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Abstract

We solve the binary decision model of Brock and Durlauf (2001) in time using a method reli-

ant on the resolvent of the master operator of the stochastic process. Our solution is valid

when not at equilibrium and can be used to exemplify path-dependent behaviours of the

binary decision model. The solution is computationally fast and is indistinguishable from

Monte Carlo simulation. Well-known metastable effects are observed in regions of the mod-

el’s parameter space where agent rationality is above a critical value, and we calculate the

time scale at which equilibrium is reached using a highly accurate method based on first

passage time theory. In addition to considering selfish agents, who only care to maximise

their own utility, we consider altruistic agents who make decisions on the basis of maximis-

ing global utility. Curiously, we find that although altruistic agents coalesce more strongly on

a particular decision, thereby increasing their utility in the short-term, they are also more

prone to being subject to non-optimal metastable regimes as compared to selfish agents.

The method used for this solution can be easily extended to other binary decision models,

including Kirman’s model of ant recruitment Kirman (1993), and under reinterpretation also

provides a time-dependent solution to the mean-field Ising model. Finally, we use our time-

dependent solution to construct a likelihood function that can be used on non-equilibrium

data for model calibration. This is a rare finding, since often calibration in economic agent

based models must be done without an explicit likelihood function. From simulated data, we

show that even with a well-defined likelihood function, model calibration is difficult unless

one has access to data representative of the underlying model.

1 Introduction

It has been 20 years since the publication of discrete choice with social interactions [1], which at

the time of writing has over two thousand citations. The success of the publication has

spawned a multitude of related publications, all with an interest in modelling how variably
rational economic agents make decisions under exogenous influence in a system with collec-

tive endogenous interactions. More explicitly, the model of Brock and Durlauf considers a sys-

tem of agents where each agent makes a decision left or right, where their decision is

influenced by global influences (affecting all agents) and collective effects relating to
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conformity forces between the agents (the more agents deciding one way, the stronger the

influence on agents deciding the other way to change their minds). This simple but enlighten-

ing model has been extended in various directions in recent years, to multiple choice scenarios

[2], towards models integrating heterogeneous agents in complex networks in the random
field Ising model (RFIM) [3], and studying hysteresis in economic networks [4]. The binary

decision model has similarities to other situations beyond binary choice, a famous example

being the mean-field analysis done by Kirman et al. in studies of the Marseille fish market in

order to explain the dynamics of how partially-rational, partially-loyal agents choose sellers of

fish [5–7]. The study of such models is partially motivated by their simplicity compared to

more general models, but also since they seem to be able to replicate some real socio-economic

phenomena even given their simplicity.

One of the extensions of the binary decision model is the generalised model of Bouchaud in

[3]. Therein, he proposed the RFIM as a unifying framework for the study of socio-economic

phenomena, which subscribes agents as being heterogeneous (being predisposed to one deci-

sion over another), in a complex network of (possibly non-symmetric) interactions, subject to

a global zeitgeist which in principle can change in time. This model is incredibly rich and its

dynamics in some cases are described by evolving metastable states and long waiting times to

reach equilibrium, very similar to known phenomena from the study of spin glasses in physics

[8]. However, the downsides of the RFIM lie not in its ability to represent near infinite differ-

ent realisations, but instead that this complexity restricts the possibility of solving such models

analytically. This additionally makes model calibration from such models extremely difficult

since the models are often made up of tens of parameters describing the probability distribu-

tions for the connections between agents, agent heterogeneity and the time-dependence of the

zeitgeist. Therefore, although the RFIM can likely provide realistic descriptions of real-world

socio-economic phenomena, the binary decision model of Brock and Durlauf is likely to pro-

vide the ideal starting point for model calibration and analytics of real data. We note that

Brock and Durlauf’s model is very closely related to Kirman’s model of ant rationality (which

is also known as the Moran model [9]), with the difference being in the choice of the transition

rates between the two possible decisions [7, 10–12].

One can in fact draw an analogy to the field of Systems Biology, which uses mathematical

models to describe the expression of mRNA and proteins from genes in the DNA [13, 14]. In

reality, genes interact with proteins produced by other genes (and even their own proteins),

which can be visualised as a gene regulatory network made up of many different network pat-

terns known as motifs [15]. However, for practical reasons, researchers often ignore the com-

plex interactions present in gene regulatory networks and instead describe genes of interest

using a more simplified description. This simplified mechanism is known as the telegraph
model, and it considers each gene as an on/off switch (either it can produce mRNA or it can-

not), a model made up of four rate parameters rather than the potentially hundreds that would

be necessary to describe the regulatory network of a particular gene (see [16–18] describing

the mathematics and utility of the telegraph model). Experimental gene expression data is then

calibrated to these models to give the set of four parameters (for each gene) describing the sim-

plified model (see [19–23] where experimental data is fit to telegraph models). In the case of

binary decisions, although network effects are important for some situations, as Brock and

Durlauf [24] and Kirman state [6]: one should be careful not to overemphasise network effects
unless one has an empirical reason to infer their importance. Hence, in the same way that the

telegraph model provides a simplified description of gene expression, the model of Brock and

Durlauf [1] provides a simple go-to model with which to classify different binary decision situ-

ations via a small number of parameters.
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However, for all the applause of the model of Brock and Durlauf, the solution that they pro-

vide for the binary choice model applies only at equilibrium, whereas it is now widely known

that the time to reach equilibrium, for many socio-economic systems of interest, does not

occur on an economically relevant time scale [3, 25]. Hence, to understand binary decision

phenomena more deeply one must consider the whole time-evolution of the dynamics from

an initial condition to the equilibrium. In particular, model calibration is likely to be greatly

perturbed using a likelihood function based on the equilibrium solution for data trajectories

that are not a sample of the equilibrium distribution. In this paper we solve for the probability

distribution of the mean-field binary decision model of Brock and Durlauf in time, and use

our solution to investigate metastability, and the requirements on economic data necessary for

model calibration. The method used for our solution also solves Kirman’s ant model for the

case of discrete numbers of agents, complementary to the study of [11], where a time-depen-

dent solution is provided for a continuous number of agents (i.e., the large agent population

limit). This analytic solution allows for faster model calibration compared to simulation based

approaches, as well as the analytical construction of a likelihood function.

The paper is structured as follows. In Section 2 we introduce the mean-field binary decision

model of Brock and Durlauf starting from the RFIM of Bouchaud [3]. In this way the reader

can see how the mean-field description comes from applying various assumptions to the

RFIM. Section 2.1 describes the situation of a system of selfish agents who make decisions

such that they maximise their utility (if they are rational). In Section 2.2 we extend this analysis

to a system of altruistic agents, where now agents are concerned with optimising the global

utility. Then in Section 2.3 we solve the mean-field binary decision model in time. Throughout

Section 3 we explore the solution that we have found the metastable phenomena it possesses

(known as a lock-in in the economics community). In the process, using a first passage time

analysis, we outline a method to very accurately determine the time scales of these metastable

states. In Section 4 we use our time-dependent solution to construct a likelihood function that

can be used for model calibration, and assess the conditions necessary on simulated data to

provide accurate calibration. We then compare the results from our model to the standard

tenets of neoclassical economics in Section 5, before concluding our paper in Section 6.

2 Binary decision model

2.1 Selfish agents

Consider a system of N economic agents where each agent i can choose between two distinct

decisions, left denoted by Si(t) = −1, and right denoted by Si(t) = 1. Left or right could corre-

spond to an infinite number of binary choice questions, for example, to vote either Democrat

or Republican, to buy one stock or another, or whether one is participating in the latest fashion

trend (in this case yes or no). Depending on the question one is considering, the model param-

eters making up a binary decision model are likely to be very different. For example, a binary

decision model of an American election is unlikely to have the same model parameters as one

describing consumers choosing between two brands of similar cereal: in the case of a cereal,

the exogenous influence of advertising is more important than endogenous effects, whereas

the collective effects are likely more important in an election model. The attribute Si(t) denotes

the decision currently made by agent i at a time t, with the state of the entire system at time t
being given by the set of choices made by all agents at that time, denoted S ¼ fS1; S2; . . . ; SNg.

The RFIM introduced by Bouchaud in [3] takes into account three main factors, all of which

contribute to the influence on agent i, Ii(t), which are (using naming conventions inspired by

[3]):
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1. The personal inclination (or predisposition) of the agent to favour one decision over the

other. The contribution to Ii(t) from personal inclination is fi 2 [−1,1], where fi < 0

means a predisposition to left and fi > 0 means a predisposition to right. In principle, these

heterogeneities could be time-dependent, but since they are difficult to empirically quantify

one generally assumes they are constant.

2. The zeitgeist, a global influence equally affecting all agents, such as news reporting or stock

trends. Its contribution to Ii(t) is given by F(t) 2 [−1,1], and we assume its time-depen-

dence directly since it is often global effects (e.g., stock market decline or warming global

temperature) that change in time.

3. Agent-to-agent interactions, attractive/repulsive influences for the agents to attract/repel

others from their same view. The strengths of these interactions are stored in the matrix J,

where Jij� [J]ij is the contribution of agent j to Ii(t) such that the total contribution of all

agents in neighbourhood νi to the influence of agent i is
P

j2ni
JijSjðtÞ.

In summary, each agent is subject to an influence, Ii(t), which is the sum of these contribu-

tions,

IiðS; tÞ ¼ fi þ FðtÞ þ
X

j2ni

JijSjðtÞ: ð1Þ

The importance of the influence is that, where agents are rational, they will aspire to make a

decision (left or right) that agrees with the influence they are subjected to. We explore the

mechanisms through which agents update their decisions below, based on the introduction of

an agent utility function.

