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Transcription Pause and Escape in
Neurodevelopmental Disorders
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Transcription pause-release is an important, highly regulated step in the control of gene
expression. Modulated by various factors, it enables signal integration and fine-tuning of
transcriptional responses. Mutations in regulators of pause-release have been identified
in a range of neurodevelopmental disorders that have several common features affecting
multiple organ systems. This review summarizes current knowledge on this novel
subclass of disorders, including an overview of clinical features, mechanistic details,
and insight into the relevant neurodevelopmental processes.

Keywords: transcriptional pausing, RNApol2, neurodevelopmental disorders, Cornelia de Lange Syndrome,
intellectual disability

INTRODUCTION

Gene transcription is a highly regulated process that ultimately determines cellular identity and
response to external stimuli. Transcription often occurs in bursts (Wan et al., 2021) and is primarily
regulated at the level of burst initiation and promoter proximal RNApol2 (RNA polymerase 2)
pausing (Bartman et al., 2019). Pausing takes place following RNApol2 gene entry and recruitment
of the general transcription factor TFIIH to the preinitiation complex, which results in melting
of the DNA template and rapid progression of RNApol2 to the pause site, 20–120 nucleotides
downstream of the TSS (transcription start site). Release from the paused state requires the
action of the P-TEFb (Positive Transcription Elongation Factor b) complex, whose kinase module
phosphorylates RNApol2 and associated pausing factors to enable entry into productive elongation.
Transcription of virtually all genes was shown to be dependent on P-TEFb activity (Jonkers
et al., 2014) and significant accumulation of paused RNApol2 was observed at a fraction of these
(Day et al., 2016).

Establishment and in particular release from pausing is a highly regulated process involving
multiple factors that often also act in other phases of the transcription cycle. Central to pause-
release is P-TEFb recruitment to paused RNApol2 as part of a complex with BRD4 (bromodomain
containing protein 4) or the SEC (super elongation complex), assisted by Mediator and the PAF1
(polymerase-associated factor 1) complex (Lu et al., 2016). Moreover, whilst BRD4 is not absolutely
required for CDK9 recruitment, it is necessary for the assembly of a productive elongation complex
(Winter et al., 2017).

Interestingly, pathogenic variants in multiple transcriptional pausing regulators have been
identified in neurodevelopmental disorders (NDDs), including CdLS (Cornelia de Lange
Syndrome) and CdLS-like disorders (Figure 1). Some of these regulators play a direct role in
P-TEFb recruitment (e.g., SEC, BRD4) while others are linked to transcriptional pausing through
physical interaction (i.e., NIPBL) or by experimental evidence from cellular systems (e.g., Mediator
and PAF1c). Gain-of-function mutations in AFF4, encoding a subunit of the SEC, result in the
CdLS-related CHOPS (OMIM# 616368) (Cognitive development and coarse facies, Heart defects,
Obesity, Pulmonary involvement, and Short stature and skeletal dysplasia) syndrome (Izumi et al.,
2015). Heterozygous loss-of-function (LoF) mutations in BRD4 similarly result in a CdLS-like
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syndrome (Olley et al., 2018) and NIPBL, whose disruption
is the most frequent genetic cause of CdLS, was linked to
transcriptional pausing via its interaction with the Integrator
complex (van den Berg et al., 2017). Mutations in subunits of
the Mediator and PAF1 complex have been identified in several
intellectual disability (ID) syndromes and haploinsufficiency of
SETD5, one of the most frequent genetic causes of idiopathic
ID, was recently linked to pausing defects (Deliu et al., 2018).
These observations causally link transcriptional pausing defects
to NDDs well beyond CdLS.

In this review we will present current insights into the
mechanism and gene regulatory implications of RNApol2
pausing and discuss in detail the involvement of specific pausing
regulators in the aetiology of several NDDs.

MECHANISTIC OVERVIEW OF
PROMOTER PROXIMAL PAUSING

Establishment and Maintenance of
RNApol2 Pausing
Transcription initiation involves establishment of the
preinitiation complex (PIC), comprised of general transcription
factors (GTFs) and RNApol2. TFIIH, the last GTF to be recruited
to the PIC, is required both for initiation and establishment
of promoter proximal pausing (reviewed in Chen et al., 2018).
Its helicase activity mediates melting of the DNA template to
enable open complex formation, while its CDK7 kinase module
phosphorylates Ser7 and, notably, Ser5 residues in the RNApol2
CTD (C-terminal domain), resulting in escape from the PIC and
progression to the pause site.

RNApol2 pausing is stabilized and shielded from premature
termination by the association of DSIF (DRB-sensitivity inducing
factor) and NELF (negative elongation factor). Structural studies
on the paused elongation complex have shown that NELF
stabilizes the paused state by limiting RNApol2 intramolecular
mobility and nucleotide triphosphate (NTP) active site entry
and by interfering with binding to elongation factors, including
TFIIS (Vos et al., 2018b). Diversified roles in the establishment,
maintenance, and release of paused RNApol2 have been
described for the PAF1 and Integrator complexes, which will be
discussed in more detail in the next section.

Release From Pausing
Release from pausing requires the kinase activity of the P-TEFb
complex, consisting of CDK9 and (in most cases) Cyclin T1.
CDK9 activity is regulated in a multistep process. First, activation
of CDK9 requires phosphorylation of a conserved threonine
residue (Thr286) in its T-loop region, primarily catalyzed by
TFIIH-subunit CDK7 (Larochelle et al., 2012). Most of the
active, nuclear P-TEFb complexes are subsequently sequestered
in an inhibitory complex comprised of the 7SK small nuclear
(sn) RNA, capping enzyme MePCE, LARP7 and HEXIM1/2
proteins (Barboric et al., 2005; Egloff et al., 2006). Release
from the 7SK snRNP (small nuclear ribonucleoprotein) complex
is regulated by various enzymatic activities catalyzing post-
translational modifications (e.g., HEXIM ubiquitination and

Cyclin T acetylation) or modifying the 7SK snRNA structure
[reviewed in Bacon and D’Orso (2019)]. Active P-TEFb can
then be brought to paused RNApol2 by sequence specific
TFs (transcription factors) or as part of a complex with
BRD4 or the SEC.

In vitro, RNApol2 escape from the paused state requires
P-TEFb, PAF1c (PAF1 complex) and the elongation factor
SPT6 (Vos et al., 2018a). Active CDK9 phosphorylates NELF,
DSIF, and Ser2 residues in the RNApol2 CTD. Phosphorylated
NELF dissociates from the paused elongation complex, while
phosphorylated DSIF turns into a positive elongation factor that
remains associated with elongating RNApol2. Recent studies
based on acute depletion of DSIF-subunit SPT5 indeed confirm
that this factor plays an essential role in both maintenance of
pausing and elongation processivity (Aoi et al., 2021; Hu et al.,
2021).

Role of Pausing in Gene Regulation
RNApol2 pausing was first described for the Drosophila
Melanogaster hsp70 heat shock gene (Gilmour and Lis, 1986;
Rougvie and Lis, 1988), where it was thought to enable
rapid transcriptional responses to changes in the environment.
Genome-wide studies have since shown that it is a widespread
phenomenon at all transcribed genes, both in Drosophila and
mammalian cells (Zeitlinger et al., 2007; Jonkers et al., 2014).

Several roles for RNApol2 pausing in gene regulation have
been proposed, as reviewed in Adelman and Lis (2012). Pausing
could provide a time window for the association of capping
enzymes and elongation factors, ensuring subsequent optimally
productive elongation. It was also observed that genes with a
high pausing index intrinsically favor nucleosome occupancy
over the transcription start site (TSS), suggesting that pausing
may contribute to maintenance of a nucleosome free region
that enables rapid transcription re-initiation (Gilchrist et al.,
2010). Furthermore, by providing an additional level at which
gene expression can be controlled, RNApol2 pausing allows
for fine-tuning of transcriptional responses through integration
of multiple signaling events (Adelman and Lis, 2012). Indeed,
computational modeling and specific experimental perturbations
showed that biological stimuli impinge on burst initiation
and pause release to affect transcriptional output (Bartman
et al., 2019). Two independent studies have further linked
those two processes by showing that pause duration directly
influences transcription initiation rate (Gressel et al., 2017;
Shao and Zeitlinger, 2017). Finally, in developing Drosophila
embryos, strong promoter-proximal pausing contributes to rapid
acquisition of transcriptional synchrony required for coordinated
responses in tissue development (Lagha et al., 2013).

Estimates on the average length of pause duration vary
depending on the chosen model system and methodology.
Several studies using inhibitors of transcription initiation
or pause-release (i.e., triptolide or flavopiridol) followed by
RNApol2 tracking over time determined median pause durations
of between 5 and 20 min in Drosophila and mouse cells
(Henriques et al., 2013; Jonkers et al., 2014; Shao and Zeitlinger,
2017). By introducing a CDK9 analog sensitive mutation, Gressel
et al. (2017) could very rapidly and specifically inhibit CDK9 and
track its effect on RNApol2 dynamics. Median pause durations
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FIGURE 1 | An overview of RNApol2 in initiating, paused and elongating state with transcriptional pausing regulators that contribute to NDDs colored in green. For
multi-subunit complexes, subunits with pathogenic NDD variants are outlined. Dark green shading and font highlights factors in which pathogenic variants result in a
CdLS-like phenotype. Discussed therapeutics and their targets in the paused RNApol2 complex are indicated. Created with BioRender.com.

measured within the range of 1–2 min. Even shorter pause
durations of less than 1 min were detected by fluorescent recovery
after photobleaching (FRAP) on GFP-tagged RNApol2 acting in
endogenous gene transcription (Steurer et al., 2018) or on an
engineered gene array (Darzacq et al., 2007). Interestingly, both
these studies also found that a large fraction (∼90%) of paused
RNApol2 fails to enter productive elongation and prematurely
terminates. These data are important to keep in mind when
interpreting downstream effects of pausing deregulation on the
steady-state transcriptome.

