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The emergence of antibiotic resistance in pathogenic bacteria has led to renewed interest in exploring the potential of plant-
derived antimicrobials (PDAs) as an alternative therapeutic strategy to combat microbial infections. Historically, plant extracts
have been used as a safe, effective, and natural remedy for ailments and diseases in traditional medicine. Extensive research in
the last two decades has identified a plethora of PDAs with a wide spectrum of activity against a variety of fungal and bacterial
pathogens causing infections in humans and animals. Active components of many plant extracts have been characterized and are
commercially available; however, research delineating the mechanistic basis of their antimicrobial action is scanty. This review
highlights the potential of various plant-derived compounds to control pathogenic bacteria, especially the diverse effects exerted
by plant compounds on various virulence factors that are critical for pathogenicity inside the host. In addition, the potential effect
of PDAs on gut microbiota is discussed.

1. Introduction

Human population growth with its global effects on the
environment over the past million years has resulted in
the emergence of infectious diseases [1, 2]. Development of
agriculture further contributed to this, since these infections
could only be sustained in large and dense human popula-
tions [3]. The discovery of antibiotics during the twentieth
century coupled with significant advances in antimicro-
bial drug development improved human health through
improved treatment of infections [4, 5]. However, prolonged
use of antibiotics led to bacterial adaptation, resulting in the
development ofmultidrug resistance in bacteria [2, 5–8].This
has significantly limited the efficacy of antibiotics, warranting
alternative strategies to combat microbial infections.

The persistence of bacteria in the environment and their
interaction with humans is central to most infections and
illnesses. Bacterial illnesses are orchestrated by means of
an array of virulence factors that facilitate various aspects
of their pathophysiology critical for disease in the host
[9]. These include adhesins and membrane proteins that
mediate bacterial attachment, colonization, and invasion of

host cells. In addition, microbial toxins cause host tissue
damage, and bacterial cell wall components such as capsular
polysaccharide confer resistance against host immune system
[10, 11]. Biofilm formation and spore forming capacity are
additional virulence factors that help in the persistence of
pathogens in harsh environmental conditions.

Since ancient times, plants have played a critical role in
the development and well-being of human civilization. A
plethora of plant products have been used as food preserva-
tives, flavor enhancers, and dietary supplements to prevent
food spoilage and maintain human health. In addition,
plant extracts have been widely used in herbal medicine,
both prophylactically and therapeutically for controlling
diseases. The antimicrobial activity of several plant-derived
compounds has been previously reported [12–23], and a wide
array of active components have been identified [24]. A
majority of these compounds are secondary metabolites and
are produced as a result of reciprocal interactions between
plants, microbes, and animals [25]. These compounds do
not appear to play a direct role in plant physiology [26];
however they are critical for enhancing plant fitness and
defense against predation [27]. The production of secondary
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metabolites is often restricted to a limited set of species within
a phylogenetic group as compared to primary metabolites
(amino acids, polysaccharides, proteins, and lipids), which
are widespread in the plant kingdom [28]. Also, they are
generated only during a specific developmental period of
plant growth at micro- to submicromolar concentration [28,
29].

The primary advantage of using plant-derived antimicro-
bials (PDAs) for therapeutic purposes is that they do not
exhibit the side effects often associated with use of synthetic
chemicals [30]. In addition, to the best of our knowledge, no
reports of antimicrobial resistance to these phytochemicals
have been documented, probably due to their multiple mech-
anisms of action which potentially prevent the selection of
resistant strains of bacteria. The marked antimicrobial effect,
nontoxic nature, and affordability of these compounds have
formed the basis for their wide use as growth promoters in
the livestock and poultry industry, effective antimicrobials
and disinfectants in the food industry, components of herbal
therapy in veterinary medicine, and source for development
of novel antibiotics in pharmaceutics.

The antimicrobial properties of various plant compounds
that target cellular viability of bacteria have been adequately
discussed previously [12, 31–33], but very few reviews have
highlighted the effects of these compounds in modulating
various aspects of bacterial virulence, critical for patho-
genesis in the host. In this review, we have focused on a
wide array of PDAs, with special emphasis on the diverse
biological effects exerted by these compounds on bacterial
virulence. The important classes of plant compounds and
selected antimicrobial mechanisms have been discussed.