In the mean-field case several simplifications can be made. The main assumption is that all

agents are equally connected to each other with strength J meaning that each agent only

responds to the average global opinion of all agents m = ∑i Si/N. As has been widely docu-

mented, the mean-field approximation is qualitatively a good approximation for nearest neigh-
bour interactions where N� 1 and the number of dimensions d� 4 or in situations where
agents are connected to many other agents [26]. We additionally rescale J by the number of

agents J! J/N, such that the agent-to-agent interaction contribution to IiðS; tÞ is intensive.

Finally, we assume that each agent has the same personal inclination f, a factor that is absorbed

into the definition of the F(t) in Eq (1). Note that even in the absence of personal preference

the agents are still heterogeneous in the sense that they make their own decisions at different
times. Within this set of approximations the information is a shared function amongst all

agents and is given by,

IiðS; tÞ � IðnðtÞ; tÞ ¼ FðtÞ þ JmðnðtÞÞ; ð2Þ

where we reinterpret the definition of m(n(t)) = (2n(t) − N)/N, where n(t) is the number of

agents whose decision at t is right (with N − n(t) deciding left). For brevity, we will often drop

the time-dependence of n on t, although it is always implicit. The function m(n), as well as

being the average global opinion, is the order parameter of the system and takes discrete values

in [−1, 1] for finite N: m(N) = 1 if all agents take the right decision, m(N/2) = 0 if equal num-

bers decide right and left, and m(0) = −1 if all agents decide left. Hence, m(n) appropriately

characterises the state of the system for any value of N.

In the mean-field context one can interpret the meanings of F(t), J and m(n) in many ways.

One way, introduced in [3], is to interpret F(t) as the cost of installing a new heating system

and Jm(n(t)) as the expected cost decrease as technical improvements cause more people to

switch to the dominant technology. A similar interpretation will be used later on in Section 3.1
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to discuss the phenomena of technology lock-ins. In many settings, mean-field approxima-

tions are reasonable for binary choice decisions: many decisions one makes on a day-to-day

basis are influenced by many peers acting around an individual, for example, deciding whether

to invest in cryptocurrency [27], or the language one uses in online reviews [28]. As noted by

Kirman [6], sociologists have long observed empirically that relational networks are likely to be
much more connected than one might imagine. However, in many cases network effects are

very relevant, for example, children brought up in religious households are much more likely

to be religious themselves [29], in which case the mean-field assumption is a poor one. We

illustrate the concept of the mean-field assumption in Fig 1(a).

We now introduce the utility of agent i as Uiðn; tÞ � SiðtÞIiðS; tÞ ¼ SiðtÞIðn; tÞ, a quantity

that a rational agent would want to maximise over any realisation of the model. We denote the

situation wherein agents only care to maximise their own utility as a system of selfish agents
and generalise for more altruistic agents that are motivated by changes in the global utility in

the following section. Now consider that the rate at which an agent changes their mind is

Fig 1. (a) Illustration showing the effect of mean-field theory on a network of interconnected agents that influence each others decisions. In the mean-

field case each agent is influenced by the same information I(n, t) which they all contribute towards. (b) Diagram showing the 1D process that is

equivalent to the mean-field case of the binary decision model. The number in each circle denotes the number of right deciding agents, and the

expressions above and below the arrows denote the associated probabilities of transitioning between each configuration. (c) Plots showing the

correspondence between our analytic solution in Eq (16) and Monte Carlo simulations provided by the SSA. The parameters for this time-evolution are

F = 0, J = 10, α = 0, β = 1, γ = 1, N = 100 and P(n, 0) = δn,N/2. The probability distribution from the SSA is calculated from 2.5 × 103 trajectories. As t!
1 we see the emergence of a single steady-state consisting of two equal modes of height�0.5 at m(0) = −1 and m(N) = 1. In the limit N!1 this

steady-state bimodality corresponds to symmetry breaking behaviour [30]. Note that the SSA simulations in the solid lines show random perturbations

due to the stochastic nature of the simulations, whereas the bars showing Eq (16) do not show these deviations.

https://doi.org/10.1371/journal.pone.0267083.g001
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dependent on the change in their own utility if they do change their mind. For agent i, whose

utility at time t is U(n, t), changing their decision from Si! −Si at time t would result in the

utility change,

DUiðn; tÞ � Uiðn � Si; tÞ � Uiðn; tÞ ¼ � 2SiðtÞIðn; tÞ þ 2J=N: ð3Þ

Note that 2J/N is a self-interaction term which comes from considering the change in m(n) as

Si! −Si, a contribution that equally affects the rates of transition from −1! 1 and 1! −1,

and that is negligible for N� 1. In the case where the change in the agent’s decision is not

assumed to affect ΔUi(n, t) the term 2J/N can be ignored. If an agent had made decision Si(t) =

−1 (or Si(t) = 1) and the influence on them was I(n, t)> 0 (or I(n, t) < 0) then in changing

their decision at t they increase their utility; alternatively, if an agent had made decision Si(t) =

−1 (or Si(t) = 1) and the influence on them was I(n, t)< 0 (or I(n, t) > 0) then in changing

their decision at t they decrease their utility. Hence, a rational agent will (on average) make

decisions such that their choice Si(t) agrees with the sign I(n, t), at a rate (determined below)

that is a monotonically increasing function of ΔUi(n, t). More simply, the larger the change in
the agent’s utility ΔUi(n, t) upon a decision change, the larger the rate at which an agent changes
their decision.

In this paper we choose decision rules based on detailed balance considerations [30]. This

means that we choose the rates with which agents update their decisions based on the assump-

tion that as t!1 the Boltzmann equilibrium distribution will be attained, i.e., Peq(Si)/ exp

(βUi(n)) where β is the rationality of agent i (discussed below). Enforcing detailed balance

means the transition rates must satisfy,

WnðSiðtÞ ! � SiðtÞÞ
Wn� Si

ð� SiðtÞ ! SiðtÞÞ
¼

expðbUiðn � Si; tÞÞ
expðbUiðn; tÞÞ

¼ expðbDUiðn; tÞÞ; ð4Þ

where Wn(Si(t)! −Si(t)) is the transition rate for agent i to change their decision from Si!

−Si at time t given there are already n agents deciding right [30]. That Wn(Si(t)! −Si(t)) is a

transition rate means that in a time interval [t, t + Δt) an agent will change their decision

with probability Wn(Si(t)! −Si(t))Δt. There are several conventional ways to prescribe the

transition rates from Eq (4). A common way is to choose the Arrhenius form [31] where

the transition probabilities become Wn(Si(t)! −Si(t)) = γ exp(βUi(n − Si, t)) and

Wn� Si
ð� SiðtÞ ! SiðtÞÞ ¼ g expðbUiðn; tÞÞ, where γ is a time scale parameter. An alternate

form, and the form we use in this paper, are the Glauber/logit transition rates, which are given

by [3, 32, 33]:

WnðSiðtÞ ! � SiðtÞÞ ¼
g

1þ expð� bDUiðn; tÞÞ
ð5Þ

The choice of logit transition rates is motivated by [33], which derives Eq (5) using the maxi-

mum entropy principle. This assumes that agents make their choices based on a compromise

between short-term utility gain and a desire to sample other available choices. We note that

the Arrhenius transition rates do not subscribe to this interpretation, since as is clear from

their form, the transition rates are only dependent on the utility of the agent upon the change

in decision; i.e., the agents do not consider the change in decision based on a knowledge of all

decisions they could take, only the one they will take. In reality the proper form of the transi-

tion rates likely varies depending on the problem at hand. However, it seems likely that in the

case of a binary decision an agent would need to first explore a range of decisions before they

know the one that maximises their utility, hence we use Eq (5) for the rest of the paper. In

other models the logit-like behaviour arises from other considerations, for example their
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presence in the future technology transformation (FTT) models described in [34] is attributed

to probabilistic nature of the cost of two competing technologies (see Fig 1 of [35]). One also

observes that the dependence of the propensity function Wn on the change in utility is identical

to that seen in classical choice theory [36]; this is by design, and the propensity of an agent to

change their decision is proportional to the probability that the agent would indeed choose

that option in choice theory.

Eq (5) allows us to explore the agent rationality β, which is a direct analogue of the inverse

temperature commonly seen in equilibrium thermodynamics and statistical physics [30]. As

β! 0 the agents become completely irrational and changes of decision occur at the same rate

γ/2 regardless of an agent’s utility change. Conversely, as β!1 each agent is completely

rational and Eq (5) becomes,

lim
b!1

WnðSiðtÞ ! � SiðtÞÞ ¼
0; DUiðtÞ < 0;

g; DUiðtÞ > 0:

(

Hence, completely rational agents always make decisions that agree with the influence upon

them. For intermediate values of β we obtain the typical ‘S-shaped’ adoption curves with

respect to ΔUi(t), a common feature of many macroeconomic models including heterogeneous

agents [34, 37, 38]. We note that since β is a constant we are implicitly assuming that each

agent has the same level of rationality. Although in reality it may not be the case, for most situ-

ations we assume it to be a good approximation.

In the model described above ‘completely rational’ agents correspond to agents that on

their next change of decision, only choose the option that maximises their utility. So in a sense,

even completely rational agents have limited foresight since they make decisions only based on

the current state of the system, and not based on which decision in the long-run will optimise

their utility—which would be the decision agreeing with the sign of F. Clearly, even these

hyper-rational agents do not agree with the ‘perfect rationality’ of agents observed in neoclassi-

cal economics (where agents even optimise for future conditions [39]). The agents in the

binary decision model more closely correspond to Keynesian agents with ‘fundamental uncer-

tainty’ in economies driven by short-term optimism (in our case short-term utility gain) [40].