TFIID

The TFIID complex consists of TATA box-binding protein
TBP and TBP-associated factors (TAFs). It is mostly known
for its function as a general transcription factor (GTF)
during transcription initiation, where it recognizes several core
promoter motifs (e.g., the TATA-box) and, upon promoter
binding, recruits RNApol2. Together with other GTFs and
RNApol2, the preinitiation complex (PIC) is formed [as reviewed
by Roeder (1996)].

However, in vitro assays indicate that the presence of TBP is
sufficient for PIC formation (Fant et al., 2020), and structural
analysis of TFIID shows that it also resides downstream of
promoter elements at the pausing site (Cianfrocco et al., 2013;
Nogales et al., 2017). Moreover, DNA elements that bind TFIID
are enriched at pausing sites in Drosophila (Hendrix et al.,
2008; Lee et al., 2008; Shao et al., 2019). In line with these
results, multiple TAFs have been found to interact with various
components of the SEC, including AF9, EAF1 and CDK9
(Biswas et al., 2011; Yadav et al., 2019). TAF6 knockdown
leads to reduced TFIID stability and a loss of interaction with
AF9, cyclinT1 and CDK9, resulting in reduced recruitment of
TFIID, SEC and RNApol2 to target genes (Yadav et al., 2019).
Furthermore, TAF1 and TAF2 knockdown causes a widespread

increase in transcription at protein coding genes, and a decrease
of promoter-proximal pausing (Fant et al., 2020), thus leading to
the hypothesis that TFIID may function directly in the regulation
of transcriptional pausing.

Being an important transcriptional regulator, TFIID defects
are associated with numerous diseases, including cancer (Oh
et al., 2017; Xu et al., 2018) and neurodegenerative disease
(Makino et al., 2007; Herzfeld et al., 2013; Aneichyk et al.,
2018). Several of the TFIID proteins are also associated with
neurodevelopmental disorders. The X-linked gene TAF1 encodes
for the largest subunit of TFIID and its mutation is also
most frequently described to cause neurodevelopmental delay
(Stenson et al., 2014; Niranjan et al., 2015; Hu et al., 2016;
Gudmundsson et al., 2019; Kahrizi et al., 2019; Okamoto
et al., 2020). Two large studies have described a total of 41
individuals that present with global developmental delay, ID,
microcephaly, short stature, characteristic facial dysmorphologies
and generalized hypotonia (O’Rawe et al., 2015; Cheng et al.,
2019). Two of these individuals were initially diagnosed with
CdLS (see below) due to their craniofacial features, growth
failure, ID and specific limb malformations. Although there
is a large overlap between patient phenotypes, it is hard to
distinguish a specific facial gestalt, which could be due to the
widespread distribution of TAF1 missense variants, covering all
TAF1 domains (Cheng et al., 2019).

Notably, all disease-causing mutations discovered thus far
were either hemizygous or homozygous missense variants,
or gene duplications, indicating that TAF1 loss-of-function is
potentially lethal. Indeed, taf1 knockout in zebrafish caused
embryonic lethality with deregulated genes enriched for those
involved in neurodevelopmental processes (Gudmundsson et al.,
2019). In mice and human several ubiquitously expressed TAF1
isoforms have been described, while neuronal tissue expresses an
isoform that includes a 6-nucleotide long microexon (Makino
et al., 2007). Microexon inclusion is temporally regulated
and the resulting neuronal isoform N-TAF1 is predominantly
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expressed in postmitotic neurons (Capponi et al., 2020). It was
postulated by the authors that such cell-type specific splicing
events could contribute to tissue-specific disease phenotypes of
ubiquitously expressed genes. Whether and how the reported
missense variants affect transcriptional pause-release remains to
be investigated.

Similar to TAF1, a CdLS phenotype was also discovered
in a patient carrying a homozygous missense mutation in
TAF6, resulting in the first autosomal recessive form of CdLS
(Yuan et al., 2015). A second homozygous missense variant
causing global developmental delay and syndromic ID was
discovered by two independent studies (Alazami et al., 2015;
Yuan et al., 2015). Both mutations caused a reduction in
interaction of TAF6 with other TFIID subunits (Yuan et al.,
2015). A total of ten patients have been identified with four
genotypic TAF2 variants, in all cases comprising homozygous
missense mutations (Najmabadi et al., 2011; Halevy et al.,
2012; Hellman-Aharony et al., 2013; Thevenon et al., 2016;
Lesieur-Sebellin et al., 2021). Patients present with global
developmental delay, moderate to severe ID, microcephaly and
abnormalities in the corpus callosum (reviewed by Lesieur-
Sebellin et al., 2021). Furthermore, a single study has identified
four patients with TAF13 mutations from two unrelated families
(Tawamie et al., 2017). Similar to TAF2 and TAF6 mutation,
the disease phenotype is caused by homozygous missense
variants. Patients present with developmental delay, mild ID and
microcephaly; however, they do not show any dysmorphic facial
features. Biochemical and transcriptome analysis on these TAF13
variants indicate a reduced heterodimerization with TAF11, and
deregulation of a large set of genes (Tawamie et al., 2017).

Lastly, multiple cases of 6q subtelomeric deletions,
characterized by developmental delay, intellectual disability,
microcephaly, seizures and dysmorphic features, were linked to
the loss of TBP (Eash et al., 2005; Rooms et al., 2006). However,
Tbp+/− mice do not show significant behavioral abnormalities
indicative of cognitive impairment compared to WT mice, while
Tbp−/− mice show very early embryonic lethality (Martianov
et al., 2002; Rooms et al., 2006). Nevertheless, discovery of a
patient with mild ID, difficulty walking and abnormal movement
related to a homozygous deletion resulting in a frameshift in
TBP, does further indicate a role for TBP in neural development
(Monies et al., 2017).

Although not all of TFIID subunits have (yet) been associated
with neurodevelopmental disorders, some have been further
studied for their impact in neuronal development. TAF4 is
highly expressed in cortical neural stem cells in vitro, where
it is believed to regulate neuronal differentiation together with
intracellular signaling factor RanBPM (Brunkhorst et al., 2005).
Taf4a knockout mice die at E9.5 and show severe growth
retardation, and obvious patterning and morphogenesis defects
(Langer et al., 2016). Moreover, Taf4a−/− ESCs are unable
to differentiate into glutamatergic neurons in vitro due to
impaired PIC formation at differentiation genes (Langer et al.,
2016). Taf9b is upregulated during neuronal differentiation of
mouse ES cells and Taf9b knockout causes downregulation
of neuronal genes such as Tubb3, both in vitro and in vivo
(Herrera et al., 2014).

In summary, the high number of TFIID components
found associated with neuronal defects upon mutation or loss
indicates that misregulation of TFIID broadly impacts neuronal
differentiation. Moreover, the CdLS diagnosis for mutations in
TAFs implicated in the regulation of pausing warrants further
investigation into this link, as will be discussed below.

CDK9

CDK9 is widely expressed in all human tissues (De Luca et al.,
1997) and plays a role in several diseases, including HIV
infection and multiple cancers (Egloff, 2021). In total six patients
have been described that carry variants in CDK9 resulting in
CHARGE (coloboma, heart defects, atresia choanae, growth
retardation, genital abnormalities and ear abnormalities)-like
syndrome (OMIM#214800) (Shaheen et al., 2016; Maddirevula
et al., 2019; Nishina et al., 2021). Five of these patients
carry homozygous non-synonymous variant p.Arg225Cys and
in one patient compound heterozygous missense variants (i.e.,
p.Ala288Thr and p.Arg303Cys) were detected.

CHARGE syndrome was initially identified in patients
with mutations in the chromodomain helicase DNA-binding
protein CHD7 and it frequently features intellectual disability
and global developmental delay (Vissers et al., 2004).
Similarly, the reported CDK9 variants were associated with
global developmental delay (5 cases), intellectual disability
(2 cases), microcephaly (2 cases), cerebral (3 cases) and
cerebellar (3 cases) atrophy, epileptic seizures (3 cases)
and myelination defects (1 case) (see also Table 1 for an
overview of clinical symptoms). The three affected amino
acids are highly conserved amongst vertebrates and locate
in the catalytic kinase domain of CDK9. Patient-specific
recombinant CDK9 variants showed reduced kinase activity
in vitro, suggesting that loss of function of CDK9 causes the
phenotype (Nishina et al., 2021). To what extent this decrease
in enzymatic activity affects RNApol2 pause release remains
to be determined.

The developmental role of CDK9 has been studied in several
model organisms. In zebrafish embryos, CDK9 inhibition with
flavopiridol or depletion with morpholinos resulted in increased
apoptosis and an underdeveloped forebrain and midbrain
(Matrone et al., 2016). In mice, homozygous loss of Cdk9 is
lethal whereas heterozygous loss causes abnormal morphology
of the heart, skin and epididymis (Munoz-Fuentes et al., 2018).
P-TEFb was found be required for retinoic acid (RA)-induced
neuronal differentiation of neuroblastoma cells (De Falco et al.,
2005; Ghosh et al., 2018). Which neurodevelopmental pathways
are affected by the reported CDK9 missense variants should be
topic of further investigation.