2. Plant-Derived Antimicrobials

Most plant-derived compounds are produced as secondary
metabolites and can be classified based on their chemical
structure, which also influences their antimicrobial property
(Table 1). The major groups of phytochemicals are presented
here.

2.1. Phenolics and Polyphenols. These are a diverse group of
aromatic secondary metabolites involved in plant defense.
They consist of flavonoids, quinones, tannins, and coumarins
[33–35].

2.1.1. Flavonoids. Flavonoids are pigmented compounds
found in fruits and flowers of plants and mainly consist of
flavone, flavanones, flavanols, and anthocyanidins [34, 35].
They facilitate pollination by acting as chemoattractants for
insects, modulate plant physiology by signaling to beneficial
microbiota in rhizosphere, and protect plants against pre-
dation due to their antimicrobial nature [36]. The marked
antimicrobial property of flavonoids against a variety of
bacterial [37–39] and fungal pathogens [40] is mediated by
their action on the microbial cell membranes [41]. They
interactwithmembrane proteins present on bacterial cell wall
leading to increased membrane permeability and disruption.
Catechins belonging to this group exhibit inhibitory activity

against both Gram-positive and Gram-negative organisms
[42].

2.1.2. Quinones. Quinones are organic compounds consisting
of aromatic rings with two ketone substitutions. Quinones
are known to complex irreversibly with nucleophilic amino
acids in protein, often leading to their inactivation and
loss of function [43]. The major targets in the microbial
cell include surface-exposed adhesin proteins, cell wall
polypeptides, and membrane-bound enzymes [44]. Quinone
such as anthraquinone from Cassia italica was found to be
bacteriostatic against pathogenic bacteria such as Bacillus
anthracis, Corynebacterium pseudodiphthericum, and Pseu-
domonas aeruginosa and bactericidal against Burkholderia
pseudomallei [45].

2.1.3. Tannins. Tannins are a group of water-soluble oligo-
meric and polymeric polyphenolic compounds, with signif-
icant astringent properties. They are present in the majority
of plant parts, including bark, leave, fruits, and roots [46].
They are widely used in leather industry, in food industry,
and, as antimicrobials, in healthcare industry [47].Themode
of antimicrobial action of tannins is potentially due to
inactivation ofmicrobial adhesins and cell envelope transport
proteins [47–49]. Besides their efficacy against bacteria,
tannins have been reported to be inhibitory on fungi and
yeasts [46, 50].

2.1.4. Coumarins. Coumarins are a group of aromatic ben-
zopyrones consisting of fused benzene and alpha pyrone rings
[51]. Approximately, 1300 coumarins have been identified
since 1996 [44] and are used as antithrombotic and anti-
inflammatory compounds [52]. Recently, coumarins such
as scopoletin and chalcones have been isolated as antitu-
bercular constituents of the plant Fatoua pilosa [53]. In
addition, phytoalexins, which are hydroxylated derivatives
of coumarins, which are produced in plants in response
to microbial infections, have been found to exert marked
antifungal activity.

2.2. Alkaloids. Alkaloids are a group of heterocyclic nitroge-
nous compounds with broad antimicrobial activity. Mor-
phine and codeine are the oldest known compounds in
this group [54]. Diterpenoid alkaloids, commonly isolated
from Ranunculaceae or buttercup family of plants, are found
to possess antimicrobial properties [55]. The mechanism
of action of aromatic planar quaternary alkaloids such as
berberine and harmane is attributed to their ability to inter-
calate with DNA thereby resulting in impaired cell division
and cell death [33].

2.3. Terpenoids. Terpenes represent one of the largest and
most diverse groups of secondary metabolites consisting
of five carbon isoprene structural units linked in various
configurations [43]. The action of terpene cyclase enzymes
along with subsequent oxidation and structural rearrange-
ment imparts a rich diversity to the group with over
55,000 members isolated so far [56]. The major groups
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consist of diterpenes, triterpenes, tetraterpenes as well as
hemiterpenes, and sesquiterpenes [44]. When the com-
pounds contain additional elements, frequently oxygen,
they are termed terpenoids. Compounds such as menthol
and camphor (monoterpenes), farnesol and artemisinin
(sesquiterpenoids) are terpenoids synthesized from acetate
units and share their origins and chemical properties with
fatty acids [34]. Sesquiterpenoids are known to exhibit
bactericidal activity against Gram-positive bacteria, includ-
ing M. tuberculosis [35, 53]. The mechanism of antimi-
crobial action of terpenoids is not clearly defined, but it
is attributed to membrane disruption in microorganisms
[57].