In contrast to the above, Kirman’s model of ant rationality [10] assumes a different form of

propensities than the logit form seen in Eq (5). Interpreting Si(t) = ±1 now as two different

sources of food and n as the number of ants at the right-hand (+1) food source, ants switch

food source due to two influences: the first is due to random switching with probability � per

unit time, the second due to recruitment by another ant with probability μ per unit time. The

former is akin to an effective reaction with first-order kinetics, whereas the latter is akin to a

reaction with second-order kinetics—i.e., the chance meeting of two ants is modelled as the

probability of two molecules of the same species colliding. Following the laws of mass-action

kinetics [14, 31, 41], the propensities for Kirman’s ant model are then proportional to

Wnð� 1! þ1Þ ¼ ðN � nÞ�þ mðN� nÞn
N� 1

and Wnðþ1! � 1Þ ¼ n�þ mðN� nÞn
N� 1

, as seen in [11]. We

will see below in Section 2.3 that our method for solving the model of Brock and Durlauf in

time also easily extends to Kirman’s model, although we focus on the former model for the rest

of the paper.

2.2 Altruistic agents

We now generalise our mean-field model of economic agents such that they can take into

account changes in the global utility of all agents. We refer to this as agent altruism since in

this case agents do not only think about maximising their own utility but that of the entire
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population [42]. In the context of binary decisions, having agents with altruistic attributes is

somewhat realistic. Take the example we made above relating F(t) to the cost of a heating sys-

tem and Jm(n) as the reduction in cost given more agents are using the technology. In this

example altruistic agents could further benefit the utility of all individuals by more quickly

arriving at a state where all agents are in agreement with one another. We define the global

utility simply as the sum of the utilities of all agents,

Aðn; tÞ ¼
XN

i¼1

Uiðn; tÞ: ð6Þ

Due to the mean-field interactions between the agents, a change in decision in one of the

agents will change the utility of the individual agent by a different amount than the global util-

ity. For example, say we have S1 ¼ fS1; . . . ; Sj; . . . ; SNg and at time t the system evolves to

S2 ¼ fS1; . . . ; � Sj; . . . ; SNg: in general we find that A(n − Sj, t) − A(n, t) 6¼ Uj(n − Sj, t) − Uj(n,

t), unless there are no interactions between the agents. We consider A(n − Si, t) − A(n, t)
explicitly below.

Now consider a system of entirely altruistic agents, whose decisions do not depend on their

individual utilities but only on A(t). As we did before for the selfish agents, we want to calculate

the change in the A(t) if agent i changes their decision from Si! −Si, i.e., ΔAi(n, t)� Ai(n − Si,

t) − Ai(n, t). Using Eq (6), one finds that this is given by,

DAiðn; tÞ ¼ DUiðn; tÞ � 2JSi mðnÞ �
Si

N

� �

: ð7Þ

Hence, the change of the global utility is equal to the change in the individual utility of the

agent minus a non-negligible term that accounts for the change in the utility of the rest of the

population given agent i has changed their decision. Note that the m(n) − Si/N term comes

from considering the sum over all agents aside from agent i, ∑j6¼i Sj = Nm(n) − Si, where the

Si/N term is negligible for N� 1. The extra term in Eq (7) has an intuitive meaning, whose

presence is explained by two mechanisms: (i) if Si (the original choice made by the agent) has

the same sign as m(n) then ΔAi < ΔUi since the agent has decided to go against the average

opinion of all other agents encoded in m(n); (ii) if Si has the opposite sign to m(n) then ΔAi >

ΔUi since the agent has decided to go with the average opinion, having previously been against

it.

Following previous work [42] we now introduce the gain, which gives a generalised form of

utility change for agents that can be either entirely selfish, altruistic, or else somewhere in

between. The gain for agent i in changing their decision from Si! −Si is defined by,

Giðn; tÞ � DUiðn; tÞ þ aðDAiðn; tÞ � DUiðn; tÞÞ

¼ � 2SiðFðtÞ þ JmðnÞð1þ aÞÞ þ
2ð1þ aÞJ

N
;

ð8Þ

where α is a parameter such that α = 0 corresponds to a system of selfish agents, α = 1 a system

of altruistic agents, and 0< α< 1 somewhere in between. We can finally write our most gen-

eral transition rates including the effects of agent altruism,

WnðSiðtÞ ! � SiðtÞÞ ¼
g

1þ expð� bGiðn; tÞÞ
; ð9Þ

which is essentially identical to the decision rule of Eq. (1) in [42]. Curiously, and possibly

somewhat intuitively, including the effects of altruism in our mean-field description acts to

scale the agent-to-agent interaction strength by 1 + α. As we explore in Section 3, this scaling

PLOS ONE Non-equilibrium time-dependent solution to discrete choice with social interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0267083 May 26, 2022 8 / 30

https://doi.org/10.1371/journal.pone.0267083


of the endogenous strength can have qualitative as well as quantitative effects on the model. It

seems the mean-field approximation is responsible for the simplicity of this scaling, since in

the general case of the model introduced in Section 2 the difference in utility change between

altruistic agents and selfish ones is found to be the less simplistic and given by ΔAi − ΔUi = −2

∑j6¼i Jji Si Sj. Note that for the case of generalised mean-field altruistic agents one can define a

Hamiltonian HðSÞ, a function of the state of the system S such that,

DHiðS; tÞ � HðfS1; . . . ; � Si; . . . ; SNg; tÞ � HðfS1; . . . ; Si; . . . ; SNg; tÞ ¼ Giðn; tÞ: ð10Þ

One finds this function is given by,

HðS; tÞ ¼ NmðnÞ FðtÞ þ
1

2
ðaþ 1ÞJmðnÞ

� �

; ð11Þ

where we remind the reader that m(n) = (2n − N)/N = ∑i Si/N. The existence of HðSÞ ensures

that decision rules based on Eq (9) satisfy detailed balance and that as t!1 the equilibrium

probability of each state is PeqðSÞ / expðbHðSÞÞ for all 0� α� 1.

2.3 Master equation and analytical time-dependent solution

We can now proceed to solve the mean-field model analytically. First we map the model to a

stochastic birth-death reaction scheme given by,

L Ð
ðN� nÞrðnÞ

nlðnÞ
R; ð12Þ

where r(n) and l(n) are the transition rates at which each agent changes their decision from left
to right and right to left respectively given there are n right voting agents, and L and R are sym-

bols representing agents who have decided left and right respectively. In this context one can

state that a decision change of an agent is akin to a gain/loss of particles, where each particle

denotes a right deciding agent [31]. Importantly, from this birth-death mapping, where F(t)!
F is a time-independent constant, it is clear that in the mean-field limit the number of right
deciding agents n completely determines the state of the system. Hence, for the moment we set F
(t)! F, and discuss the case of time-dependent F(t) later on. The rates r(n) and l(n) are

defined by the decision rules we derived above in Eq (9) and are explicitly given by,

rðnÞ ¼Wnð� 1! 1Þ;

lðnÞ ¼Wnð1! � 1Þ:
ð13Þ

Note that the choice of the overall propensities (N − n)r(n) and nl(n) comes from mass-action

kinetics: in short, the rate of gaining a new right deciding agent is proportional to the number

N − n of left deciding agents in the system [14, 31].

One can easily check that by writing the rate equation for the evolution of Eq (12), in the

large N limit, as t!1 one recovers the classic mean-field result of m = tanh(β(F + J(α + 1)

m)). However, we can do better than the rate equation describing the steady-state value of m,

and can in fact solve for the probability of having n right deciding agents at a time t, Pðn; tÞ.
We first write the master equation corresponding to the process in (12),

@tPðn; tÞ ¼ ½ðN � ðn � 1ÞÞrðn � 1Þ�Pðn � 1; tÞ þ½ðnþ 1Þlðn þ 1Þ�Pðnþ 1; tÞ

� ½ðN � nÞrðnÞ þ nlðnÞ�Pðn; tÞ:
ð14Þ

The master equation, otherwise known as the Kolmogorov forward equation, is a set of first-

order differential equations describing the time evolution of being in discrete state n at time t.
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Eq (14) is a 1D master equation since it describing the evolution of only a single stochastic var-

iable n. We outline the derivation of a 1D master equation from first principles in Sec. 1 in S1

File. At steady-state, where @tPðn; t !1Þ ¼ 0, 1D master equations are very well under-

stood, and their properties are discussed in many textbooks [30, 31, 43]. Solving them in time

is a much trickier problem. However, it is possible to solve Eq (14) and we do so using the

non-standard and useful method of [44]. For readers that are less mathematically inclined we

suggest that not too much time is spent on the derivation below; it is simply most important to
realise that the mean-field binary decision model can be solved in time, and that its analytical
solution is much quicker to compute than simulation based methods. For consistency with [44]

publication we introduce the following notation: an = (N − (n − 1))r(n − 1) and bn = (n + 1)l(n
+ 1), and we show the transitions between the microstates of the model using these propensi-

ties in Fig 1(b). Then, Eq (14) can be re-written as @t
~PðtÞ ¼ A � ~P , where ~PðtÞ is the column

vector ðPð0; tÞ;Pð1; tÞ; . . . ;PðN; tÞÞ and A is the master operator, a (N + 1) × (N + 1) tridiago-

nal matrix, given by,

A ¼

� a1 b0

a1 � ðb0 þ a2Þ b1

a2 � ðb1 þ a3Þ
. .

.

. .
. . .

.

