindromic PCR (REP-PCR)

Twenty-eight (28) clusters were identified from A-AC (Figure 4). Amongst these, 38%
constituted five major rep types, namely P (n = 5), J (n = 4), F (n = 3), I (n = 3), and X
(n = 3). The largest clonal cluster was P (n = 5), with isolates originating from the farm
(faeces, slurry, and human samples). J (n = 4) contained Week 4 isolates from faeces and
litter. Repetitive element palindromic (REP)-F (n = 3) consisted of Week 5 faecal and slurry
isolates. REP-type X (n = 3) consisted of Week 7 isolates obtained from human swabs, and
REP-type I (n = 3) contained Week 3 human and slurry isolates and a Week 4 litter isolate.
REP-I was the only major REP-type with isolates originating from different but consecutive
sampling weeks.
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Figure 4. Dendrogram showing repetitive element palindromic (REP)-type groups of S. aureus
isolates, based on the 70% similarity index, recovered along the farm-to-fork continuum. The solid
blue line indicates the REP-type cut-off.

3. Discussion
3.1. Prevalence of S. aureus in the Pig Production System

Many different bacteria have been implicated in foodborne disease outbreaks around
the world. In the current study, staphylococcal species were isolated from different sources
throughout the production chain. Overall, 69% (n = 97) of the total number of isolates
were identified as S. aureus, of which 52.6% were confirmed as MRSA using molecular
techniques. This prevalence was considerably higher than the 12% reported in another
South African study conducted in 2017 assessing MRSA prevalence in commercial pig
herds in the Western Cape, KwaZulu Natal, and Gauteng [20]. A lower prevalence was also
reported in another South Africa study assessing the formal (30%) and informal (50%) meat
sectors with isolates obtained from meats samples in abattoirs and slaughtering points [21].
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These differences in prevalence may reflect the sampling framework used. Unlike the
current study, most studies have been performed at single points along the continuum [22].
The differences in percentages could also be due to the methods used. Unlike our study
that used PCR to detect the mecA gene, the previous studies only relied on culture using
selective media and biochemical tests to confirm MRSA in their isolates. While being
valuable in their respects, such narrow sampling could give an incomplete picture of the
epidemiology of S. aureus in the food production chain. Thus, the farm-to-fork sampling
approach used in the current study, as recommended by the WHO, provides a better
understanding of the microbial pathogens’ distribution in intensive production systems.
This could also highlight the potential transmission along the continuum and identify
hotspots needing prompt attention. The MRSA prevalence rate may also differ according
to geographic location and herd size [23]. Globally, high prevalence rates (>50%) have been
reported in the USA, Germany, Italy, and Sri Lanka [6,24–26]. Nevertheless, the scarcity
of information in South Africa, as in many developing countries, on the current situation
or possible dissemination of these bacterial pathogens through the food production chain
remains a concern [27].

3.2. Antimicrobial Resistance Profile of S. aureus Isolated from the Pig Production Chain

Pig production is one of the leading sources of meat protein in South Africa, after
poultry. However, the intensive conditions under which pigs are housed during produc-
tion are a risk factor for spreading disease, resulting in high antibiotic use to control and
treat infections [28]. The routine use of antibiotics as growth promoters for prophylaxis,
metaphylaxis, and treatment exerts selective pressure for developing and escalating antibi-
otic resistance [26]. This creates large reservoirs of antibiotic-resistant bacteria, including
MRSA, colonising the nares, skin, and rectum of the pigs and occupationally exposed
workers. For example, significantly high resistance percentages, including high MDR rates,
have been reported to some antibiotics frequently used in veterinary medicine for animal
husbandry, such as tetracycline, penicillin, erythromycin, and sulphonamides [29]. The
transmission of resistant bacteria between animals and humans has also been reported in
many studies [30–32]. For example, a report on antimicrobial use and resistance in Africa
indicated a 100% prevalence of MDR E. coli in South Africa with isolates highly resistant
to sulphonamides, tetracycline, and penicillin [33]. The high percentage of resistance to
these antibiotics may be because they are widely used, favoured by their low cost and
availability [32]. In veterinary medicine, penicillins are commonly used for prophylaxis
and treatment of urinary tract infection and have been frequently detected in foodborne S.
aureus [34,35].