2.4. Lectins and Polypeptides. In 1942, it was first reported
that peptides could be inhibitory on microorganisms [58].
Although recent interest has chiefly focused on studying
anti-HIV peptides and lectins, the inhibition of bacteria and
fungi by these molecules has long been known [59]. The
mechanism of action of peptides and lectins is presumed to
be due to the formation of ion channels in the microbial
membrane [60] or due to competitive inhibition of adhesion
of microbial proteins to host polysaccharide receptors [61].
Lectin molecules are larger and include mannose-specific
molecules obtained from an array of plants [62]. Lectins such
as MAP30 from bitter melon [63], GAP31 from Gelonium
multiflorum [64], and jacalin [65] are inhibitory on viral pro-
liferation, including HIV and cytomegalovirus by potentially
inhibiting viral interactionwith critical host cell components.
Due to the versatile antifungal, antibacterial, and antiviral
functions delivered by these compounds, it is advantageous
to investigate in depth their exact mechanism of action.

3. Critical Antimicrobial Properties of PDAs

3.1. Membrane Disruption and Impaired Cellular Metabolism.
Although the exact mechanisms by which PDAs exert their
antimicrobial action are not well defined, several potential
methods have been reported. These include disruption of
bacterial cell membrane leading to loss of membrane poten-
tial, impaired ATP production, and leakage of intracellular
contents [66, 67]. Furthermore, chelation of metal ions,
inhibition of membrane-bound ATPase, and altered mem-
brane permeability brought about by PDAs affect normal
physiology of bacteria and cause cell death [12, 32, 34, 68–
71]. Plant-derived antimicrobials such as carvacrol, thymol,
eugenol, and catechins act by disruption of cell membrane,
followed by the release of cell contents and loss of ATP [12, 70,
72, 73]. However, cinnamaldehyde has been reported to result
in the depletion of intracellular ATP by inhibiting ATPase
dependent energy metabolism along with the inhibition of
glucose uptake and utilization [32, 69, 70, 74]. Lysis of cell wall
has also been documented in bacteria exposed to phenolic
compounds [32, 75].

3.2. Antibiofilm Activity. Bacterial biofilms are surface-asso-
ciated microbial communities enclosed in a self-generated
exopolysaccharide matrix [76, 77]. They are a cause of

major concern, especially in the food industry and hospital
environments due to their recalcitrance to commonly
used antimicrobials and disinfectants [78–82], thereby
resulting in human illnesses, including endocarditis,
cystic fibrosis, and indwelling device-mediated infections
[83].

Extensive research exploring the potential of alternative
strategies for microbial biofilm control has highlighted the
efficacy of several PDAs in controlling biofilm formation
in major pathogens, including Listeria monocytogenes [84],
Staphylococcus aureus [85–89], Pseudomonas aeruginosa [90,
91], Escherichia coli [92, 93], and Klebsiella pneumoniae
[94]. Trans-cinnamaldehyde, an aromatic aldehyde obtained
from bark of cinnamon trees, was found to inhibit biofilm
formation and inactivate mature biofilm of Cronobacter
sakazakii on feeding bottle coupons, stainless steel surfaces,
and uropathogenic E. coli on urinary catheters [95, 96].
Similarly, terpenes such as carvacrol, thymol, and geraniol
and essential oils of Cymbopogon citratus and Syzygium
aromaticumwere found to exhibitmarked antibiofilm activity
against both fungal [97–99] and bacterial biofilms [86,
87, 100] encountered in food processing environments and
biomedical settings.

As observed in antibiotics [101–103], PDAs at subin-
hibitory concentrations (SICs, concentrations not inhibiting
the growth of microbes) are reported to modulate bacte-
rial gene transcription [84, 96, 104–106], which could be
a contributing factor to their antibiofilm property. In a
study by Amalaradjou and Venkitanarayanan [96], trans-
cinnamaldehyde was found to modulate the transcription
of genes critical for biofilm formation, motility, attachment,
and quorum sensing in C. sakazakii. Similarly, Brackman
and coworkers [107] observed the inhibitory effects of trans-
cinnamaldehyde on biofilms of Vibrio spp. These authors
found that trans-cinnamaldehydewas able tomitigate autoin-
ducer 2 based quorum sensing and biofilm formationwithout
inhibiting bacterial growth, probably due to its effect on gene
transcription. Similar transcription modulatory effects have
been observed in other major pathogens such as Salmonella
[108] and P. aeruginosa [109] following exposure to PDAs.
Since quorum sensing is one of the key processes involved in
cell-to-cell communication and social behavior in microbes,
the aforementioned reports could provide new insights into
the development of novel therapeutics targeting key physio-
logical processes in microbes.