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

: ð15Þ

We denote the eigenvalues of the matrix A as λi for i = 1, 2, . . ., N + 1, and from Perron-Fro-

benius theorem can state that the largest eigenvalue is λ1 = 0 with λ1 > Re(λ2)� . . .� Re(λN

+1) [45]. Note that the eigenvector corresponding to λ1 = 0 is the steady-state probability distri-

bution. Following some complex analysis on the resolvent of the master operator and judicious

use of Cauchy’s residue theorem in [44] one then arrives at the solution of Eq (14) from an ini-

tial condition Pðn; 0Þ ¼ dn;n0
, explicitly,

PðmðnÞ; tjmðn0Þ; 0Þ ¼ Pðn; tjn0; 0Þ ¼

bn � � � bn0 � 1

PNþ1

i¼1
elit

pnðliÞqn0þ2ðliÞ
Q

j6¼iðli � ljÞ
; n < n0;

PNþ1

i¼1
eli t

pnðliÞqn0þ2ðliÞ
Q

j6¼iðli � ljÞ
; n ¼ n0;

an0þ1 � � � an

PNþ1

i¼1
eli t

pn0
ðliÞqnþ2ðliÞ

Q
j6¼iðli � ljÞ

; n > n0;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð16Þ

where the orthogonal polynomials pn and qn are recursively defined via,

p1ðyÞ ¼ 1; p2ðyÞ ¼ yþ a1; ð17Þ

piðyÞ ¼ ðyþ ai þ bi� 2Þpi� 1ðyÞ � bi� 2ai� 1pi� 2ðyÞ; ð18Þ

qNþ2ðyÞ ¼ 1; qNþ1 ¼ yþ bN� 1; ð19Þ

qiðyÞ ¼ ðyþ ai þ bi� 2Þqiþ1ðyÞ � bi� 1aiqiþ2ðyÞ: ð20Þ

Eqs (16)–(20) constitute the analytical time-dependent solution for the mean-field Ising-
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Weidlich binary decision model with variably selfish-altruistic agents [46]. Note that unlike

Pðn; tjn0; 0Þ, P(m(n), t|m(n0), 0) is not a probability density but instead the raw probability of

the system having a certain value of m(n) at time t, i.e., ∑n P(m(n)) = 1 and ∑n P(m(n))Δm 6¼ 1

(where Δm = 1/N). For details regarding the derivation of this result we refer the reader to

[44]. In the most general case of usage of the model one needs to determine the eigenvalues of

A computationally, which we do using the eigvals function in the Julia package Linear-
Algebra [47]. However, since the eigenvectors are already implicit in the form of Eq (16) we

do not need to evaluate these computationally, and hence the analytical solution we utilise can

be computed much more quickly than a finite state projection approach requiring matrix

exponentiation [48]. Note that the eigvals function that we use to compute the eigenvalues

does not always return entirely real eigenvalues in every case (as one would physically expect)

and often eigenvalues come in the form of a complex conjugate pairs. This is a common

computational error, since we know theoretically that the eigenvalues should be real, and the

resultant set of eigenvalues we obtain from eigvals is known as a pseudospectrum [49],

which arises since the eigenvalues of these matrices are very sensitive to small perturbations.

Importantly however, the usage of the pseudospectrum in Eqs (16)–(20) returns a normalised
probability distribution that is indistinguishable from Monte Carlo simulation of the model. The

Monte Carlo simulation method we employ is known as the stochastic simulation algorithm
(SSA), and we detail it in Sec. 3 in S1 File. Briefly, the SSA is a continuous time method often

used in stochastic chemical kinetics to simulate chemical reactions. In our case, it outputs indi-

vidual realisations of the master Eq (14), which can then be replicated as an ensemble in order

to construct the probability distribution, mean and variance of the process in time. In Fig 1(c)

we show that our analytic time-dependent solution corresponds precisely to the distribution

produced via the SSA for times near the initial condition through to near steady-state condi-

tions. In Section 3.2 we approximately calculate λ2, the eigenvalue that determines the relaxa-

tion rate to the steady-state, using exact expressions for the switching times between lock-in

states. Note that l
� 1

2
gives the time scale to reach the equilibrium. We further note that an ana-

lytical procedure to calculate the eigenvalues of our problem in a perturbative sense may be

possible following methods used in [50].

Eqs (16)–(20) assume that the initial condition is a fixed value of n0 right deciding agents at

t = 0. However, often the initial state is not precisely known but is itself a distribution

QðnÞ � Pðn; 0Þ. Using the laws of probability one determines the time evolution of Pðn; tÞ
with initial condition QðnÞ as,

PðmðnÞ; tjQðmðnÞÞ; 0Þ ¼ Pðn; tjQðnÞ; 0Þ ¼
XN

n0¼0

Qðn0ÞPðmðnÞ; tjmðn0Þ; 0Þ; ð21Þ

whereQðmðnÞÞ ¼ QðnÞ. In the common case where each agent is initially assigned a decision

at random with probability p0 the number of initially right deciding agents is drawn from a

binomial distribution, i.e., QðnÞ ¼ Binðn; N; p0Þ. The steady-state distribution reached as t!
1, i.e., PsðnÞ ¼ Pðn; t !1Þ, is widely known for birth-death processes with general rates

and can be expressed as the following from Kirchhoff’s theorem [51],

PsðmðnÞÞ ¼ PsðnÞ ¼
ð
Qn

i¼1
aiÞð
QN� 1

i¼n biÞ
P

jð
Qj

i¼1
aiÞð
QN� 1

i¼j biÞ
; ð22Þ

where we define the empty product
Qi

j>i as being equal to 1. Ps(n) is independent of the initial

condition, even for systems with long-time metastability/lock-in effects. Note that for the case

of time-dependent F(t) the solution above must be somewhat modified since ai and bi are no
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longer dependent only on n but also explicitly on t. This case of having a zeitgeist that changes

in time has important policy implications, and although it is not relevant for our work here we

outline its solution in Sec. 3 in S1 File.

Finally, we note that if one interprets the economic agents as magnetic spins, the zeitgeist

instead as a magnetic field, and J as the mean-field exchange coupling (multiplied by the num-

ber of nearest neighbours), then our time-dependent solution above also provides the solution

to the mean-field Ising model for a finite number of N magnetic spins. This model of a magnet,

famed for its simple equilibrium solution among other things, is still the subject of recent work

[52–54].

3 Exploration of the model

We can now use our analytic time-dependent solution to explore the model in different

regimes of parameter space. Before delving into metastable behaviours, which will occupy us

for the rest of this section, we detail two well known features of the model [1, 3, 30]. The first is

that, for F = 0, the model exhibits a phase transition at a critical value of agent rationality βc =

1/J(1 + α). The origin of this critical value is explored in Sec. 4 in S1 File, but essentially for β>
βc one finds a symmetry breaking behaviour wherein agents either mostly become left or right

deciding at steady-state and Ps(n) is bimodal; whereas for β� βc the steady-state distribution

Ps(n) is monomodal with a peak at m = 0. At β = βc we see the characteristic shape of a flat-

topped steady-state distribution centred at m = 0 such that any small deviation above βc causes

bimodality. Secondly, for F 6¼ 0 one finds that although there may still exist two equilibrium

modes of behaviour deterministically, in reality the decision of same sign to F is exponentially

more favourable as t!1 (shown explicitly in Section 3.2). Economically, what this means is

that agents coalesce on the same decision when they are sufficiently rational and when collec-

tive effects are deemed at least as important as exogenous effects. A recent review of path-

dependency effects similar to lock-ins is given in [55].

3.1 Lock-ins

Let’s explore a possible narrative of the model and suppose the two decisions left and right cor-

respond to two competing technologies. F accounts for any exogenous effects on the agents,

for example, the cost difference between the two technologies or the effects of changing social

norms. Denoting CL and CR as the weight of these real and social costs of the left and right

technologies, one can the break down F into its constituent parts, i.e., F = CL − CR. On the

other hand, the interaction term J takes into account any endogenous changes arising from

within the dynamics of the model, in particular: (1) learning effects as technology gets

improved due to increased uptake [56], (2) any endogenous changes in price due to the

increased uptake [56, 57], and (3) establishment effects, accounting for the ease of investment

regardless of the price since the infrastructure needed for the technology is already there [56];

i.e., J = J1 + J2 + J3.

Importantly, the foresight of the agents is limited only to how their decision change at the

current time changes their own (or global) utility, and they do not know a priori which tech-

nology is the optimal one (i.e., they cannot distinguish between exogenous and endogenous

influences). The state of maximal utility for the agents will clearly be that where all agents

decide on the optimal technology (leading to the highest utility amongst all agents), which has

the best combined trade-off between price and social appropriateness. However, it has been

observed that this does not always happen, and path-dependency can lead to people making

collective decisions that differ from the optimal one. This leads to so called lock-in effects [58],

a type of positive reinforcement metastable phenomenon. As highlighted by [58], several types
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of lock-in are observed in the real-world, including technological, institutional and carbon

lock-ins. Clearly, understanding lock-in effects is important for policy considerations. For

example, where there are competing technologies with some being more carbon efficient than

others, consumers will be more likely to invest in the cheapest most common technology with

the most infrastructure than the one that is better for the environment [34].

In some regions of parameter space lock-ins occur in the model of Brock and Durlauf,

where there are 2 possible lock-in states m�: the optimal one where sign(m�) = sign(F), and the

non-optimal one where sign(m�) = −sign(F), which occur since the agent-to-agent interaction
terms become dominant over the zeitgeist, i.e., switching to the alternate technology punishes the
utility of an agent due to the collective effects. However, whether a lock-in is observed or not

depends on several factors. First, one must be in the regime wherein agents are rational enough

to begin coalescing on either of the two choices, i.e., β> βc. In this sense, βc is not only a prop-

erty of the steady-state but also a requirement for certain types of transient phenomena. Sec-

ond, F should not be of too great a magnitude such that only 1 equilibrium solution of m is

present (see Sec. 4 in S1 File). Thirdly, the initial condition should not be entirely weighted

towards the steady-state distribution one finds as t!1, i.e., since lock-ins are a path-depen-

dent phenomenon there must be a viable opportunity for them to occur.

In many complex systems metastability occurs, and it requires a time-dependent analysis of

the problem at hand, since since considering only the steady-state is no longer sufficient. In

many cases this makes analytical treatment very difficult since time-dependent problems are

rarely soluble. However, in this case we do have a solution, and in the sections that follow we

proceed analytically. In the next section we derive the relaxation time scales to the steady-state

for systems exhibiting lock-ins by determining the switching times between the two lock-in

states. In the following section we will often refer to decisions as technologies, in line with the

technology application drawn above.