According to a document published by the WHO on critically important antibiotics
for human medicine in 2018 [36], some classes of antibiotics used in food animals are
also used to treat human infections. Hence, their indiscriminate use in animal production
may cause resistance, compromising their efficacy in human infections [32]. Although the
European Union has banned some of these antibiotics as growth promoters, they are still
used in South Africa [29,37]. The >50% resistance observed for erythromycin, clindamycin,
penicillin-G, tetracycline, and doxycycline may be attributed to the use of these antibiotics
to promote growth, prevent, and treat infections. Similar resistance patterns reported in
China and Portugal in pig production were correlated with overuse [38,39].

The resistance profiles observed in the current study suggest cross-resistance to fre-
quently used antibiotic analogues for growth promotion. For example, resistance to ery-
thromycin and clindamycin may be attributed to the use of tylosin and kitasamycin in the
feed [22,40]. In addition, tetracycline and doxycycline analogues are commonly used for
the treatment of respiratory infections. These antibiotics may be administered through
drinking water or feed over a prolonged period [32]. The Stock Remedies Act No.36 of
1947 has made antibiotics available over the counter for growth promotion and prophy-
laxis. This laxity could increase antibiotic resistance in foodborne pathogens in the food
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production chain in South Africa. However, as recommended by the WHO, a ban on such
use is already effective in the European Union for the last decade [41]

Furthermore, the current study revealed that over 82% of the isolates were MDR,
with 56 antibiograms, indicating diverse resistance patterns. This observation intimates
the mobilisation and easy exchange of antibiotic resistance genes between isolates across
the farm-to-fork continuum. The diversity of resistance patterns and the high MDR rate
highlights the need for antibiotic stewardship to ensure prudent antibiotic use for animal
production, as it may have grave consequences for human and environmental health [42].
The overall large number of isolates with MARI > 0.2 (average = 0.47) further illustrates
the selection pressure of excessive antibiotic use, indicating that these isolates were from
environments of high antibiotic exposure, as would be expected if antibiotics are used for
growth promotion, metaphylaxis, or prophylaxis [43,44]. Comparatively, an average MAR
index > 0.3 was reported in India in pork [45].

The possible dissemination of MDR strains along the production chain due to the
handling and contamination emphasises the need to monitor and enforce infection preven-
tion and control measures at each stage in the food production chain. For example, the
two MDR human isolates had MARIs of 0.5 (hands) and 0.85 (nasal). While the number
of isolates was small, the high MARI values indicate a potential health hazard for the
farmworkers. However, it cannot be concluded that the isolates identified in the humans
originated from the farm, as human samples were not collected before the workers entered
the farm. Similarly, isolates in the abattoir recorded MARI values between 0.75 and 0.80.
Although these isolates likely came from the farm, it may not be concluded that they
were from the same batch of pigs, since the abattoir serves many other farms within the
district. This could be further supported because S. aureus was also isolated from the
truck before our animals were loaded. These observations indicate that the transmission
of microorganisms along the farm-to-fork continuum, especially antibiotic-resistant ones,
exhibits a complex dynamic that requires further investigation using advanced molecular
tools such as whole-genome sequencing.

3.3. Antibiotic Resistance Mechanisms

Although there was a general agreement between phenotypic and genotypic resis-
tance, there were a few discrepancies. The most common resistance gene detected in
this study was the ermC gene in over 90% of the isolates resistant to erythromycin, while
another macrolide resistance gene, msrA, was detected at much lower levels (Table 2). The
ermC gene facilitates the methylation of the 23S rRNA ribosome’s active site, triggering
conformational changes, resulting in drug binding inhibition [7,46], while msrA encodes
for an ATP-dependent efflux pump. Resistance to erythromycin reportedly co-selects
resistance to other antibiotics such as the type B streptogramin (MLSB) and lincosamides.
The frequent use of antibiotics such as streptogramin, virginiamycin, or tylosin to promote
growth in farm animals through feeds has accounted for increasingly high numbers of
isolates carrying the macrolide resistance genes [10].

The use of virginiamycin (streptogramin associated with resistance to quinupristin-
dalfopristin), amongst others, for growth enhancement, was endorsed by the Pig Veterinary
Society of the South African Veterinary Association in its policy document on “guidelines
for the use of antimicrobials in the South African pig industry” [47]. Additionally, a
survey by Eager et al. on the animal use of antimicrobials in South Africa reported high
tylosin sales as a registered growth promoter [29]. This raises concerns because tylosin
was banned alongside virginiamycin, spiramycin, and bacitracin in the EU based on WHO
recommendations due to their chemical and structural homologies to antibiotics used in
humans [48].