BRD4

Several factors involved in the recruitment of P-TEFb to paused
RNApol2 have been implicated in neurodevelopmental disorders
with a CdLS-like phenotype, including BRD4. BRD4 is part of the
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TABLE 1 | Overview of clinical symptoms.
SEC TFIID INTS PAF1 Mediator

NIPBL
(CdLS)

BRD4
(CdLS)

AFF4
(CHOPS)

AFF3
(KINSSHIP)

AFF2 AF9 CDK9 TAF1 TAF2 TAF6 TAF13 TBP INTS1 INTS8 PHF6
(BFLS)

LEO1 CHD1
(PILBOS)

SETD5 ARID1A/
1B

(CSS)

CDK8 CDK19 MED12 MED12LMED13L MED13 MED17 MED23 MED25 MED27

Growth

Prenatal growth
deficiency

Short stature

Microcephaly

Macrocephaly

Facial features

Synophrys

Brachycephaly

Low anterior
hairline

Arched/thick
eyebrows

Long eyelashes

Ptosis

Low set
posteriorly
rotated ears

Anteverted
nostrils

Depressed nasal
bridge

Depressed
midface

Pointed chin

Almond-shaped
eyes

Translucent skin

Periorbital
fullness

Broad nasal tip

Long philtrum

Broad philtrum

Micrognathia

Thin upper
vermilion (lip)

Downturned
corners of the
mouth

(Continued)
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TABLE 1 | (Continued)
SEC TFIID INTS PAF1 Mediator

NIPBL
(CdLS)

BRD4
(CdLS)

AFF4
(CHOPS)

AFF3
(KINSSHIP)

AFF2 AF9 CDK9 TAF1 TAF2 TAF6 TAF13 TBP INTS1 INTS8 PHF6
(BFLS)

LEO1 CHD1
(PILBOS)

SETD5 ARID1A/
1B

(CSS)

CDK8 CDK19 MED12 MED12LMED13L MED13 MED17 MED23 MED25 MED27

highly arched
palate

Widely
spaced/absent
teeth

High or cleft
palate

Short neck

Prominent
glabella

Hypertelorism

Frontal bossing

Dolichocephaly

Swelling of
subcutaneous
tissue of the
face

Narrow
palpebral fissure

Large ears

Wide mouth

Thick lips

Neurology

Cognitive delay

Impaired
language
development

Motor
impairment

Seizures

Epilepsy

(Continued)
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TABLE 1 | (Continued)
SEC TFIID INTS PAF1 Mediator

NIPBL
(CdLS)

BRD4
(CdLS)

AFF4
(CHOPS)

AFF3
(KINSSHIP)

AFF2 AF9 CDK9 TAF1 TAF2 TAF6 TAF13 TBP INTS1 INTS8 PHF6
(BFLS)

LEO1 CHD1
(PILBOS)

SETD5 ARID1A/
1B

(CSS)

CDK8 CDK19 MED12 MED12LMED13L MED13 MED17 MED23 MED25 MED27

Cognition and
Behavior

Intellectual
disability

ASD

Self-injurious
behavior

Stereotypic
movement

Trunk and
limbs

Oligodactyly and
adactyly

Clinodactyly

Small hands

Proximally
placed thumbs

Irregular and
overlapping toes

Hypoplastic/absent
nail of the fifth
finger or toe

Small feet

Hirsutism

Vertebral
abnormalities

Chest or
sternum
deformity

Obesity (with
gynecomastia)

Other major
systems

Vision defects

Gastrointestinal
abnormalities

Cardiovascular
abnormalities

Urinary
abnormalities

Genital
abnormalities

Renal dysplasia

Hypogonadism

Hypometabolism

Hypotonia
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bromodomain and extra-terminal domain (BET) family, together
with BRD2, BRD3 and the testis specific BRDT (Shi and Vakoc,
2014). The bromodomains of these proteins can bind acetylated
lysines at histones and transcription factors, mediating their
recruitment to active chromatin (Dey et al., 2003; Wu et al., 2013;
Shi and Vakoc, 2014).

The BET inhibitors such as JQ1 and I-BET result in chromatin
dissociation of BRD4 and subsequent deregulation of global gene
expression (Filippakopoulos et al., 2010; Dawson et al., 2011;
Xu and Vakoc, 2017). Rapid BET protein degradation by dBET6
resulted in accumulation of paused RNApol2 and a severe loss of
Ser2-phosphorylated, elongating RNApol2 (Winter et al., 2017),
an effect linked to BRD4 and not BRD2 or BRD3 as shown by
degron-based depletion studies (Arnold et al., 2021; Zheng et al.,
2021).

BRD4 contains a unique interaction domain for P-TEFb
(Bisgrove et al., 2007) and interacts with other important pausing
factors such as the Mediator complex (Jiang et al., 1998; Jang et al.,
2005; Wu and Chiang, 2007), the PAF1 complex, and DSIF (Yu
et al., 2015; Arnold et al., 2021). A systematic analysis in HeLa
cells has shown that BRD4 recruits P-TEFb specifically to DSIF-
subunit SPT5 (Lu et al., 2016). However, BET protein degradation
or targeted BRD4 depletion did not impact chromatin association
of P-TEFb (Winter et al., 2017; Muhar et al., 2018). This
observation supports the hypothesis that BRD4 functions as an
allosteric activator of P-TEFb, allowing it to work efficiently once
in proximity to the paused complex (Schroder et al., 2012; Itzen
et al., 2014).

Other roles of BRD4 in the regulation of transcription have
also been described. For example, BRD4 can facilitate elongation
independently of P-TEFb (Kanno et al., 2014). The ET domain
of BRD4 interacts with several factors to drive transcription
activation (Rahman et al., 2011) and BRD4 can function as
an atypical kinase to phosphorylate Serine 2 in the CTD of
RNApol2 in vitro (Devaiah et al., 2012). BRD4 specific and pan-
BET protein degradation, resulting in widespread transcription
continuation downstream of the termination zone, suggested a
role for BRD4 in 3′-processing and transcription termination
(Arnold et al., 2021). Lastly, BRD4 levels are particularly high at
super-enhancers (SEs) where, together with MED1, it is described
as a component of liquid–liquid phase separated transcriptional
condensates (Boija et al., 2018; Sabari et al., 2018).

Heterozygous, multigenic deletions in chromosome 19,
encompassing BRD4, have been linked to intellectual disability
in multiple probands (Jensen et al., 2009; Bonaglia et al.,
2010; van der Aa et al., 2010; Gallant et al., 2011; Jelsig et al.,
2012; Olley et al., 2018; Alesi et al., 2019). Moreover, recent
studies identified four patients with intragenic mutations
in BRD4, resulting in a CdLS-like phenotype characterized
by intellectual disability, microcephaly, developmental
delay, and many of the CdLS facial features (Olley et al.,
2018; Rentas et al., 2020). Mutations included two non-
sense variants and two missense variants in the second
bromodomain of BRD4, leading to impaired chromatin-
association. In mice, heterozygous loss of Brd4 leads to early
postnatal mortality, severe prenatal growth failure, reduced
body fat, and abnormalities of the craniofacial skeleton

(Houzelstein et al., 2002). These features are also commonly
found in CdLS, suggesting BRD4 haploinsufficiency and, by
extension, deregulated transcriptional pausing as likely cause of
the CdLS-like phenotype.

Other functional effects of BRD4 haploinsufficiency besides
transcriptional imbalance have also been proposed as alternative
causes of the CdLS-like phenotype. Impaired regulation of
DNA repair but not transcription was found in BRD4 mutated
mESCs and in CdLS patient lymphoblastoid cells (LCLs) (Olley
et al., 2018). Similarly, CdLS cells show increased DNA damage
sensitivity (Vrouwe et al., 2007). Proper DNA repair is imperative
for neural development (Frank et al., 2000; Gao et al., 2000)
and mutation of proteins involved in DNA damage repair
are often associated with neurodevelopmental defects [reviewed
in Lee et al. (2016)], suggesting that defective DNA repair
may also contribute to the CdLS-like phenotype of BRD4
heterozygous LoF patients.

Several studies have addressed BRD4 function in the central
nervous system. In the adult mouse brain, Brd4 is predominantly
expressed in neurons, where it regulates immediate early gene
(IEG) expression (Korb et al., 2015). Rapid induction of IEGs
in response to neuronal activity relies on the presence of
promoter proximal paused RNApol2 (Saha et al., 2011). IEGs are
essential for consolidation of synaptic modification and memory
function (Frey et al., 1989, 1996; Nguyen et al., 1994; Messaoudi
et al., 2002). Consequently, BET protein inhibition with JQ1
reduced expression of synaptic proteins and resulted in long-
term memory deficits (Korb et al., 2015). Together, this suggests
a critical role for BRD4 in transcription regulation and neuronal
activation during memory formation.

Dysregulation of BRD4 has been causally linked to Rett
Syndrome (Xiang et al., 2020) and fragile X Syndrome
(FXS) (Korb et al., 2017), two of the most prevalent
neurodevelopmental disorders. FXS, caused by loss of the
translation repressor FMRP (fragile X mental retardation
protein) is characterized by intellectual disability, behavioral
deficits, and autism spectrum disorder (ASD). Brd4 transcripts
were identified as direct targets of FMRP, resulting in elevated
Brd4 protein levels in Fmr1 knockout mice. Treatment of
these FXS modeling mice with JQ1 reversed aberrant neuronal
spine density and gene expression, as well as atypical social
and repetitive behavior. Similar beneficial effects of JQ1 were
observed in human and mouse models of Rett syndrome (RTT),
caused by loss of function of the X-linked gene encoding MeCP2
(methyl-CpG binding protein 2). Increased chromatin binding of
BRD4 in in vitro differentiated human RTT interneurons, and in
MGE (medial ganglionic eminence) and cortex mimicking RTT
organoids, caused extensive transcriptional dysregulation that
was reverted upon exposure to JQ1. Importantly, JQ1 treatment
of RTT modeling MeCP2−/Y mouse pups improved short term
survival and slowed down phenotypic progression.