3.2 Escape from non-optimal decisions

3.2.1 Relating the relaxation time scale to the first passage time. We now look at the

lock-in mechanism in more detail using our analytical solution. The general case of metastabil-

ity in bistable systems is covered by van Kampen [31], who does so in three steps. These steps

are vital to the explanation of the lock-in mechanism, and in determining the relaxation time

scale l
� 1

2
to the steady-state as t!1. Step 1 describes the evolution of the initial distribution.

For t ≳ 0, the distribution broadens and probability modes have not yet developed at the equi-

libria. This is seen in Fig 2(a) for the distribution in red at t = 0.1 (the initial condition at t = 0

being that of equal numbers of agents deciding left and right). Step 2 is that two distinct modes

have developed in P(m(n), t), which decompose into left and right parts respectively. How the

distribution has decomposed is dependent on the initial condition and can be seen in Fig 2(a)

for the distribution in green. Finally for t� 1, step 3 is that each mode has developed its local
equilibrium shape and that the transfer of probability between the modes becomes very small.

This is shown in Fig 2(a) for the blue distribution and for the black dots, showing that the dis-

tributions between t = 10 and t = 1010 are indistinguishable. At times t � l
� 1

3
, where λ3 is the

third smallest eigenvalue of the master operator in Eq (15), the process can then be effectively

modelled as a two-state process between the equilibria, with very small rates of probability

transfer between the modes, as illustrated in Fig 2(d). In the following our main interest is in

finding these rates of transfer between the behavioural modes and the overall rate of relaxation

towards the steady-state.

Before proceeding, we illustrate how to calculate the equilibria values of m, including the

unstable one, via the steady-state distribution alone (see Fig 2(b)). For β> βc, the stable
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equilibria m− and m+ are the maxima of the steady-state distribution (−1 and 1 in Fig 2(b))

with the larger of the two modes being the optimal equilibrium value. The intermediate unsta-

ble equilibrium point mu is the minima of the distribution (found at N/2 for Fig 2(b)), and a

system found either side of mu will likely drift towards the corresponding stable equilibrium

point. We will denote the critical number of right deciding agents as nu = N(mu + 1)/2. Note

Fig 2. Plots showing the lock-in phenomena in the mean-field model. (a) For F> 0 and β> βc we show the evolution of the probability distribution

given by Eq (16) from an initial condition at n = N/2. Beyond the initial condition we see the emergence of two modes of behaviour, the agents either

increasingly choose the left or the right technology. The evolution of the probability distribution becomes very slow for t> 10 and the distribution at

t = 1010 is indistinguishable from that at t = 10. (b) A plot of the analytic steady-state distribution from Eq (22) shows that in the true steady-state limit

almost all the agents will be locked into the right technology. Importantly, this is completely distinct from the time-dependent solution even at large

times. Note the presence of a small mode at the unfavoured left-hand technology seen in the inset. (c) Individual SSA trajectories for the system

showing the lock-in effect on individual populations. (d) As t� 1 the dynamics of the system becomes metastable and can be approximately mapped to

a two state process with very small transition rates. Parameters for plots in this figure are F = 0.1, J = 5, α = 0, β = 1, γ = 1 and N = 50.

https://doi.org/10.1371/journal.pone.0267083.g002
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that for β� βc (see Sec. 4 in S1 File), or for |F| > J(α + 1) in the β� 1 limit (see Sec. 6 in S1

File), there is only one equilibrium value of m.

Defining pLðtÞ ¼
P

m<mu
Pðm; tÞ and pRðtÞ ¼

P
m>mu

Pðm; tÞ as the probabilities to be in the

left and right modes respectively, following the approximative two-state process in Fig 2(d), we

can then assert that,

@tpLðtÞ ¼ � @tpRðtÞ ¼ �
�RpLðtÞ
tlr

þ
ð1 � �RÞpRðtÞ

trl
; ð23Þ

where τlr and τrl are the mean times to escape the from equilibria at the left and right modes

respectively (i.e., starting at the equilibria, how long it takes to reach mu), and ϕR is the proba-

bility that if the system starts at m(0) = mu that the agents initially coalesce on the right tech-

nology. We derive ϕR in Sec. 5 in S1 File (using similar methods as the calculation of the mean

first passage time in the next section). This probability enters the rates of transition to the

other mode since τlr and τrl only give the times to escape from each mode, which must be

scaled by the probability to enter the other mode, since upon reaching mu the agents could

also revert back to the decision they inhabited before. Eventually, πL and πR reach their station-

ary values which are determined by @tp
s
L ¼ 0, explicitly,

ps
L

ps
R

¼
tlrð1 � �RÞ

trl�R
: ð24Þ

This equation helps us interpret the results of Fig 2(b): for the chosen parameter set τlr�

τrl: once the agents have made the optimal decision they will not change it on any reasonable

time scale. Note that even at the steady-state there is a mode at m = −1 (see inset Fig 2(b)), and

that the shape of the left-hand distribution will be near identical to the shape of the distribution

at t = 10 in Fig 2(a), but is of much smaller magnitude. The three steps described by van Kam-

pen can also be seen on a SSA trajectory level in Fig 2(c): after an initial period of indecisive-

ness the individual population trajectories eventually coalesce on either the optimal

technology at m = 1 (with slightly greater probability) or else the sub-optimal technology at

m = −1.

Before calculating the switching times between the equilibria, one can ask how these switch-

ing times are related to the rate of relaxation to the steady-state. Namely, how do τlr and τrl

relate to the smallest magnitude non-zero eigenvalue λ2? We know that for t � l
� 1

3
the only

relevant time scale is the relaxation time scale from the metastable state to the steady-state,

hence we can write,

Pðm; tÞ � PsðmÞ þ expð� l2tÞF2ðmÞ; ð25Þ

where F2(m) is the eigenvector of A (see Eq (15)) corresponding to the eigenvalue λ2. Inserting

Eq (25) into Eq (23) we find that,

l2 �
�R

tlr
þ
ð1 � �RÞ

trl
; ð26Þ

where we have used the fact that ∑m F2(m) = 0, which comes from summing Eq (25) over all m
and enforcing normalisation conditions on P(m, t) and Ps(m). As Bouchaud showed in [3],

one can approximate the master equation in (14) as a Fokker-Planck equation [31, 43], hence
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finding that the mean first passage times are proportional to

tlr / expðNð1 � F=Jð1þ aÞÞÞ; ð27Þ

trl / expðNð1þ F=Jð1þ aÞÞÞ; ð28Þ

whose full derivation we show in Sec. 6 in S1 File. The utility of this result is its ease of interpre-

tation: where there are two stable equilibria the mean times for switching between them are

exponential in the number of agents.
3.2.2 A better approximation of the relaxation time scale. Eqs (27) and (28) are very

good approximations in the β� 1 and N� 1 limits where m± = ±1. However, there are some

cases where the distributions πL(t) and πR(t) have a greater variance and are less peaked (as

illustrated in Fig 3(a)) in which case contributions to the time needed to pass the potential bar-

rier at mu must be taken from multiple values of m. We first define the conditional normalised

probability distributions of having m inside each of the the metastable phases as rlðm <

muÞ ¼ PsðmÞ=
P

m<mu
PsðmÞ and rrðm > muÞ ¼ PsðmÞ=

P
m>mu

PsðmÞ for the left and right equi-

libria respectively. We determine this from the intuition that the metastable probability modes

are the same as those found in the steady-state distribution up to a multiplicative pre-factor, an

intuition that we confirm in Fig 3(b). One can then define the mean times to switch between

the two equilibrium modes at m<mu and m>mu as weighted sums over the conditional dis-

tributions,

tlr ¼
Xnu � 1

n¼0

rlðmðnÞÞtn; ð29Þ

trl ¼
XN

n¼nuþ1

rrðmðnÞÞtn; ð30Þ

where τn is the mean first passage time to reach nu given one starts with n agents deciding on

the right-hand technology. In our case it is possible to find the values of τn exactly, and we do

so in line with methods shown in [31, 59, 60].

Consider again the microscopic transitions previously seen in Fig 1(b). For this birth-death

process one can write a backward equation, which is formally the adjoint equation to the mas-

ter equation, commonly used for first passage processes. For our purposes, it is more conve-

nient to use the discrete time backward equation given by [31, 59],

Qj;iðt þ DtÞ ¼ aiþ1DtQj;iþ1ðtÞ þ bi� 1DtQj;i� 1ðtÞ þ ð1 � ðaiþ1 þ bi� 1ÞDtÞQj;iðtÞ; ð31Þ

where ai = (N − (i − 1))r(i − 1), bi = (i + 1)l(i + 1), Qj,i(t) is the probability of being found with j
agents deciding on the right technology a period of time t after being found with i right tech-

nology deciding agents, and Δt is the time step (which is taken to zero in the continuous time

limit). Note that the absolute time tn at time step n is defined by tn = nΔt.
The mean first passage times for hitting mu from m<mu and m>mu must be considered

separately. In the following we show the calculation for m<mu, although the procedure is

analogous for m>mu. Consider only the states of the system m(n)<mu, where we define mu =

m(nu) with nu being the number of agents deciding for the right technology at the unstable

equilibrium point. We define a new Markov process by setting bnu � 1 ¼ 0, which defines mu as

an absorbing boundary [18, 31]. A schematic of these new dynamics is show in Fig 3(c). From

the backward equation for this new process we then define ciðtÞ ¼ Qnu ;t
ðtÞ as the cumulative

probability of reaching nu a time t after having i right deciding agents. Hence, the probability
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Fig 3. Figure showing the coalescence of the agents onto stable equilibria where the modes are not found at m = ±1 and fluctuations are present,

for parameters F = 0.025, J = 1.5, α = 0, β = 1, γ = 1 and N = 50 using the analytic solution from Eq (16). (a) Plots of P(m, t) at times from near the

initial condition at m = 0 to the steady-state. Note that for t ≳ 3 × 103 the time-dependent solution becomes indistinguishable from the steady-state. (b)