The prevalence of the blaZ gene was reported in 88.75% of penicillin-resistant isolates.
In S. aureus, this gene is found on transposon Tn522 located in plasmid pI524. blaZ
produces β-lactamase, which inactivates penicillin by hydrolysing its β-lactam ring [10].
Zehra et al. earlier found the blaZ as the most prevalent resistance gene in S. aureus in
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bovine and swine from Punjab, India [49]. Furthermore, tetracycline resistance is conferred
by two mechanisms: the active efflux of drugs, facilitated by tetK and tetL, and ribosomal
protection due to the acquisition of tetM and tetO [50]. Our study’s isolates displayed a
higher prevalence of tetK than tetM (Table 2), accounting for the tetracycline resistance
observed in the phenotypically resistant isolates. This finding was similar to that of Sieber
et al. in a Danish study on LA-MRSA in pigs and humans [51]. However, other studies
have reported a comparatively higher prevalence of tetM than tetK [52,53]. It has been
established that most MRSA harbour both tetK and tetM, which confer resistance to all
tetracycline antibiotics [54].

Most isolates that were phenotypically resistant to gentamicin harboured the aac(6′)-
aph(2”) gene. However, the absence of this in two isolates could suggest that other amino-
glycoside resistance mechanisms that were not investigated in this study might have
conferred resistance. Nevertheless, the low prevalence of resistance (phenotypic and geno-
typic) may imply that aminoglycosides can still be used to treat clinical staphylococcal
infections successfully; hence, its prudent use is advised in food animal production.

It has been reported that using avoparcin to promote growth in agriculture has fa-
cilitated the emergence of glycopeptide-resistant enterococci [55]. The resistance genes
involved have been disseminated into other Gram-positive bacteria, including MRSA.
The emergence of vancomycin-resistant MRSA is a cause for concern, considering that
vancomycin is a drug of choice for resistant hospital-acquired infections [48]. Although
the current study reported phenotypic resistance to vancomycin, the targeted vanA and
vanB genes were not detected. This was in line with another South African study on
Staphylococcus in farm animals, which revealed that 12% of the phenotypically vancomycin-
resistant MRSA did not harbour the vanA and vanB resistance genes [56]. This could be
attributable to other plasmid-mediated vancomycin genes that were not investigated in
the current study, such as vanC, vanD, vanE, vanF, and vanG [57]. More so, vancomycin
resistance may also be caused by decreased permeability by thickening the cell wall, thus
inhibiting/decreasing vancomycin availability to intracellular target molecules [58]. High
percentage resistance to teicoplanin was also observed in the study; however, this was not
peculiar, as cross-resistance between glycopeptides has been reported [52,53].

Further studies involving whole-genome sequencing (WGS) to detect unknown or
novel mechanisms would be useful to delineate the genetic basis of resistance [14]. Lastly,
isolates showed over 50% mecA gene prevalence, which is not surprising, as the MDR rate
was also high. Isolates phenotypically resistant to cefoxitin but lacking the mecA gene could
be due to alternative mechanisms of cefoxitin resistance such as mecC [54].

3.4. Virulence Determinants

S. aureus harbours various virulence determinants that contribute to its pathogenicity.
Therefore, food animals may be a source of transmission of pathogenic strains in production
facilities to humans and the environment [58]. Isolates predominantly harboured the hla
gene (Table 2), an α-haemolysin cytotoxin, which contributes to biofilm formation in epithe-
lial tissues, promoting infections and slowing down wound healing [59]. Staphylococcal
enterotoxins (sea, seb, and sed) were recovered at lower rates, which agreed with other
animal studies [60,61]. For example, Dweba et al. reported a prevalence of 6.4% (sea) and
6% (sea) for the gene amongst different animal species in South Africa [61]. Staphylococcal
enterotoxins are usually associated with food poisoning, with seb considered a potential
inhaled bioweapon [62,63]. Moreover, S. aureus may produce Panton-Valentine leucocidin
(PVL), a pore-forming toxin encoded by phage-encoded genes [64]. PVL is also considered
a genetic marker for CA-MRSA due to its prominence in this epidemiological class [64].
A substantial number of isolates carried the PVL gene, corroborating a study conducted
on S. aureus isolated from backyard-raised pigs and pig workers in Nigeria, with 27% of
isolates harbouring PVL [65]. However, although PVL has been associated with necrotising
pneumonia and joint infection in humans, its role in pigs is not thoroughly investigated;
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hence, the current findings should be interpreted with caution [66], as its presence does not
necessarily imply diseased animals.