Collectively, these studies highlight the importance of BRD4
dosage during neurodevelopment. They also underscore the
feasibility of postnatal phenotypic reversal of some aspects of
NDDs and suggest that at least part of the pathology results
from aberrant gene regulation in fully differentiated postmitotic
neurons. Rebalancing of transcription pause regulation and
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elongation can thus be used as a therapeutic strategy to ameliorate
symptoms related to NDDs.

NIPBL

NIPBL (Nipped-B-like) encodes for the protein delangin, the
human homolog of fly Nipped-B protein and fungal sister
chromatid cohesion protein 2 (SCC2), which together with
SCC4 forms a complex that is necessary for cohesin loading
onto chromosomes. Recent studies physically and functionally
linked NIPBL to the regulation of transcriptional pausing (van
den Berg et al., 2017; Olley et al., 2018; Luna-Pelaez et al.,
2019). Here, the diverse roles of NIPBL in gene and chromatin
architecture regulation will be considered in the context of
neural development.

Gene variants in cohesin core components and regulatory
proteins are identified as the cause of CdLS (OMIM# 122470,
300590, 300882, 610759, and 614701), a dominant and genetically
heterogeneous neurodevelopmental disorder with physical,
cognitive and behavioral characteristics (Kline et al., 2018).
CdLS prevalence is estimated to be around 1:10,000 – 1:30,000
live births (Kline et al., 2007). Characteristic features include
craniofacial anomalies, intellectual disability, psychomotor
delay, pre- and postnatal growth retardation, upper limb
malformations, hirsutism, and affected gastrointestinal and
visceral organ systems (overview of clinical symptoms in
Table 1).

Heterozygous LoF or missense variants in NIPBL are
identified in approximately 70% of cases whereas variants in
SMC1A, SMC3, RAD21, and HDAC8 account for another 5% of
(non-)classic cases with overlapping and often milder phenotypes
(Liu and Baynam, 2010; Ansari et al., 2014). Heterozygous NIPBL
LoF variants are localized throughout the coding sequence and
associate with more severe phenotypes, while milder missense
variants locate predominantly to important functional domains
at the interface with DNA, MAU2, RAD21, SMC1, and SMC3
(Mannini et al., 2013; Shi et al., 2020). Compensatory expression
from the intact NIPBL allele is frequently observed and a
reduction of ∼15% in expression is enough to observe a
clinical phenotype (Deardorff et al., 1993). Furthermore, somatic
mosaicism for NIPBL mutations is reported in 10–23% of ‘classic
CdLS’ diagnosed patients (Huisman et al., 2013; Braunholz et al.,
2015; Latorre-Pellicer et al., 2021).

Consistent with the function of NIPBL as cohesin loading
factor, CdLS patient-derived NIPBL+/− lymphoblastoid cells
(LCLs), Nipbl+/− mouse embryonic fibroblasts (MEFs), and fetal
liver cells exhibit reduced global or local cohesin binding and
defective 3D genome organization (Liu and Krantz, 2009; Chien
et al., 2011; Newkirk et al., 2017). Formation of such chromatin
loops by loop extrusion relies on an active holoenzyme consisting
of cohesin and NIPBL-MAU2 (Davidson et al., 2019; Kim et al.,
2019).

Although reduced Nipbl levels in a CdLS mouse model
did not affect bulk cohesin loading, deregulated genes
showed reduced cohesin binding (Remeseiro et al., 2013).
In the absence of overt chromosome segregation defects

(Castronovo et al., 2009), deregulated gene expression likely
underlies neuronal dysfunction in CdLS (Castronovo et al.,
2009; Kawauchi et al., 2009; Remeseiro et al., 2013). In addition,
NIPBL recruits cohesin to sites of double-strand breaks (DSBs)
for DNA repair under control of MDC1, RNF168 and HP1y
(Oka et al., 2011).

A direct link to gene regulation was established for Nipped-
B, the fly homolog of delangin, which was found to regulate
Notch signaling and other developmental pathways by facilitating
enhancer-promoter communication (Krantz et al., 2004; Tonkin
et al., 2004). In mammalian cells, Zuin et al. (2014) subsequently
showed that NIPBL binds to promoters of active genes to
regulate their expression, independent of cohesin. In addition,
there are many transcription factors amongst the NIPBL target
genes that are differentially expressed in CdLS. These findings
indicate that NIPBL influences transcription in several ways; by
loading cohesin complexes that regulate genes via chromatin
insulation and chromosomal long-range interactions, directly by
binding at gene promoters and indirectly through regulation
of TF expression.

NIPBL was linked to the regulation of transcriptional pausing
via its interaction with the Integrator complex in mouse neural
progenitor cells (van den Berg et al., 2017). NIPBL genomic
binding was enriched at promoters containing paused RNApol2
and important for the regulation of neuronal migration genes
(e.g., Sema3a, Nrp1, Plxnd1, and Gabbr2) and consequently for
normal cortical neuron migration in vivo. Defects in neuronal
migration and subsequent aberrant neuronal positioning disrupt
neural circuit formation and have been causally linked to
intellectual disability and seizures, both features of CdLS
(Liu and Krantz, 2009).

Evidence for a role of NIPBL and cohesin in transcriptional
pausing has also been found in Drosophila, where promoter-
proximal cohesin binding correlated with a significantly higher
pausing index that was similarly affected by Nipped-B or Rad21
depletion (Fay et al., 2011; Schaaf et al., 2013). Taken together,
these findings implicate transcriptional pausing defects in the
aetiology of CdLS, a hypothesis further supported by the causal
linkage of variants in bona-fide pausing regulators BRD4, AFF4
and Integrator complex to CdLS-like disorders, as discussed in
other sections of this review.

To what extent NIPBL function in gene regulation can be
uncoupled from cohesin function remains unclear. Widespread
NIPBL binding in the absence of cohesin was detected at active
promoters and enhancers in mouse embryonic fibroblasts, neural
progenitor cells, and lymphoblastoid cells (Zuin et al., 2014;
Busslinger et al., 2017; van den Berg et al., 2017). However,
the recently solved cryo-EM structure of the fission yeast and
human cohesin-NIPBL-DNA complex suggests that the NIPBL-
MAU2 loading complex forms an integral part of DNA-bound
cohesin (Higashi et al., 2020; Shi et al., 2020). In addition, in vitro
reconstitution assays show that NIPBL-MAU2 is required for
cohesin-mediated loop extrusion (Davidson et al., 2019; Kim
et al., 2019).

In support of a role for the NIPBL-MAU2-cohesin
holoenzyme in gene regulation, Weiss et al. (2021) recently
reported significant overlap in deregulated genes between

Frontiers in Neuroscience | www.frontiersin.org 9 May 2022 | Volume 16 | Article 846272

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-846272 May 5, 2022 Time: 8:18 # 10

Eigenhuis et al. Pause Release in NDD

patient-derived, NIPBL haploinsufficient cortical neurons
and mouse postmitotic neurons acutely depleted of RAD21.
Deregulated genes were enriched for neuronal functions related
to signaling processes, synaptic transmission, learning and
behavior. Disrupted 3D genome organization and transcriptional
control in these post-mitotic cortical mouse neurons furthermore
emphasized that cohesin is continuously required for neuronal
gene expression. Further research is required to answer the
question whether NIPBL variants cause deregulated gene
expression in CdLS directly, via dysregulated pausing, via
reduced cohesin function, or both.

SUPER ELONGATION COMPLEX

The super elongation complex (SEC) comprises various
elongation factors and incorporates active P-TEFb. The
AF4/FRM2 family (AFF) forms the scaffold; the canonical SEC
contains either AFF1 or AFF4, whereas SEC-like complex 2 and
3 contain AFF2 or AFF3, respectively. These scaffolding proteins
interact with 11—19 lysine-rich leukemia (ELL) 1, ELL2 or EEL3,
the ELL-associated factor EAF1 or EAF2 and eleven-nineteen
leukemia (ENL) or AF9 (He et al., 2010; Lin et al., 2010, 2011;
Smith et al., 2011).

Initially, many of the SEC components were identified as
translocation partner of the mixed lineage leukemia (MLL) gene
(Thirman et al., 1994; Lin et al., 2010). Upon MLL-fusion, SEC
is recruited to MLL target genes where it promotes transcription
elongation (Mueller et al., 2009; Lin et al., 2010; Yokoyama
et al., 2010). This role can be directly linked to its association
with P-TEFb. In addition, SEC interacts with important pausing
factors such as Mediator (Takahashi et al., 2011; Lens et al., 2017),
PAF1c (Kim et al., 2010; He et al., 2011; Wier et al., 2013) and the
Integrator complex (Gardini et al., 2014). PAF1c and Mediator
recruit SEC to phosphorylate NELF subunits and the RNApol2
CTD, resulting in release of NELF and entry into elongation
(Lu et al., 2016). Acute degron-based AFF4 depletion resulted in
increased promoter-proximal pausing and decreased RNApol2 in
the gene body of heat shock induced genes (Zheng et al., 2021),
confirming its role in transcription pause release.