Despite exhibiting effective antibiofilmproperties, the use
of PDAs has been thwarted by various confounding factors
such as the requirement for more contact time, difficulty
in administration, and organoleptic considerations when
used on food contact surfaces. Therefore several researchers
have investigated the efficacy of new delivery methods
such as biodegradable polymers, micellar encapsulation,
and polymeric films to potentiate the antibiofilm action
of plant compounds. For example, micellar encapsulated
eugenol and carvacrol were found to inhibit and inacti-
vate L. monocytogenes and E. coli O157:H7 colony biofilms
[110]. Similarly, reduced biofilm formation was observed on
polymeric films containing carvacrol and cinnamaldehyde
[88]. Nanoparticle-based drug delivery systems have been
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more frequently investigated for potentiating the antimi-
crobial efficacies of drugs [111]. The major advantages of
nanoparticle-based drug delivery include sustained release,
higher stability, and enhanced interaction of active ingredi-
ents with pathogens at their molecular level [112], thereby
potentiating their antimicrobial action. The antimicrobial
potential of nanoparticles containing plant-derived com-
pounds such as trans-cinnamaldehyde, eugenol [113], and
resveratrol [114] or essential oil of Nigella sativa [115] and
garlic [116] has been recently investigated. These researchers
found that nanoparticle formulations were more stable and
highly effective in inhibiting the growth of major bacterial
pathogens, including Salmonella and Listeria spp. Currently
research is underway to investigate the potential of various
nanoparticle-based delivery systems containing PDAs [117]
for eradicating biofilms from hospital devices [118] and food
processing environments [119]. In a recent study, Iannitelli
and coworkers [117] prepared carvacrol encapsulated poly
(DL-lactide-co-glycolide) (PLGA) nanoparticles and found
that they were significantly effective in inactivating microbial
biofilms of Staphylococcus epidermidis. In another study,
PLGA containing cinnamaldehyde and carvacrol coatings
were found to inhibit biofilms of E. coli, S. aureus, and P.
aeruginosa [120].

3.3. Inhibiting Bacterial Capsule Production. Polysaccharide
capsule is an important virulence determinant [121, 122] in
many pathogenic bacteria, including Streptococcus pneumo-
nia [123–125], S. aureus [126], K. pneumoniae [127], and
Bacillus anthracis [128]. It protects bacteria fromphagocytosis
[123], thereby enhancing bacterial survival inside the host
[126]. In addition, the presence of a capsule enhances bacte-
rial adhesion and biofilm formation [129] in the environment
[10, 130]. Bacterial capsule has also been observed to cause
pathology in plants. For example, capsular polysaccharide
of Pseudomonas solanacearum was found to occlude xylem
vessels resulting in plant death [131]. Since salicylic acid is
a signal molecule involved in plant defense [132], several
researchers have investigated the effect of salicylic acid
[133] or its derivatives such as sodium salicylate [134], bis-
muth subsalicylate [135], and bismuth dimercaprol [136] on
modulating bacterial capsule production. These researchers
found that salicylic acid or its derivatives were effective in
significantly reducing capsule production by modulating the
expression of global regulators controlling capsular synthesis
in S. aureus. Similar inhibitory effects have been observed
with sub-MICs and MICs of various antibiotics [137–140].
Thus, plant-derived compounds represent a valuable resource
for the development of therapeutics targeting bacterial cap-
sule production.