3.5. Clonal Relatedness of Isolates

Vancomysin has been regarded as the drug of choice to treat infections caused by
MRSA; however, the increased resistance of these bacteria to vancomycin warrants rapid
typing methods to characterise MRSA, as they have also been isolated from meat and
meat products [67]. Although pulse-field gel electrophoresis (PFGE) has been regarded as
the gold standard for typing MRSA, REP-PCR is more practical, time-efficient, and cost
effective than other typing methods [68]. In addition, REP-PCR yields comparative results
to PFGE [69] while outperforming more recent methods such as multilocus sequence typing
(MLST) and PFGE in some instances [70].

Thus, using REP-PCR in the current study, the 48 MRSA isolates selected for typing
yielded 28 REP types (A-AC) based on a 70% similarity index, with the majority concen-
trated within the farm environment. Five major REP types were identified on the farm, with
isolates sourced from faeces, slurry, human swabs, and litter samples, usually at the same
time points. Clonal relatedness was evident in isolates from pig faeces, human swabs, and
the environment (slurry/litter), belonging to six REP types (F, I, J, L, N, and P). Although
this was not surprising, due to the proximity between these sample sources, it further
strengthens the knowledge of potential transmission of microbial species between humans,
animals, and the environment within animal farms. Some isolates belonging to the same
clones carried some similar resistance and virulence genes, although there was extensive
diversity in the resistance, virulence, and clonal profiles. Such a high diversity could also
be due to the small number of isolates included in the experiment. Selecting a few isolates
from each sampling point may introduce bias that could allocate phenotypically similar
isolates to different clonal groups. However, such selection could not be avoided, as the
number of isolates obtained depended on the number of positive samples. Therefore,
studies involving a larger number of isolates could provide a better picture of the clonality
along the farm-to-fork continuum. A similar trend was observed in a study by Neyaz et al.
on the characterisation of S. aureus from various meat products where a high prevalence
of tetracycline resistance was reported in two different clones [65]. A 2019 study in Italy
using other typing methods, including WGS, reported 94.1% of human MRSA isolates
belonging to the same epidemiological group as swine MRSA isolates [26]. Of note, al-
though REP-PCR has a shorter turnaround time, it is less discriminatory; therefore, further
studies involving more resolute typing approaches such as WGS are recommended [71].
Nevertheless, it should also be noted that the diversity reported in the current study was
based on a 70% similarity cut-off value and that changing this index could alter the number
of REP-types in any given experiment.

4. Materials and Methods
4.1. Study Site and Sample Collection

The study was conducted in the uMgungundlovu District Municipality in KwaZulu-
Natal (KZN), South Africa. This district is one of the largest districts in the KZN Province
and contains all the major intensive food animal farms in the region.

Four hundred sixty-one (461) samples were collected from Farm P, its occupationally
exposed farmworkers, farm environments, and associated abattoir over 18 weeks (Septem-
ber 2018–January 2019). The samples were collected across the farm-to-fork continuum
(animal faeces on the farm, transport, and post-slaughter) as per the World Health Organisa-
tion on Integrated Surveillance of Antimicrobial Resistance (WHO-AGISAR) protocol [72].
The farm, transport, and abattoir samples were collected as previously described [73].
Block sampling was used to make sure the entire herd was well represented. Faecal and
slurry samples were collected bi-weekly from day 0 to 126 (slaughter).

Additionally, hand and nasal swabs were obtained from farm employees. On the
18th week, the same herd was followed to the abattoir. Samples were collected from the
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transport (truck, before and after loading the pigs) and at different stages from slaughter
to packaging for human consumption from the same herd sampled on the farm [73].
All collected samples were immediately stored in a cooler box containing ice packs and
transported to the laboratory for processing within 4 h of sampling.

4.2. Isolation and Identification of Staphylococcus aureus
4.2.1. Isolation of S. aureus

The samples were inoculated into tryptone soya broth (TSB) (Basingstoke, Hampshire,
England) and incubated at 37 ◦C for two hours while shaking (100 rpm). Then, these
samples were streaked on HiCrome Aureus Agar Base (Himedia Laboratories, Mumbai,
India) and incubated overnight at 37 ◦C under aerobic conditions. After incubation, colonies
showing a unique brown-black colour with a clear zone were streaked onto mannitol salt
agar (Himedia Laboratories, Mumbai, India) for further screening. Presumptive S. aureus
colonies were examined for coagulase-activity by the tube plasma test and DNAse tests [74].
The presumptive S. aureus colonies were maintained at −80 ◦C in 10% glycerol stocks for
further analysis.