The SEC has been found to regulate expression of many
IEGs and developmental control genes involved in neuronal
lineage commitment, such as HOX genes (Yokoyama et al.,
2010; Lin et al., 2011; Luo et al., 2012). Dosing SEC-activity
in Drosophila neuroblasts is essential to maintain the right
balance between self-renewal and differentiation (Liu et al.,
2017). Perhaps unsurprisingly, mutations in SEC subunits lead to
neurodevelopmental syndromes such as Fragile XE ID, CHOPS
and KINSSHIP syndrome (Pramparo et al., 2005; Striano et al.,
2005; Izumi et al., 2015; Voisin et al., 2021).

AFF4
AF4/FRM2 family member 4 (AFF4) is essential for SEC
stability and proper transcription in metazoans (He et al., 2010;
Lin et al., 2010). Initially, three patients with a CdLS-like
phenotype (intellectual disability, short stature and craniofacial
dysmorphism) were identified that carried missense mutations

in AFF4. Absence of certain typical CdLS features, including
microcephaly, lead to the delineation of a novel syndrome
called CHOPS for Cognitive impairment, Coarse facies, Obesity,
Pulmonary involvement, Short stature and skeletal dysplasia
(OMIM# 616368) (Izumi et al., 2015).

Currently, 12 individuals have been identified with mutations
in AFF4 leading to CHOPS syndrome (Izumi et al., 2015;
Raible et al., 2019; Kim et al., 2021). In all cases, a missense
mutation was found in the highly conserved ALF homology
domain (Bitoun and Davies, 2005), which interacts with the E3
ubiquitin ligase SIAH1 to regulate AFF4 protein stability (Oliver
et al., 2004). Increased AFF4 protein stability and chromatin
association, resulting in upregulation of transcriptional targets
also found upregulated in CdLS, has been proposed as the
causative mechanism (Izumi et al., 2015).

AFF3/LAF4
Lymphoid nuclear protein related to AF4 (LAF4), also known as
AFF3, is also an MLL fusion partner (Ma and Staudt, 1996; von
Bergh et al., 2002). Like the other AFF proteins, AFF3 functions as
a scaffolding protein for interaction with AF9 or ENL and P-TEFb
to form SEC-like 3 (Bitoun et al., 2007; Luo et al., 2012). In this
manner, it mediates transcriptional activity through regulation
of transcription pausing of a specific subset of genes, including
imprinted genes such as XIST (Luo et al., 2016; Wang et al., 2017;
Zhang et al., 2019). Aff3 overexpression predominantly leads to
gene upregulation in the mouse cortex, indicating a positive role
in transcription (Moore et al., 2014). Dysregulation of AFF3 has
been associated with various diseases such as rheumatoid arthritis
(Stahl et al., 2010) and breast cancer (To et al., 2005).

A role for AFF3 in neural development was implicated
after the discovery of a folate sensitive fragile site (FSFS),
encompassing a CGG repeat expansion called FRA2A, in the
AFF3 gene promoter (Anneren and Gustavson, 1981; Murthy
et al., 1990; Tukun et al., 2000). Hypermethylation of CGG
repeats in these FSFS results in silencing of the surrounding locus,
which is often associated with intellectual disability (Debacker
and Kooy, 2007). FRA2A hypermethylation indeed leads to AFF3
silencing and is associated with impaired motor and language
skills (Metsu et al., 2014).

To date, AFF3 deletions (2) and missense (16) variants have
been identified in 18 individuals with developmental delay and
intellectual disability (Steichen-Gersdorf et al., 2008; Shimizu
et al., 2019; Voisin et al., 2021). Interestingly, all missense
variants located to the ALF domain of AFF3, similar to AFF4
missense variants (Raible et al., 2019). However, in contrast
to the reported AFF4 variants, AFF3 protein stability was not
affected (Voisin et al., 2021). Together with the observed gene
deletions, this suggests that AFF3 heterozygous LoF causes the
observed phenotype.

Besides developmental delay and intellectual disability, most
patients carrying AFF3 variants presented with encephalopathy,
skeletal dysplasia, failure to thrive, microcephaly and global
brain atrophy (Steichen-Gersdorf et al., 2008; Shimizu et al.,
2019; Voisin et al., 2021). Despite similarity to CHOPS, specific
characteristics suggested a novel syndrome called KINSSHIP
for horseshoe kidney, Nievergelt/Savarirayan type of mesomelic
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dysplasia, seizures, hypertrichosis, intellectual disability, and
pulmonary involvement (OMIM# 619297) (Voisin et al., 2021).
AFF3 missense variants or deletions cause a much more severe
phenotype than FRA2A-associated AFF3 gene silencing. This
could be explained by a lack of AFF3 inactivation in the first few
weeks after fertilization (Willemsen et al., 2002) or, alternatively,
AFF3 silencing could be tissue specific (Voisin et al., 2021).

In mice, Aff3 is expressed in cortical neurons during the
initial steps of differentiation and is downregulated in the
postnatal cortex (Britanova et al., 2002). Similarly, in humans,
AFF3 is highly expressed in the fetal brain and diminished in
adults (Hiwatari et al., 2003). Aff3 homo- and heterozygous
knockout causes skeletal defect, and homozygous knockouts also
show abnormal skull shape, kidney defects, brain malformations
and neurological anomalies, similar to features presented in
KINSSHIP probands (Voisin et al., 2021). Aff3 depletion in the
developing mouse cortex resulted in neuronal migration defects
that may explain the developmental delay and ID identified in
humans with AFF3 haploinsufficiency (Moore et al., 2014).

AFF2/FMR2
AF4/FRM2 family member 2 (AFF2), often referred to as FMR2,
is an X-linked gene and known to encode a transcription activator
(Hillman and Gecz, 2001). In contrast to the other AFF family
members, AFF2 is not associated with ALL fusion. In the SEC,
it functions as scaffolding protein by binding ENL or AF9 and
P-TEFb to form SEC-like 2, which regulates a specific subset of
genes (Luo et al., 2012).

Like AFF3, AFF2 also contains an FSFS site, located in
the 5’UTR (untranslated region) of exon 1. CGG repeat
expansion at this site leads to AFF2 silencing and can
result in FRAXE intellectual disability (Gecz et al., 1996; Gu
et al., 1996). FRAXE ID can be mild to severe, and include
cognitive impairment, delayed language development, autistic
behavior, and characteristics such as a long, narrow face,
mild facial hypoplasia, a high-arched palate, irregular teeth,
hair abnormality, angiomata, clinodactyly, thick lips, and nasal
abnormalities (Flynn et al., 1993; Knight et al., 1993; Gecz et al.,
1996; Gu et al., 1996).

Intragenic variants and chromosomal disruption of AFF2 can
also cause a similar phenotype (Gedeon et al., 1995; Honda
et al., 2007; Sahoo et al., 2011; Stettner et al., 2011), indicating
that it is indeed the hemizygous loss of AFF2 that leads to ID.
Deletions always encompass the highly conserved ALF domain
that is also affected in AFF3 and AFF4 LoF variants, underscoring
its functional importance in relation to the ID phenotype.
Dysregulation or other missense mutations are also associated
with epilepsy (Timms et al., 1997; Moore et al., 1999) and ASD
(Mondal et al., 2012).

Aff2 is expressed in the subventricular zone (SVZ) and cortical
plate of the mouse cortex (Chakrabarti et al., 1998; Gu and
Nelson, 2003; Vogel and Gruss, 2009). Aff2 knockout mice
show impaired learning and memory performance and increased
long-term potentiation in the hippocampus (Gu et al., 2002).
Furthermore, AFF2-null neurons show reduced synaptic activity
(Deneault et al., 2018) and silencing of AFF2 in patients leads to
deregulation of IEGs previously implicated in neuronal migration

and activation, such as JUN and FOS (Perez-Cadahia et al., 2011;
Bjorkblom et al., 2012; Melko et al., 2013). Dysregulation of
JUN and FOS has been implicated in other ID disorders (e.g.,
related to Mediator complex mutations) (Hashimoto et al., 2011),
suggesting they may be important downstream effector genes.

AF9/MLLT3
AF9, also known as MLLT3, is one of the most common
fusion partners of the MLL gene, and is often associated with
leukemia (Strissel et al., 2000). Upon interaction with histone
methyltransferase Dot1L, AF9 acts as an epigenetic modifier at
specific genes to cause both activation and repression (Zhang
et al., 2006; Bitoun et al., 2007; Buttner et al., 2010). A general
role in transcription pause regulation was found for AF9, and
its homolog ENL, through its contribution to the SEC (like)
complexes (Lin et al., 2010; He et al., 2011). Here, the specific
YEATS domains of AF9 and ENL interact with the PAF complex,
resulting in recruitment of SEC to paused RNApol2 (He et al.,
2011). Upon loss of AF9 and ENL, P-TEFb recruitment to
NELF-A and the RNApol2 CTD is disrupted, inhibiting its
phosphorylation and thereby pause release (Lu et al., 2016).

In two patients, de novo translocations of chromosome 4 and
9, t(4;9) were identified to cause a disruption of the AF9 gene,
resulting in neurodevelopmental delay with intellectual disability,
growth delay, seizures and ataxia (Pramparo et al., 2005; Striano
et al., 2005). Long-read sequencing in a patient with intellectual
disability and facial dysmorphism rendered AF9 heterozygous
LoF as likely causative gene (Hiatt et al., 2021).