Plot showing that the metastable modes have the same shape as the modes of the steady-state distribution. We show that the right-hand mode rescaled

by a pre-factor (= 0.455 here for t = 103) becomes indistinguishable from the steady-state distribution. (c) New dynamics considered for the calculation

of the mean first passage time τlr. Note that a similar, but separate, diagram can be drawn for the calculation of τrl. (d) Plot of the mean first passage time

to reach mu given one starts at m(n). It is clear that since F> 0 the mean first passage times to hit mu are greater for m> 0. (e) Plot of the time-

dependent distribution at t ¼ l� 1

2
¼ 1279:8 (using our approximation) versus the steady-state distribution.

https://doi.org/10.1371/journal.pone.0267083.g003
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of hitting nu at time t is given by ψi(t) − ψi(t − Δt), and the mean first passage time τn is given

by a weighted sum over these probabilities,

tn ¼
X1

i¼0

iDtðcnðiDtÞ � cnðði � 1ÞDtÞÞ; ð32Þ

with ψn(−Δt) = 0. From the backward equation we find the recursive relationship for ψi(t),

ciðt þ DtÞ ¼ aiþ1Dtciþ1ðtÞ þ bi� 1Dtci� 1ðtÞ þ ð1 � ðaiþ1 þ bi� 1ÞDtÞciðtÞ; ð33Þ

which has the intuitive interpretation that the probability of reaching mu at time t + Δt is the

probability of hopping to i+ 1 and reaching mu from there, plus the probability of hopping to

i−1 and reaching mu from there, plus the probability of not hopping and reaching mu from i
[59]. If we subtract ψi(t) from both sides of Eq (33), multiply by t, and sum over all t we then

get a recursion relation for the mean first passage time,

aiþ1tiþ1 þ bi� 1ti� 1 � ðaiþ1 þ bi� 1Þti ¼ � 1: ð34Þ

One can perform similar calculations for the higher order moments of the first passage

time distribution, although we do not consider them here (see [59] for more details). We have

two boundary conditions on this recursion relation. The first is tnu
¼ 0, which reflects the fact

that if one starts at nu the time taken to reach it is obviously 0. The second is less obvious in

that it comes from physical conditions at the left boundary and is τ1 − τ0 = −1/a1. This reflects

the fact that in the state n = 0 there is only one possible move to n = 1, which occurs with aver-

age time 1/a1. Now, we introduce the difference variable ηi = τi − τi−1 which transforms Eq

(34) into,

Zi ¼
bi� 2

ai
Zi� 1 �

1

ai
; ð35Þ

subject to η1 = −1/a1. This can be solved recursively and the result is,

Zi ¼ �
Xi

j¼1

1

aj

Yi� 1

k¼j

bk� 1

akþ1

; ð36Þ

where again we note that the empty product is equal to 1. Finally, to find the τn from ηn we see

that,

tn<nu
¼ �

Xnu

i¼nþ1

Zi ¼
Xnu

i¼nþ1

Xi

j¼1

1

aj

Yi� 1

k¼j

bk� 1

akþ1

; ð37Þ

where we have used the fact that tnu
¼ 0. Using the same approach (or via symmetry consider-

ations) one can derive the case of n> nu, whose result is,

tN� n>nu
¼
XN� nu

i¼nþ1

Xi

j¼1

1

bN� j

Yi� 1

k¼j

aN� ðk� 1Þ

bN� ðkþ1Þ

: ð38Þ

The results derived in Eqs (37) and (38) are exact. If one wishes for a simpler result, it is pos-

sible to simplify the expressions in the large N limit by approximating the product term in Eqs

(37) and (38) with ∏k γk(n) = exp(∑k log(γk(n)))� exp(N
R

log(γk(n))dn), where we have

explicitly included the dependence on n for clarity (see [60] for more details). Doing so gives

similar exponential dependence on N as we explored in Eqs (27) and (28), and hence we do

not show the result of the large N approximations on Eqs (37) and (38) here.
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We show a plot of τm(n)� τn in Fig 3(d) for F> 0, where we clearly see that it is more diffi-

cult to escape from the optimal choice technology than the sub-optimal since on average one

has to wait much longer to escape the more optimal collective decision. The values of τn deter-

mined via Eqs (37) and (38) can then be used in combination with Eqs (29) and (30) in order

to find the relaxation time scale λ2 in Eq (26). Note that although this determination of λ2 is

still formally an approximation it is very accurate, and we show in Fig 3(e) that for the time-

dependent solution at t ¼ l
� 1

2
it results in a distribution very close to the steady-state distribu-

tion. Computationally, using eigvals, we find l
� 1

2
� 1288:8 for Fig 3, whereas our approxi-

mation gives l
� 1

2
� 1279:8, hence only slightly underestimates the relaxation time to reach the

steady-state. Our approximation is an underestimation since the relaxation time since it does

not take into account the initial relaxation into the metastable state of Oðl� 1

3
Þ.

Since for Fig 3 we have N = 50 agents, one can also conclude that our method works well

even when not in the large N limit. Moreover, our approximation is even better for systems

such as that seen in Fig 2, where the modes at n− and n+ are very strongly peaked, since this

type of system more closely corresponds to the approximations we have made in our calcula-

tion of λ2 as the time taken to reach the metastable regime is even shorter compared to the

time taken to reach the steady-state. The disparity seen between our approximation for λ2 for

the parameters in Fig 3 constitutes a worst case scenario of the calculation of λ2. Eq (25) then

constitutes an approximate solution for the bimodal regime of the mean-field model that does

not require calculation of the fast decaying eigenvalues computationally, valid where t � l
� 1

3
.

We finally observe that our calculation of λ2 gives us an approximate time-dependent proba-

bility distribution, P(m, t)�Ps(m) + exp(−λ2 t)F2(m), which does not require the calculation of
any eigenvalues and is computationally valid in the metastable regime where all other eigenval-
ues of order Oðl� 1

3
Þ or less have decayed away. Practically, in order to implement this result,

upon realising that we have λ1 = 0 and λ2 we then substitute these into Eq (16) and where t �
l
� 1

3
we can safely ignore the contributions from i� 3 in the sum.

4 Model calibration

Brock and Durlauf [1] used their equilibrium solution for econometric analysis and model cal-

ibration. However, as we have emphasised in the previous section, an equilibrium solution is

often not applicable on any realistic time scale, even for small numbers of agents, and hence

time-dependent dynamics of the binary choice model must be considered. Generally speaking,

finding an analytic time-dependent likelihood function for an agent-based model is a rarity

[25], however our time-dependent solution for the probability distribution allows us to con-

struct one for the mean-field binary decision model, allowing us to conduct practical model cal-
ibration in a short time. This makes our solution useful to researchers who do not have access

to vast amounts of computing power. We then test our calibration procedure on simulated

data with known parameters in order to assess the conditions on the data necessary to provide

reliable calibration.

4.1 Construction of likelihood function

We begin by defining the likelihood in the standard way. Say we have a set of L data points

M ¼ fmðtiÞg for i 2 {1, 2, . . ., L}, measured at times {t1, t2, . . ., tL} describing the evolution of

the order parameter m(n(t)) over some time period. In general one cannot assume this process

is at equilibrium and the evolution from the initial condition at m(t1) does not follow a steady-

state trajectory. This requires us to use Eq (16) in order to calculate the probability of observing
the trajectory M given some assumed parameter set θ = {F, J, γ}, known as the likelihood, and is
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given by,

LðMjyÞ ¼
YL

i¼1

PyðmðnðtiÞÞÞ ð39Þ

where Pθ(m(n(ti))) is Eq (16) evaluated for parameter set θ at time ti. The likelihood function is

expressed as a product of probabilities over the whole time series since it is the probability of

observing m(t1) at t1 and m(t2) at t2 and so on (hence from the laws of probability is multiplica-

tive). Note that since β pre-multiplies F and J and (1 + α) pre-multiplies βJ in the utility func-

tion, β or α cannot be inferred separately but only βF and β(1 + α)J can be inferred [1]. Hence

for calibration we set β = 1 and α = 0 and infer only F, J and γ. The aim of the calibration pro-

cedure is then to find the parameter set θ? that maximises LðMjyÞ with respect to θ. Generally,

since the likelihoods are generally very small quantities, it is more computationally convenient

to instead minimise the negative log likelihood � lnðLðMjyÞÞ which generally takes values

�1. In most cases (including ours), the parameter set corresponding to the minimum value of

� lnðLðMjyÞÞ cannot be analytically determined and hence one must proceed algorithmically

by testing many different values of θ via an optimisation algorithm. In this paper we utilise the

adaptive differential evolution optimiser from the Julia package BlackBoxOptim [61, 62],

which is determined to be the best likelihood optimisation algorithm compared to several

other state-of-the-art methods [62]. Using this algorithm, the optimal parameter set θ? is then

determined through,

y
?
¼ arg min

y2Y

ð� log LðMjyÞÞ ð40Þ

where Θ is the set of all possible parameters in the optimisation range selected. In the calibra-

tion that follows the true parameter set for the simulated data is θtrue = {F = 0.025, J = 1.5, γ =

1.0} (same as in Fig 3) and the parameter ranges of optimisation for the set Θ were chosen

such that F 2 [−2, 2], J 2 [exp(−2), exp(2)] and γ 2 [exp(−1), exp(1)], where parameters J and

γ are optimised in log-space. For the purpose of analysing the errors in the calibration proce-

dure below we define,

Etot ¼
X

i

ytrue;i � y
?