4.2.2. Molecular Confirmation of Staphylococcus aureus and Identification of
Methicillin-Resistant S. aureus (MRSA)

DNA was extracted using the GeneJet Genomic DNA purification kit according to the
manufacturer’s instructions (ThermoFischer Scientific, Waltham, MA, USA). The concentra-
tion and purity of the DNA were determined spectrophotometrically using the Nanodrop
ND-1000 Spectrometer (ThermoFisher Scientific, Waltham, MA, USA). The extracted DNA
was used as the template in the PCR. Molecular confirmation was performed using S.
aureus species-specific primers for the nucA gene, which codes for a thermostable nucle-
ase [75]. The primer sequences used were nucAF 5′-GCGATTGATGGTGATACGGTT-3′

and nucAR 5′-AGCCAAGCCTTGACGAACTAAAGC-3′ (Inqaba Biotechnical Industries
(Pty) Ltd., Pretoria, South Africa), generating a 270-base pair fragment [75]. PCR was
performed in a 20 µL reaction volume with 3 µL DNA template, 10 µL Luna® Universal
qPCR master mix (Biolabs, New England Ipswich, MA, USA), 0.5 µL from each forward
and reverse nucA primers (20 µM), and 6 µL of nuclease-free water (Thermo Scientific,
Waltham, MA, USA). The PCR protocol included activation for 5 min at 94 ◦C; 35 cycles of
30 s at 94 ◦C (denaturation), 45 s at 62 ◦C (annealing), and 45 s at 72 ◦C (elongation), and a
final extension step of 10 min at 72 ◦C. All reactions were carried out in a T100TM thermal
cycler (BioRad, Hercules, CA, USA). The PCR products were subjected to electrophoresis
on a 1.5% agarose gel stained with ethidium bromide in 0.5 Tris-acetate-EDTA (TAE) buffer
(HiMedia, Mumbai, India) at 120V for 1 h. Gels were visualised in a Gel DocTM XR + imag-
ing system (Bio-Rad, Hercules, CA, USA). The confirmed isolates were coded according to
their collection site. Then, isolates that were positive for the nucA gene were tested for the
presence of the mecA gene to identify MRSA isolates using primers and PCR conditions
described in Table S2.

S. aureus ATCC 25,923 and S. epidermidis ATCC 12,228 were used as the positive and
negative controls for the presumptive phenotypic and genotypic identification experiments.

4.3. Antimicrobial Susceptibility Testing (AST)

The isolates’ antibiotic susceptibility profiles were determined using the disk diffusion
method on Mueller–Hinton Agar (Merck (PTY) Ltd., Modderfontein, South Africa) and
interpreted according to the European Committee on Antimicrobial Susceptibility Testing
(EUCAST) breakpoints [76]. The Clinical and Laboratory Standards Institute (CLSI) guide-
lines [77] were used for antibiotic breakpoints absent from the EUCAST 2017 guidelines.
Care was taken to ensure that the recommended≈25 mL of agar was poured in each 90 mm
plate, as the agar depth/volume could affect the antimicrobial susceptibility testing (AST)
results. Antibiotics were selected based on the WHO-AGISAR 2017 protocol, their availabil-
ity, and frequency of use in veterinary and human medicine in the country. The following
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20 antibiotics were used: penicillin G (PEN 10 µg), ampicillin (AMP 10 µg), tigecycline
(TGC 15 µg), nitrofurantoin (NIT 300µg), cefoxitin (FOX 30 µg) (interpreted using EUCAST
breakpoints), amikacin (AMK 30 µg), gentamicin (GEN 10 µg), ciprofloxacin (CIP 5 µg),
moxifloxacin (MXF 5 µg), levofloxacin (LVX 5 µg), tetracycline (TET 30 µg), doxycycline
(DOX 30 µg), erythromycin (ERY 15 µg), clindamycin (CLI 2 µg), teicoplanin (TEC 30 µg),
trimethoprim-sulfamethoxazole (SXT 1.25/23.75µg), chloramphenicol (CHL 30 µg), line-
zolid (LZD 30 µg) and rifampicin (RIF 5 µg) (interpreted using CLSI breakpoints) (Oxoid,
Basingstoke, UK). The diameters of the zone of inhibition around the disks were measured
to the nearest millimetre (mm) using a ruler. The minimum inhibitory concentrations
(MICs) for vancomycin (VAN) were determined through the broth microdilution method
using the CLSI guidelines [77]. A methicillin-sensitive strain, S. aureus ATCC 29213, was
used as a positive control.