Af9 knockout mice display perinatal lethality (Collins et al.,
2002). Af9 is expressed in various brain regions, including
the cortex, the hippocampus, cerebellar cortex and at the
midbrain/hindbrain boundary (Vogel and Gruss, 2009). In
the developing cortex, Af9 expression prevents premature
differentiation of TBR2-positive intermediate progenitor cells
(IPCs) in the subventricular zone (SVZ) (Buttner et al., 2010).
In human ESCs, AF9 interacts with the 5-methylcytosine
dioxygenase TET2 to activate neural targets and support neural
commitment (Qiao et al., 2015).

Taken together, these studies indicate that various SEC
components have an important role in neural development,
albeit not exclusively in the context of the SEC. Comparing
patient phenotypes and commonly deregulated pathways should
reveal the contribution of pausing dysregulation to the
neurological symptoms.

INTEGRATOR COMPLEX

The Integrator complex is a > 1 MDa protein complex that
is conserved across metazoans and consists of 14 subunits
(Baillat et al., 2005; Malovannaya et al., 2011; Chen et al., 2012).
It can directly bind the Ser7-phosphorylated RNApol2 CTD
and, through catalytic subunit INTS11, mediate endonucleolytic
3′-end cleavage of many nascent RNAs (Egloff et al., 2010;
Baillat and Wagner, 2015). Initially described as required
for termination of small-nuclear RNA (snRNA) transcription,
Integrator is now known to control processing and expression
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of other non-polyadenylated RNApol2 transcripts, including
enhancer RNAs (eRNAs) (Lai et al., 2015; Elrod et al., 2019),
telomerase RNAs (Rubtsova et al., 2019), viral miRNAs (Cazalla
et al., 2011), replication-dependent histones, and long non-
coding RNAs (Skaar et al., 2015).

A role for Integrator complex in the regulation of protein
coding genes was first described in 2014, when two independent
groups demonstrated its association with paused RNApol2.
Integrator was shown to be required for initiation and pause-
release of EGF-responsive IEGs in HeLa cells, where it interacts
with NELF and is required for recruitment of the SEC
(Gardini et al., 2014; Stadelmayer et al., 2014). Contrary to
this stimulatory role in pause-release, Integrator complex has
also been described as attenuator of transcription impinging on
paused RNApol2. It stimulates premature termination through
endonucleolytic cleavage of nascent RNA associated with the
pausing complex (Elrod et al., 2019; Tatomer et al., 2019). Indeed,
INTS9 or INTS11 depletion mainly resulted in upregulation of
Integrator-bound genes both in Drosophila and human cells.
Furthermore, association with protein phosphatase 2A (PP2A)
provides Integrator with an alternative catalytic function to
dampen transcriptional output through dephosphorylation of
the RNApol2 CTD and DSIF-subunit SPT5 (Huang et al., 2020;
Zheng et al., 2020; Vervoort et al., 2021).

Biallelic mutations in Integrator complex Subunits INTS8
have been identified in three siblings that manifest with a rare and
recessive neurodevelopmental syndrome (Oegema et al., 2017).
Features include severe intellectual disability, seizures, impaired
speech development, motor impairment, facial dysmorphism
and limb anomalies. Brain MRI scans showed microcephaly
and structural brain abnormalities such as cerebellar hypoplasia,
reduced volume of the pons and brainstem, and periventricular
heterotopia, a cortical neuron migration defect (Table 1). The
compound heterozygous INTS8 variants encompass a predicted
missense mutation (c.893A > G, p.Asp298Gly) leading to an
unstable transcript, and a nine-base-pair in-frame deletion
leading to the deletion of three amino acids (c.2917_2925del,
p.Glu972_Leu974del, or ‘1EVL’) (Oegema et al., 2017). INTS8-
1EVL showed reduced association with the Integrator complex
and RNApol2, leading to instability of other subunits and an
overall loss of complex integrity. This resulted in misprocessing
of UsnRNA, splicing defects and gene expression changes
affecting neuronal differentiation (Oegema et al., 2017). In a
separate study, INTS8 was shown to be required for association
of PP2A with the Integrator complex (Huang et al., 2020).
INTS8 depletion resulted in increased RNApol2 CTD and
SPT5 phosphorylation, stimulating pause-release and thereby
upregulation of Integrator target genes.

To date, ten patients carrying biallelic INTS1 mutations have
been reported in literature. They include homozygous missense
(Krall et al., 2019) or non-sense variants (Oegema et al., 2017),
as well as a combination of missense and either frameshift or
non-sense variants (Krall et al., 2019; Zhang et al., 2020). All
reported patients presented with growth and cognitive delay,
severe language impairment, facial dysmorphism and cataracts.
Skeletal malformations, in particular of the chest wall, and motor
impairment were also frequently noted. Mechanistically it is not

clear how INTS1 variants impact on Integrator complex function,
although its potential role as scaffolding subunit could affect
the function of the entire complex. In addition, subunit cross-
regulation has been reported in zebrafish models, where ints1
depletion had a negative impact on expression of other Integrator
subunits (Krall et al., 2019).

Depletion of Ints1 and Ints11 from neural progenitors in the
developing mouse brain resulted in neuronal migration defects,
linked to aberrant semaphorin signaling (van den Berg et al.,
2017). Similar defects were observed upon disruption of NIPBL,
a novel interactor of the Integrator complex and prominent
causal factor in CdLS. Interestingly, multiple overlapping clinical
features between CdLS and INTS mutations have been reported
in literature, which are summarized in Table 1. Besides
growth and cognitive delays, common facial abnormalities
(e.g., micrognathia, downturned corners of the mouth, widely
spaced teeth), pectus deformity and renal malformations were
frequently reported (Kline et al., 2018; Krall et al., 2019). In line
with the data from mouse neural progenitor cells, this indeed
suggests dysregulation of common gene regulatory pathways as
underlying cause of the observed clinical features.

ARID1A/ARID1B

AT-rich interactive domain-containing protein 1A (ARID1A)
and 1B (ARID1B) are one of the main, mutually exclusive
subunits of the switch/sucrose non-fermentable (SWI/SNF)-
like brahma-associated factor (BAF) complex, a multiprotein
ATP-dependent chromatin remodeling complex composed of
conserved core- and variant subunits (Raab et al., 2015; Mashtalir
et al., 2018). SWI/SNF complexes play important roles in
epigenetic regulation of gene expression, lineage specification,
and maintenance of stem cell pluripotency (Euskirchen et al.,
2011; Raab et al., 2015). ARID1A-containing complexes are
particularly involved in tumor suppression, and ARID1A is the
most frequently mutated chromatin regulator across all human
cancers (Lawrence et al., 2014). In particular, ovarian clear cell
carcinoma (OCCC) carries the highest prevalence of ARID1A
mutations (∼57%) (Jones et al., 2010).

Mutations in ARID1A and ARID1B are also an important
cause of Coffin-Siris Syndrome (CSS; OMIM 135900), a rare
autosomal-dominant neurodevelopmental syndrome (Tsurusaki
et al., 2012). CSS is characterized by intellectual disability, growth
deficiency, microcephaly, coarse facial features and hypoplastic
or absent nail of the fifth finger or toe (Coffin and Siris, 1970).
Approximately 60% of affected individuals carry a germline
mutation in one of six SWI/SNF subunit genes (SMARCB1,
SMARCA4, SMARCA2, SMARCE1, ARID1A, and ARID1B) or
a small set of additional genes (Vergano et al., 1993; Santen
et al., 2012, 2013; Tsurusaki et al., 2012, 2014; Wieczorek et al.,
2013). ARID mutations are mostly truncating, LoF mutations
or whole-gene deletions, suggesting that haploinsufficiency is
the likely cause of the observed neurodevelopmental phenotype
(Bögershausen and Wollnik, 2018). Mostly heterozygous LoF
mutations in ARID1A have been identified in around 5% of
classic CSS cases (Vergano et al., 1993; Tsurusaki et al., 2012),
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whilst four CSS-like patients with ARID1A microduplications
have been described (Bidart et al., 2017). ARID1B mutations have
been found in up to 62% of (often milder) CSS cases and also
explain a significant fraction (0,4–1,0%) of idiopathic ID cases
that are often accompanied by speech impairment and agenesis
of the corpus callosum hallmarks (Santen et al., 2012; Tsurusaki
et al., 2012; Wieczorek et al., 2013; Grozeva et al., 2015).

Several studies have addressed the contribution of ARID1A
and ARID1B in SWI/SNF-mediated gene regulation. These
concluded that ARID1A-containing BAF acts as both
transcriptional activator and repressor, whereas ARID1B-
BAF mainly functions as repressor of enhancer activity
(Raab et al., 2015). In addition, ARID1A and ARID1B were
required for maintenance of global chromatin accessibility
(Kelso et al., 2017) and, in the case of ARID1A, for genome
compartmentalization (Wu et al., 2019). Interestingly, Trizzino
et al. (2018) recently provided evidence for a role of ARID1A
and ARID1B in transcription pause release. Knockdown of
ARID1A reduced RNApol2 pausing on active genes and globally
diminished Ser5-phosphorylation of the RNApol2 CTD. The
pausing defect could be rescued by upregulation of ARID1B,
suggesting that both ARID1A and ARID1B control transcription
via RNApol2 pausing and that dysregulated pausing likely
mediates effects of ARID1A loss in cancers and possibly also
neurodevelopmental disorders.