i

ytrue;i

�
�
�
�

�
�
�
�; ð41Þ

f ¼
ðFtrue=JtrueÞ � ðF?=J?Þ

Ftrue=Jtrue

�
�
�
�

�
�
�
�; ð42Þ

where Etot is the total error on the inference procedure and f is the error in the fraction between

F and J. In most econometric analyses it will be the error in f which is most important since it

tells us whether one has properly inferred the magnitude of the influence of exogenous versus

endogenous effects on the agents. These error functions will then allow us to determine the

conditions necessary of data such that one can conduct a valid model calibration. We note that

θ? does not generally correspond the global minimum of � lnðLðMjyÞÞ, but instead a good
local minimum. This is due to the complexity of the function � lnðLðMjyÞÞ, a problem for

which there is no known solution to produce the global optimum in a reasonable computa-

tional time [63]. The number of optimisation steps we choose for the adaptive differential algo-

rithm is 500, with a population size of 1000 such that each calibration procedure took less than

1500s on a laptop with Intel Core i7–8650U CPU 1.90GHz x 8 running Ubuntu 18.04.5 LTS.
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4.2 Calibration from a single trajectory

In many real-world situations data is only collected once for a particular event. For example,

national elections do not have multiple realisations, hence if one was to collect the data of the

percentage of votes for Democrats or Republicans at all elections from 1868 (from when only

Democrats or Republicans have won the presidential vote) then one ends up with a single tra-

jectory of data. Therefore, it is important to assess the conditions under which calibration pro-

cedures are accurate with respect to data for which the parameters are known. For this

purpose we utilise the SSA to provide stochastic trajectories for a particular realisation of our

mean-field system for the parameter set explored in Fig 3, which notably expresses bimodality.

First, we look at the case of calibration where only one of the two equilibria is explored,

from the trajectory seen in Fig 4i(a). The question here is: is there enough information in a sin-

gle trajectory (from a bimodal system) exploring a single equilibrium mode for the correct

parameters to be inferred? The answer is no, which can be seen from a plot of the errors in the

inference against the calibration time (for a fixed number of 100 data points) used for the

inference in Fig 4i(b) and 4i(c). Even though increasing the calibration time improves the cali-

bration, the overall inference of the parameters is still poor for large calibration times with the

errors being� 1. The reason for this is simple: for a system that expresses bimodality the

probability is shared across both modes, hence for a trajectory that only realises one of its two

equilibria in a given realisation, the optimiser will instead choose a set of parameters θ? that

corresponds to the single mode explored in the data.

Having ruled out the ability to conduct good optimisation when only a single equilibria is

explored, we now look at the case where a system realises both of its modes of behaviour on a

given trajectory, shown in Fig 4ii. The trajectory for this realisation is shown in Fig 4ii(a),

where the mode of behaviour changes approximately half way through the trajectory. As seen

from Fig 4ii(b) and 4ii(c), the calibration is significantly improved when both equilibria are

explored in the calibration procedure (using a fixed number of 100 data points as before). The

reason for this is relatively clear: parameter sets for which the probability distribution exhibits

only a single mode near m = −1 or 1 have a lower likelihood, when the system explores the

opposite mode from the one they describe. Hence, one can conclude that if the system is

bimodal, and the data expresses both of these behaviours, the calibration produced will be rela-

tively good.

Finally, one may want to know the optimal number of data/time points to use, rather than

the optimal time of calibration. Fig 4iii(a) shows the cases of calibration using differing num-

bers of data points over the entire trajectory considered in Fig 4ii(a), from 1001 to 10 data

points. Fig 4iii(b) and 4ii(c) show the results of inferring the parameters with respect to the

errors Etot and f: one observes that having more data points is better, but recognises diminish-

ing returns with the additional data points beyond around 102. Therefore, having more data

points generally leads to a better parameter estimate but is not as important as having data that

represents all behavioural modes of a given parameter set.

4.3 Calibration from multiple trajectories

On some occasions there exist socio-economic binary decisions with more than one realisa-

tion. For example, although American presidential elections only happen once every four

years, prior to the elections pollsters survey the public to assess what the current opinion is

[64]. These multiple surveys across the different elections constitute different independent realisa-
tions of the same socio-economic phenomena, if one excludes pollster bias or the possibility that

over different elections the underlying model parameters are different. Hence, having multiple

realisations of the same phenomena does not mean the existence of multiple realities, but
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simply temporally or spatially separated independent events which one assumes have similar

exogenous and endogenous influences on the agents. Having different realisations can be very

beneficial for the calibration procedure, since as we saw for the case of a single trajectory, if

only one behavioural mode is explored the calibration is weighted towards parameter sets that

Fig 4. Figure showing the calibration procedure on a single trajectory/realisation of data produced by the SSA for the parameter set explored in

Fig 3. (i) Exploring the calibration when only one equilibrium of the two is realised on the data trajectory. i(a) The data which we perform the

calibration on, clearly showing that only the right-hand equilibrium is manifest. Red dashed lines show the various times used for calibration. In i(b)

and i(c) we explore the various calibration times and plot the error on the calibrated parameters compared to the true values for Etot and f respectively

defined in Eqs (41) and (42). Although larger calibration times result in better parameter inference there are still large errors� 1 even for large

calibration times. (ii) Exploring the calibration procedure for a trajectory that realises both equilibria. ii(a) The trajectory that we use for calibration that

explores both equilibria. ii(b) and ii(c) show that increasing the calibration time such that the exploration of both equilibria occurs results in much

improved inference of the parameters where for calibration times� 103 the errors are of order Oð1Þ. (iii) Exploring the trajectory in ii(a) for a varied

number of time/data points. iii(a) Bar chart showing the different number of time points explored in the calibration. iii(b) and iii(c) show that although

having an increased number of time points benefits calibration, it does so with diminishing returns. Note throughout the figure that the optimiser used

from BlackBoxOptim generally identifies good local minima of the likelihood function and not the global minimum due to the complexity of the

likelihood function [62].

https://doi.org/10.1371/journal.pone.0267083.g004
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favour that reality. Note that the example we explore the initial condition is fixed and the inde-

pendent trajectories have exactly the same underlying parameter sets (in reality there would be

some variations in F, J and γ between the independent events). However, it shows the consid-

erable effect that multiple realisations have on model calibration.

In Fig 5(a) we show 1000 realisations of the process for the parameters in Figs 3 and 4 (in

yellow), highlighting five of the trajectories (in black). Fig 5(b) and 5(c) show that for an

increased number of realisations the error in the calibration is much reduced, for both Etot and

f. This reduction in error is even more pronounced than the reduction due to increased cali-

bration times or number of data points seen in Fig 4. The reason for this is that if one has mul-

tiple trajectories of the same process then it is much more likely that both equilibria will be

explored, and also that the number of trajectories that explore each equilibria is proportional to
the probability that a single trajectory will be found in that state.

In summary, we find that there are several conditions on data that can result in more accu-

rate model calibration, which are:

1. If the system can express bimodal behaviour, and one only has a single data trajectory, then

it is imperative that the trajectory used explores both of these behavioural modes. If this is

not the case the calibration procedure will weight itself towards parameter sets that only

realise the behaviour seen in the data.

2. Having a longer calibration time, or an increased number of data points, both improve the

accuracy of the calibration, but with diminishing returns.

3. Having access to more than one realisation of the situation one wishes to model is highly

beneficial and results in very accurate calibration. This is seen in Fig 5(b) and 5(c) where

the number of trajectories exceed approximately 102. Note also the sizeable drop in error

(in log-scale) from a data-set with one realisation to a data-set with 11 realisations in both

of these figures. We stress that from a single realisation of real-world data one does not

know a priori whether the system expresses bimodality, hence having multiple realisations

can be very informative, and provide for much better calibration.

Fig 5. Figure showing the performance of the calibration procedure when one has access to multiple realisations of a binary decision process. (a)

We simulated 103 trajectories of binary decision data from the SSA for the parameter set used in Fig 3. We emphasise five possible trajectories in the

foreground, with the yellow background giving an idea of all the trajectories we used. (b) and (c) show that the model calibration can be significantly

improved if one has access to multiple realisations of the same binary decision process. For> 102 realisations we find that the errors are typically� 1,

which corresponds to a very accurate calibration.

https://doi.org/10.1371/journal.pone.0267083.g005
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4.4 Other methods for model calibration

Although it is very convenient for us to utilise the likelihood function based on our time-

dependent solution, other likelihood-free calibration methods are available. One of particular

mention is approximate Bayesian computation (ABC), which generates SSA (Monte Carlo) tra-

jectories for a given parameter set θ which can then be compared to the original data using a

distance function [65, 66]. The choice of distance function is important, and typical examples

include the Euclidean distance between the trajectories, the Hellinger distance, or even the

Wasserstein distance [67]. Often it is best to experiment with each of these, or combinations of

them, to see empirically which gives the best result from simulated data, before applying the

calibration procedure to a real-world data-set.

5 Neoclassical economics versus the binary decision model

In this section we compare the results of the paper to the tenets of neoclassical economics

(NCE), and in particular explore: (i) information and expectations, (ii) the dichotomy between

the social planner and altruistic agents, and (iii) the implications of our findings on model cali-

bration to economics. Note that many of the points we make here are not first noted by us,

and one may additionally want to read further publications such as [3, 6, 37, 39, 68–70] which

have inspired this author.

5.1 Information and expectations

NCE assumes that agents have perfect rationality in the sense that all agents can instan-

taneously perform simultaneous complex calculations and arrive immediately at an equilib-

rium based on a total knowledge of present and future [39]. However, in the binary decision

model no two agents make a decision at the same time, and the maximum foresight an agent

can have is to choose the decision that maximises the agent’s utility at that point in time. There

is no capacity for the model agents to look into the future, or else to gain an insight into which

technology is the optimal one, and hence lock-ins still occur within the binary decision model

even where agents are ‘perfect’ (in the limit β!1). This would not occur in a neoclassical

model as the agents would all decide to choose the optimal technology in order to maximise

their individual utilities.