4.4. Risk Assessment Parameters of S. aureus Isolates

Multidrug resistance is defined as resistance to one or more agents in three or more
distinct antibiotic classes, and it was determined from the AST results [78]. The multiple
antibiotic resistance index (MARI) was calculated as (a/b), where “a” is the number of
antibiotics to which the isolates were resistant, and “b” is the total number of antibiotics
to which the isolate was tested [44]. Bacteria having a MARI > 0.2 originate from a high
antibiotic exposure environment, while values < 0.2 show bacteria from lower antibiotic
use sources. A completely resistant isolate has a MARI of 1.0.

4.5. Genotypic Characterisation of Isolates’ Resistance and Virulence Potentials

Resistance and virulence genes were determined by PCR using primers (Inqaba
Biotechnical Industries (Pty) Ltd., Pretoria, South Africa) and PCR conditions listed in Table
S2. PCR was performed in a 20 µL reaction mixture consisting of 10 µL One Taq Master
Mix (x2) (Biolabs, New England Ipswich, MA, USA), 6 µL of nuclease-free water, 0.5 µL of
each primer pair (final concentration of 0.5 µM), and 3 µL of template DNA. All reactions
were carried out in a T100TM Thermal Cycler (Bio-Rad, Hercules, USA). Each PCR assay
included a positive control and a No Template Control (NTC) consisting of the PCR mix
with template DNA replaced by nuclease-free water.

4.6. Determination of Genetic Relatedness Using Repetitive Element Palindromic PCR (REP-PCR)

The REP-PCR was only conducted on the MRSA isolates. Each PCR reaction was
carried out in a 25 µL reaction mixture containing 12.5 µL of Dream Taq (Thermo Fischer
Scientific, Vilnius, Lithuania), 10.5 µL of nuclease-free water, 1 µL of GTG5 primer, and
1 µL of template DNA. The cycling conditions were as previously reported [72]. PCR
products were subjected to electrophoresis in a 1% agarose gel in 1X Tris-acetate-EDTA
(TAE) buffer containing 5 µL of ethidium bromide and run at 75 V for 3 h. The gels were
visualised, and the images were captured with a Gel Doc TM XR imaging system (Bio-Rad,
Hercules, California, USA). A 1 Kb DNA ladder (Biolabs, New England, Hertfordshire, UK)
was used as a reference molecular weight marker. The resultant electrophoretic patterns
were analysed using the BioNumerics software version 6.6 (Applied Maths NV, Belgium)
using the Dice coefficient. Clustering was done through the unweighted pair group with
arithmetic averages (UPGMA) using 1% tolerance and 0.5% optimisation. Clusters were
identified based on a similarity of ≥ 70% [50].

4.7. Statistical Analysis

Descriptive statistics were used to describe the prevalence of S. aureus isolates, phe-
notypic resistance profiles, and genotypic profiles from different sources. The association
between MAR index, resistance, and virulence genes was determined by performing a
Chi-square test using SPSS (Statistical Package for the Social Sciences) v 20 (IBM, Armonk,
USA). Results were considered statistically significant at α = 0.05.
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5. Conclusions

This study confirmed that pigs serve as important reservoirs for MDR S. aureus, includ-
ing MRSA, with significant zoonotic implications and transmission potentials to humans
through occupational exposure. The resistance to a range of antibiotics used as growth
promoters, high MDR prevalence, and MARI values suggest a transmission risk between
animals and humans. This poses a challenge to food safety and human and veterinary
medicine, necessitating proper surveillance, stewardship, and biosecurity programmes in
intensive food animal production. However, it should be noted that although clonalilty was
observed among the isolates in the current study, all major REP types were found on the
farm with no transmission evidence across the farm-to-fork continuum. Therefore, while
being crucial for understanding the molecular epidemiology of S. aureus in intensive pig
farming, the results of the current study should not be over-generalised. The clonality was
only based on MRSA isolates, and other staphylococci and microbial pathogens carrying
resistance genes could still be transmitted across the continuum.
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