Several studies have addressed the role of Arid1a and Arid1b
in the developing mouse brain. Cortex-specific homozygous
deletion of Arid1a resulted in reduced cortical thickness linked
to inhibition of IPC proliferation and decreased production
of deep layer neurons (Liu et al., 2021). In contrast, Arid1b
deletion mainly affected ventral forebrain progenitors, suggesting
differential requirement for Arid1a and Arid1b in distinct cellular
compartments (Moffat et al., 2021). Indeed, CSS-mimicking
Arid1b-heterozygous mice mainly showed defects in interneuron
development (Jung et al., 2017). Reduced proliferation and
increased apoptosis in progenitors of the lateral and medial
ganglionic eminences (LGE and MGE) resulted in an overall
decrease in GABA+ and Parvalbumin+ interneurons in the
cortex. These developmental defects resulted in CSS-reminiscent
behavioral abnormalities, including impaired cognitive function
and social interaction, and increased anxiety-like and repetitive
behavior (Celen et al., 2017; Jung et al., 2017). Interestingly,
heterozygous Arid1b loss caused a strong reduction in Ser5-
CTD phosphorylated RNApol2 at target gene promoters (Jung
et al., 2017), warranting further investigation into the role of
transcriptional pausing misregulation in CSS.

PAF1 COMPLEX

The Polymerase-Associated Factor 1 complex (PAF1c) is a
multifunctional and highly conserved protein complex that
regulates all stages of the RNA transcription cycle [recently
reviewed in Francette et al. (2021)]. PAF1c was discovered as a
novel RNApol2-interacting complex in Saccharomyces cerevisiae
25 years ago (Wade et al., 1996), and foundational studies in
budding yeast have elucidated the diverse ways via which it

controls gene expression (Wade et al., 1996; Shi et al., 1997;
Mueller and Jaehning, 2002). PAF1c is composed of subunits
PAF1, CTR9, CDC73, LEO1, RTF1 and, in human cells, SKI8
(Mueller and Jaehning, 2002). In higher eukaryotes, PAF1c is
recruited to promoters and enhancers of active genes, where it
directly binds to the CTD and outer surface of RNApol2, as well
as to elongation factor SPT4/5 (DSIF) (Yu et al., 2015; Chen et al.,
2021).

In recent years, the role of PAF1c in regulation of RNApol2
pause-release has been studied in detail. PAF1c strongly
associates with P-TEFb and both factors show interdependent
recruitment to target gene promoters (Yu et al., 2015). RNAi-
mediated PAF1c depletion, depending on the cell line and
specific study, resulted in either increased or decreased RNApol2
pausing (Yu et al., 2015; Chen et al., 2021). In both cases,
observed effects were linked to alterations in P-TEFb recruitment.
Interestingly, in zebrafish neural crest (NC) progenitors, loss of
Paf1c could be compensated by loss of Cdk9, suggesting that at
crucial NC genes Paf1c and P-TEFb act antagonistically (Jurynec
et al., 2019). These contrasting findings may indicate that PAF1c
function is context- and gene-specific. Detailed structural studies
of the activated RNApol2 elongation complex showed that PAF1c
displaces NELF, suggesting it mainly acts to promote pause-
release (Vos et al., 2018a).

Pathogenic variants in genes encoding subunits or interactors
of PAF1c have been identified in various neurodevelopmental
processes and ID disorders. Most well-described are mutations
in the X-linked gene encoding the PHD-Like Zinc Finger Protein
6 (PHF6) that associates with PAF1c and causes the ID disorder
Börjeson–Forssman–Lehmann syndrome (BFLS; OMIM 301900)
(Lower et al., 2002; Zhang et al., 2013). Besides ID, BFLS
is characterized by epilepsy, hypometabolism, hypogonadism,
obesity with gynecomastia, swollen subcutaneous facial tissues,
narrow palpebral fissure, and large ears (Table 1) (Lower
et al., 2002; Jahani-Asl et al., 2016). Eight different mutations,
including two truncating non-sense variants and 6 different
missense variants, were identified in seven familial and two
sporadic cases of BFLS.

Phf6 is highly expressed in embryonic and early postnatal
stages of mouse brain development (Lower et al., 2002). RNAi-
mediated Phf6 depletion via in utero electroporation of the
embryonic mouse brain was shown to profoundly impair
neuronal migration in vivo, leading to formation of white
matter heterotopias that displayed neuronal hyperexcitability
(Zhang et al., 2013). Paf1 depletion phenocopied this migration
phenotype, suggesting important PHF6-PAF1c co-operation in
transcription regulation of neurodevelopment.

PAF1c core subunit LEO1 was identified as candidate
neurodevelopmental disease gene in a large meta-analysis study
that combined ID and ASD patient de novo mutations with CNV
morbidity data (Coe et al., 2019). This finding was confirmed in
a targeted sequencing study 1 year later, where LEO1 mutations
were linked to intellectual disability and autistic behavior (Wang
et al., 2020). Paternally inherited deletions in the LEO1 promoter
linked to increased LEO1 expression were also associated with
ASD (Brandler et al., 2018), suggesting that PAF1c subunit
imbalance may contribute to the neurodevelopmental phenotype.
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To date, PAF1c subunit CTR9 has not been causally linked to
NDDs in humans, despite a clear neurological phenotype in
Drosophila. In this model organism, embryonic or early larval
lethality of Ctr9 mutants could be partially rescued by re-
expression of Ctr9 in the nervous system and mutant embryos
contained increased numbers of neuroblasts and dividing
progeny (Bahrampour and Thor, 2016). Moreover, a role for Ctr9
in controlling terminal neuronal differentiation was proposed, as
evidenced by downregulation of several neuropeptides.

Of note, besides PHF6, several additional PAF1c interactors
have been implicated in pausing regulation and NDD, most
prominently SETD5 (Osipovich et al., 2016) and CHD1 (Lee
et al., 2017). The ATP-dependent chromatin remodeller CHD1
is recruited to actively transcribed genes by PAF1c (Lee
et al., 2017), where it enables RNApol2 promoter escape
by removing the nucleosome barrier (Skene et al., 2014).
Heterozygous CHD1 missense variants have been identified as
the cause of developmental delay, autism, speech apraxia and
facial dysmorphic features in Pilarowski–Bjornsson syndrome
(OMIM #602118) (Pilarowski et al., 2018). SETD5 harbors
H3K36 methyltransferase activity and is important for PAF1c
recruitment to common target genes (Sessa et al., 2019; Li et al.,
2021b). Setd5 depletion from hematopoietic stem cells resulted
in decreased pausing indices, with a concomitant increase in
elongating RNApol2 and upregulated target gene expression (Li
et al., 2021b). SETD5 heterozygous LoF variants are a leading
cause of idiopathic ID and ASD (Kuechler et al., 2015; Deliu et al.,
2018; Powis et al., 2018) and have also been linked to a CdLS-
like phenotype (Parenti et al., 2017). Setd5 haploinsufficient
mice show cognitive impairment and behavioral abnormalities
linked to increased progenitor proliferation and a loss of synaptic
contacts (Deliu et al., 2018; Sessa et al., 2019; Nakagawa et al.,
2020).

MEDIATOR COMPLEX

The Mediator complex interacts with different TFs and is
implicated in almost every aspect of transcription regulation
[reviewed by Jeronimo and Robert (2017)], chromatin
architecture [reviewed by Andre et al. (2021)], and DNA repair
(Soutourina and Werner, 2014). Due to its many functions,
Mediator is often associated with cancer and developmental
disease (Schiano et al., 2014; Yin and Wang, 2014). Mediator is
composed of 30 subunits, organized in four parts: head, middle,
tail and kinase. Each of these modules contains a specific set of
Mediator subunits, and the specific composition of Mediator
varies. The head and middle part interact with RNApol2 and
general TFs at promoter sites, while the tail interacts with
sequence specific TFs at enhancer sites (Tsai et al., 2014, 2017;
Robinson et al., 2016). It is therefore hypothesized that Mediator,
together with cohesin, facilitates chromatin looping to allow
proximity of enhancers and promoters and enable PIC assembly
(Kagey et al., 2010; Soutourina, 2018). In addition, Mediator,
together with TFs, BRD4 and RNApol2, enables liquid-phase
separation to form condensates of transcriptional machinery at
super enhancers (Cho et al., 2018; Sabari et al., 2018).

Mediator was also found to regulated pausing in various
ways. In vitro, Mediator overcomes the inhibitory activity of
Gdown1 (Hu et al., 2006; Jishage et al., 2012), a stabilizer
of promoter-proximal pausing, suggesting that Mediator might
alleviate Gdown1-mediated blocking of paused RNApol2 (Cheng
et al., 2012). Moreover, loss of MED14, which forms the
interaction point between head and middle modules of Mediator,
results in loss of promoter proximal RNApol2 (Jaeger et al.,
2020). Mediator also regulates transcription pausing through
interaction with pausing factors. Various Mediator subunits are
found to directly interact with SEC, BRD4 and DSIF. Metazoan
specific MED26 interacts with the EAF subunit in SEC, allowing
recruitment of active P-TEFb to the pausing complex (Lu
et al., 2016). Consequently, depletion of MED26 interrupts SEC
recruitment, RNApol2 CTD phosphorylation and expression of
c-MYC and HSP70 genes (Takahashi et al., 2011). Furthermore,
MED1 and MED23 recruit active P-TEFb associated with BRD4
to paused RNApol2 (Lu et al., 2016). In line with these findings,
Med23 knockout mESCs showed decreased P-TEFb binding to
selected genes (Wang et al., 2013).