5.2 Social planner versus altruistic agents

In NCE the ideas of having selfish agents and a social-planner/auctioneer go hand-in-hand.

However, in the binary decision model we have explored, the ‘social planner’ situation more

closely corresponds to a system of altruistic agents of altruistic strength α = 1 rather than the

system of selfish agents, since the altruistic agents at least consider how each agent can change

to best affect the global utility. This dichotomy is curious, since from the perspective of our

agent based model the social planner and selfish agents cannot co-exist.

As Bouchaud noted in [3], the papers of Grauwin et al. [42, 71] are remarkable in that they

exhibit situations in which selfish agents fail spectacularly in a Schelling-like global coordina-

tion problem, breaking Adam Smith’s ‘invisible hand’, whereas having agents that are even

somewhat altruistic remedies the situation for the benefit of all agents. One can further ask a

similar question for the mean-field binary decision model: does having altruistic agents

increase the ability of the population to increase global utility? The answer to this question is

mixed. In one sense the answer is yes—increasing α increases the endogenous influence and

hence the time taken to coalesce on a single decision in the population is much reduced. Addi-

tionally, in each behavioural mode the fluctuations are reduced if agents are altruistic, shown
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in the right-hand plot in Fig 6, decreasing global utility compared to selfish agents. However,

in another sense the answer is no—altruistic agents do not know a priori which technology,

left or right, is the optimal one and hence can easily coalesce on the wrong technology. In the

situation where this occurs the waiting time for them to leave the non-optimal decision is

much greater than the selfish agents (shown on the left of Fig 6), and in fact the waiting time to

equilibrium is roughly exponential in α. Hence as Brock and Durlauf [1] state, altruistic agents

are more susceptible to conformity effects; however, their ability to reach the optimal equilib-
rium mode often does not occur on a relevant time scale.

5.3 Implications of calibration procedure

Previously in Section 4.3, we defined the conditions for good model calibration, which in

essence were: many data points, long calibration times, and multiple trajectories. However, the

opinion of some of the literature [25] seems to be that one of the main issues with model cali-

bration lies in not having explicit likelihood functions. In our case, even with an analytically
defined likelihood function, and only three parameters to infer, model calibration is still a diffi-
cult task unless one utilises a well-informed data-set. Additionally, as we have already com-

mented, it is possible to conduct calibration without an explicit likelihood function using

likelihood-free methods for parameter inference [66]. It is hence vital for model calibration

that either calibration methods become much smarter, for example using methods beyond

simply using a likelihood function as done in [72] (here in the context of gene expression), or

else the data used for calibration becomes more informative. Although it was found that multi-

ple data realisations are the biggest improvement that can be made to the inference procedure,

in practise, for many questions of interest, it is not possible to access such data. Hence, the

Fig 6. For the set of parameters explored in Fig 3 we explore how the metastable relaxation times (using our very accurate approximation) and

the equilibrium distribution behave with respect to changing agent altruism. The left-hand plot shows that as agent altruism increases the metastable

waiting times (black line) become exponentially large in α. The blue dots show an exponential approximation to l
� 1

2
, clearly exhibiting its close-to

exponential behaviour. The right-hand plot shows the change in the equilibrium (t!1) distributions. For increasing agent altruism populations

become more polarised in each behavioural mode (with much reduced fluctuations) even in the metastable regime.

https://doi.org/10.1371/journal.pone.0267083.g006
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need for quantities of good quality economic data is a pressing one since economists are

already using such calibrated models for economic prediction. In lieu of such well informed

data-sets with which to conduct econometric analysis, economists are limited to optimising

their models for one of many indistinguishable parameter sets from the calibration of their

models.

6 Conclusion

In this paper we have solved the binary decision model of Brock and Durlauf [1] in time by

mapping it to a stochastic birth-death process which can be solved via the method of [44]. We

explored the waiting times to the steady-state in the metastable regime using a very accurate

method based on first passage time theory, and used the solution to construct the likelihood

function for use in model calibration. The method we employed from [44] can also be used to

solve Kirman’s ant recruitment model in time [7, 10, 11]. We additionally note that our solution

in Eq (16) is not only a solution to the binary decision model, but is also a time-dependent solu-

tion to the mean-field Ising model used as an approximate description of magnetic behaviour

in physics. Previous time-dependent solutions to this problem have only come in the form of

hydrodynamic approximations [73]. One of the main utilities of our solution is the ability to

infer {F, J, γ} from real economic binary decision data, and that these three parameters

completely specify the dynamics of the agents (up to the choice in decision rule and multiplica-

tive factors β and α). We constructed a likelihood function and showed that model calibration,

even in our simple mean-field model, is a non-trivial task unless one has access to an informa-

tive data-set made up of multiple realisations of the same socio-economic phenomena.

Our solution provides a platform for several enhancements and investigations of the model,

including:

1. An exploration of non-logit decision rules (such as the Arrhenius form), and additionally

decision rules that break detailed balance. This can easily be done using our solution in Eq

(16), since it is general in the form of the transition rates Wn(Si! −Si). The exploration of

non-detailed balance decision rules is of particular importance, as emphasised by Bouchaud

[3], since economies are not closed systems but are subject to energy influx/out flow. Recent

publications indicate that breaking detailed balance results in system properties that are not

consistent with properties of systems pertaining to detailed balance [74].

2. In this paper we have not explored our solution with respect to time-dependent F(t) (whose

solution is discussed in Sec. 2 in S1 File), in particular with the rise of metastable states. An

understanding of how the time-dependence on F(t) can affect metastability and lock-in

effects would have relevance to policy makers, for example in affecting the transition to

more renewable energy sources by reducing the time spent fixated in the non-optimal side

of a technology lock-in. A question of interest would be: given a system of agents is in the

lock-in state in the non-optimal technology, what is the optimal time-dependent function F
(t) that releases the agents from this lock-in (in minimal time) whilst keeping

R1
0

FðtÞdt to a

minimum (i.e., reducing the effort necessary to break the lock-in)?

3. Developing methods to analytically solve multiple choice models, such as those explored in

[2, 34]. These models are more generalised than the binary decision model we have dis-

cussed in this paper, and in fact contain the binary decision model as a special case, so solu-

tions for multiple choice models would have more potential applications.

4. A more detailed investigation of model calibration using more realistic simulated data-sets

and real world data-sets. Can one do better than the classic likelihood based inference using
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more advanced methods? Additionally one could explore the performance of likelihood-

free methods of calibration on models for which we do not yet have analytic solutions.

In our opinion, it is the final item in the above list that is of most importance for future

investigation, since as we have found even for three parameter inference of {F, J, γ} in our

model, calibration is a difficult task without suitable data-sets. The collection of such data-sets

(beyond that of the stock market) that can be used for calibration is therefore of great impor-

tance, especially given the need for policy makers to understand immediate challenges relating

to the climate crisis and the transition to a more sustainable world [75]. As stated by Bein-

hocker in The Origin of Wealth [39], economists will get no sympathy from biologists and

physicists who must go to great lengths to collect data to test their theories. Socio-economic

modelling, and the models similar to that studied in this paper, can form an essential part of

the work necessary to understand what policy makers need to do to change human collective

behaviour in uncertain times.

Supporting information

S1 File.

(ZIP)

Acknowledgments

J.H would like to thank Cambridge Econometrics for hosting him on his NPIF internship,

Augustinas Sukys and Pim Vercoulen for thorough proofreading and suggestions, and was

supported by a BBSRC EASTBIO PhD studentship.

Author Contributions

Conceptualization: James Holehouse, Hector Pollitt.

Formal analysis: James Holehouse.

Investigation: James Holehouse.

Methodology: James Holehouse.

Resources: James Holehouse.

Visualization: James Holehouse.

Writing – original draft: James Holehouse.

Writing – review & editing: James Holehouse, Hector Pollitt.

References
1. Brock WA, Durlauf SN. Discrete choice with social interactions. The Review of Economic Studies.

2001; 68(2):235–260. https://doi.org/10.1111/1467-937X.00168

2. Borghesi C, Bouchaud JP. Of songs and men: a model for multiple choice with herding. Quality & quan-

tity. 2007; 41(4):557–568. https://doi.org/10.1007/s11135-007-9074-6

3. Bouchaud JP. Crises and collective socio-economic phenomena: simple models and challenges. Jour-

nal of Statistical Physics. 2013; 151(3):567–606. https://doi.org/10.1007/s10955-012-0687-3

4. Hosseiny A, Absalan M, Sherafati M, Gallegati M. Hysteresis of economic networks in an XY model.

Physica A: Statistical Mechanics and its Applications. 2019; 513:644–652. https://doi.org/10.1016/j.

physa.2018.08.064

5. Weisbuch G, Kirman A, Herreiner D. Market organisation and trading relationships. The economic jour-

nal. 2000; 110(463):411–436. https://doi.org/10.1111/1468-0297.00531

PLOS ONE Non-equilibrium time-dependent solution to discrete choice with social interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0267083 May 26, 2022 27 / 30

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0267083.s001
https://doi.org/10.1111/1467-937X.00168
https://doi.org/10.1007/s11135-007-9074-6
https://doi.org/10.1007/s10955-012-0687-3
https://doi.org/10.1016/j.physa.2018.08.064
https://doi.org/10.1016/j.physa.2018.08.064
https://doi.org/10.1111/1468-0297.00531
https://doi.org/10.1371/journal.pone.0267083


6. Kirman A. Complex economics: individual and collective rationality. Routledge; 2010.

7. Moran J, Fosset A, Kirman A, Benzaquen M. From Ants to Fishing Vessels: A Simple Model for Herding

and Exploitation of Finite Resources. Journal of Economic Dynamics and Control. 2021; p. 104169.

https://doi.org/10.1016/j.jedc.2021.104169
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