The kinase module associates with Mediator in a reversible
manner and is best described out of all Mediator modules. It
comprises of CDK8, CCNC, MED12, and MED13. In vertebrates,
paralogs of CDK8, MED12, and MED13 are CDK19, MED12L,
and MED13L, respectively. Although the exact function of these
paralogs is unknown, they incorporate into the Mediator complex
in a mutually exclusive manner (Daniels et al., 2013). CDK8
depletion leads to reduction of SEC recruitment to the promoter
site of serum induced genes, resulting in reduced gene expression
(Donner et al., 2010). Similarly, SEC is recruited to hypoxia-
inducible genes in a CDK8 dependent manner (Galbraith
et al., 2013), suggesting a role for Mediator’s kinase module in
transcription pause regulation.

Kinase Module
Variants in all proteins of the kinase module, except for CCNC,
have been implicated in neurodevelopmental delay, indicating an
important role for this module in neuronal development. A total
of fourteen patients have been described with 10 different de
novo heterozygous missense mutations in CDK8 (Calpena et al.,
2019; Uehara et al., 2020). These patients suffer from hypotonia,
ID and variable facial dysmorphisms, as well as agenesis of the
corpus callosum. For CDK19, 15 patients were identified that
presented with a similar phenotype (Mukhopadhyay et al., 2010;
Chung et al., 2020; Zarate et al., 2021), suggesting that both
kinases perform similar, non-redundant functions. Besides one
case of CDK19 haploinsufficiency, all disease-causing missense
variants for CDK8 and CDK19 are localized in the kinase domain
(Chung et al., 2020; Zarate et al., 2021), indicating that loss of
kinase activity contributes to the neurological defects that involve
reduced dendritic branching and altered dendrite morphology
(Mukhopadhyay et al., 2010).

From all kinase module subunits, variants in the X-linked
gene MED12 have most frequently been identified in NDDs.
Hemizygous variants in males have been described to cause
Opitz–Kaveggia syndrome (OMIM# 305450), Ohdo syndrome
(OMIM# 300895), and Lujan–Fryns syndrome (OMIM# 309520)
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(Risheg et al., 2007; Schwartz et al., 2007; Vulto-van Silfhout
et al., 2013). These three syndromes are very similar, as they
all encompass ID, macrocephaly, hypotonia, abnormalities in
the corpus callosum and typical facial features. However, most
patients with MED12 variants, including a total of 25 females
(Li et al., 2021a; Polla et al., 2021), show syndromic or non-
syndromic ID without a specific disease phenotype [reviewed in
Plassche and Brouwer (2021) and Srivastava and Kulshreshtha
(2021)]. Non-sense, missense, and splice-site variants localize to
all protein domains, resulting in a large spectrum of phenotypes
with varying severities of ID and developmental delay. Recently,
seven individuals were identified with mutations in MED12L,
a MED12 paralog (Nizon et al., 2019). These encompass a
wide variety of heterozygous mutations, such as duplication,
deletion or single-nucleotide variants. Patients present with
ID, developmental delay, speech impairment, and sometimes
abnormalities in the corpus callosum.

Although the exact mechanism by which MED12 causes this
neuronal phenotype remains to be elucidated, several relevant
pathways have been described. For example, MED12 interacts
with G9a and REST to regulate neuronal gene expression (Ding
et al., 2008, 2009). Moreover, MED12 interacts with Gli3 to
activate SHH target genes (Zhou et al., 2006) and some of the
reported MED12 missense variants were unable SHH target gene
expression in Med12 null mice (Zhou et al., 2012). Importantly,
several MED12 variants affected expression of IEGs such as JUN,
FOS and EGR1, which is controlled at the level of pause-release
(Donnio et al., 2017).

MED13 and in particular MED13L variants have been linked
to various neurodevelopmental aberrations. MED13 was first
described as candidate ID gene in a patient with short stature
and mild dysmorphisms caused by an 800 kb deletion (Boutry-
Kryza et al., 2012). MED13 variants were subsequently described
in patients with ASD (Iossifov et al., 2014; Rk et al., 2017)
and, recently, missense or truncating variants were identified in
thirteen patients presenting with developmental delay, ID, and
speech disorders (Snijders Blok et al., 2018). MED13L patients
show developmental delay and ID and many of the phenotypes
also observed for MED13 and MED12 variants, such as ASD
and hypotonia (Asadollahi et al., 2013; Adegbola et al., 2015;
Cafiero et al., 2015; van Haelst et al., 2015; Torring et al., 2019;
Plassche and Brouwer, 2021). Most frequently, this is caused
by a heterozygous loss-of-function of MED13L, and the most
severe phenotypes seem to be caused by missense mutations,
indicative of a dominant-negative effect (Smol et al., 2018).
However, the exact mechanism and pathways remain unknown.
In a recent mouse study, Hamada et al. (2021) showed that
MED13L protein is highly expressed in the ventricular zone
of the cerebral cortex and is also detectable in the developing
hippocampus and cerebellum.

Tail and Head Module
Although proteins of the kinase module are most often described
in connection with neuronal development, Mediator components
MED17 (head), MED23, MED25, and MED27 (tail) have
also been found to cause neurodevelopmental disorders upon
mutation. In seven individuals, biallelic mutations of MED23

were identified to cause ID (Hashimoto et al., 2011; Trehan
et al., 2015). A homozygous variant found in five of these
patients was shown to have altered interaction with enhancer
bound TFs, resulting in dysregulation of IEGs JUN and FOS
(Hashimoto et al., 2011).

The first disease causing variant identified in MED25,
a homozygous missense mutation in the SH3 recognition
domain, was detected in a consanguineous family in which
23 individuals presented with Charcot-Marie-Tooth disease
type 2B2, a peripheral axonal neuropathy (Leal et al., 2009).
Two other studies identified a total of 14 individuals with
moderate to severe ID, who were also affected by two different
homozygous MED25 missense mutations (Basel-Vanagaite et al.,
2015; Figueiredo et al., 2015). In one study patients also presented
with abnormalities in the eye, palate and corpus callosum
(Basel-Vanagaite et al., 2015). The missense mutation found
in this study drastically impairs MED25 interaction with other
Mediator components.

Interestingly, autosomal recessive variants in MED27 and
MED17 result in a very similar disease phenotype, characterized
by developmental delay, spasticity, seizures, microcephaly and
cerebellar atrophy (Kaufmann et al., 2010; Meng et al.,
2021). Metazoan-specific subunit MED27 forms the junction
between the head and tail modules of the Mediator complex,
where it interacts with MED14 and MED17 (Rengachari
et al., 2021). Disrupted interaction between head and tail
modules might therefore contribute to the neurodevelopmental
abnormalities. Indeed, in zebrafish, Med27 loss of function
disrupts dopaminergic amacrine cells and serotonergic neurons
resulting in size reduction of head, eye, jaw, and eventually
leading to lethality 6 days post fertilization (Durr et al., 2006).
In fly and chicken, disruption of Med27 also leads to embryonic
lethality (Gokcezade et al., 2014; Li-Kroeger et al., 2018; Tsujino
et al., 2019). Together these results clearly indicate an important
role for Med27 in embryonic and neuronal development.

Taken together, it can be concluded that many of the
Mediator components are already found to be essential for
neuronal development and, when mutated, can cause syndromic
ID in various forms. Despite phenotypic variety, intellectual
disability arises in almost all cases. Interestingly, many NDD-
causing mutations converge on the kinase module, which has
been implicated in the regulation of transcriptional pause-
release (Donner et al., 2010; Galbraith et al., 2013; Poot,
2020). Therefore, it would be of particular interest to further
delineate the molecular and developmental defects downstream
of these mutations.

CONCLUSION

Transcription pause-release is increasingly being recognized as
an important step in the regulation of gene expression. Here
we have highlighted several neurodevelopmental disorders that
are likely caused by dysregulated transcriptional pausing. To
what extent the reported variants affect pause duration in the
developing brain and which genes and pathways are most
affected should be subject of future studies. Several experimental
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approaches can be used to measure pause duration. For example,
RNApol2 positional information obtained from relatively small
cell populations using CUT&RUN-based methods (Meers et al.,
2019) can be used to calculate gene-specific pausing indices.
Furthermore, nascent RNA-sequencing techniques such as
precision nuclear run-on (PRO) sequencing (Kwak et al., 2013) or
mammalian native elongating transcript sequencing (mNET-seq)
(Nojima et al., 2015) map active RNApol2 with (near-) nucleotide
resolution in a highly quantitative manner. Recent adaptations
(Judd et al., 2020) mean that it will become feasible to apply
these techniques to small, pure cell populations isolated from
developing human brain organoids, thereby potentially enabling
the establishment of a direct link between transcriptional pausing
and neurodevelopmental defects.

Shared clinical features and diagnosis (notably the frequent
occurrence of CdLS-like characteristics) suggest a common
underlying mechanism. In this respect it will be interesting to
investigate a possible role in the regulation of transcription pause-
release for additional factors that, when mutated, result in a
CdLS-like appearance (i.e., KMT2A and ANKRD11). Indeed,
a link between KMT2A and transcriptional pausing has been
suggested in HIV latency reversal, where KMT2A displaces
PAF1c and facilitates SEC recruitment (Gao et al., 2020).
Following the reverse logic, variants in known pausing regulators
[e.g., TRIM28 (Bunch et al., 2014)] should be given special
consideration during genetic diagnosis. Furthermore, gene
editing techniques and advanced in vitro models of human brain
development (e.g., brain organoids) now provide an excellent

opportunity to uncover the disease-relevant neurodevelopmental
pathways typically affected by dysregulated pause-release. We
envision that this knowledge can directly translate into improved
diagnostics in the clinic, by providing evidence for gene variant
causality and through transcriptome-based diagnostics. Finally,
as transcription pause-release is a process amenable to drug
intervention, it forms a potentially promising target for drug-
mediated therapeutic intervention in NDDs.
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