3.4. Increasing Antibiotic Susceptibility in Drug Resistant
Bacteria. As the understanding of antimicrobial resistance
mechanisms in pathogens is increasing, multifold strategies
to combat infections and reverse bacterial antibiotic resis-
tance are being explored. Many researchers have reported
PDAs as potential resistance modulating compounds, in
addition to their inherent antimicrobial nature. In a study
by Brehm-Stecher and Johnson [141], low concentrations

of sesquiterpene such as nerolidol, bisabolol, and apritone
increased bacterial sensitivity to multiple antibiotics, includ-
ing ciprofloxacin, clindamycin, tetracycline, and vancomycin.
Similarly, Dickson et al. [142] reported that plant extracts
from Mezoneuron benthamianum, Securinega virosa, and
Microglossa pyrifolia increased the susceptibility of major
drug resistant fungi such as Trichophyton spp. andMicrospo-
rum gypseum and bacteria such as Salmonella spp., Klebsiella
spp., P. aeruginosa, and S. aureus to norfloxacin. In addition,
geraniol (present in essential oil ofHelichrysum italicum) was
found to restore the efficacy of quinolones, chloramphenicol,
and 𝛽-lactams against multidrug resistant pathogens, includ-
ing Acinetobacter baumannii [143]. Similar synergism was
observed between antibiotics and various other medicinal
plant extracts, including those ofCamellia sinensis [144],Cae-
salpinia spinosa [145], oil of Croton zehntneri [146], carvacrol
[147], and baicalein, the active component derived from
Scutellaria baicalensis [148]. This modulatory effect of plant
compounds is potentially due to the attenuation of threemain
resistance strategies employed by drug resistant pathogens to
survive the action of antibiotics, namely, enzymatic degra-
dation of antibiotics [149], alteration of antibiotic target site
[150], and efflux pumps [151]. In addition, recent reports
suggest that the combination therapy of antibiotics with
PDAs acts through inhibition of multiple targets in various
pathways critical for the normal functioning or virulence of
the bacterial cell.

Generation of 𝛽-lactamase enzymes is an example of
microbial strategy that is responsible for resistance to 𝛽-
lactam antibiotics [152]. Several plant compounds have been
identifiedwith inhibitory activity towards𝛽-lactamases [153].
Gangoué-Piéboji and coworkers [154] screened medicinal
plants fromCameroon and found that extracts fromGarcinia
lucida and Bridelia micrantha exhibited significant inhibitory
activity towards𝛽-lactamases. Similarly, epigallocatechin gal-
late was found to inhibit penicillinase activity, thus increasing
the sensitivity of S. aureus to penicillin [155] and augmenting
the antimicrobial properties of ampicillin and sulbactam
against Methicillin resistant S. aureus (MRSA).

Numerous studies in the past two decades have shown
the efficacy of PDAs as potent efflux pump inhibitors
against Gram-positive microbes [156–158]. Gram-negative
bacteria pose an even greater challenge owing to the pres-
ence of potent efflux pumps, especially, AcrAB-TolC pumps
[159]. In a recent investigation, five PDAs, namely, trans-
cinnamaldehyde, 𝛽-resorcylic acid, carvacrol, thymol, and
eugenol, or their combinations were found to increase the
sensitivity of Salmonella enterica serotype Typhimurium
phage type DT104 to five antibiotics [160]. Since the mecha-
nism of antimicrobial resistance in Salmonella Typhimurium
DT104 is mainly mediated by interaction between specific
transporters of antibiotics and AcrAB-TolC efflux pump, the
aforementioned plant compounds could be acting through
modulation of these efflux pumps to increase the antibiotic
sensitivity of the pathogen [161].

3.5. Attenuating Bacterial Virulence. The pathophysiology
of microbial infection in a host is mediated by multiple
virulence factors, which are expressed at different stages of
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infection to cause the disease. Reducing production of these
virulence factors could control infections in humans. With
major advancement in the fields of comparative genomics,
transcriptomics, and proteomics, a better understanding of
the key virulence mechanisms of pathogenic bacteria has
been achieved. Thus, virulence factors are the prime targets
for therapeutic interventions and vaccine development [11].
Quorum sensing controls the expression of genes encoding
various virulence factors in many microorganisms [162, 163].
A growing body of evidence suggests that plants produce
antiquorum sensing compounds that interfere with cell-to-
cell communication, thereby downregulating the expression
of virulence genes in microbes [164–166]. We previously
reported that trans-cinnamaldehyde reduced the expression
of luxR, which codes for transcriptional regulator of quorum
sensing in C. sakazakii [96]. Similarly, Bodini and coworkers
found that garlic extract and p-coumaric acid inhibited quo-
rum sensing in quorum sensing reporter strains, indicating
that plant compounds potentially modulate virulence by
affecting quorum sensing in microbes.

For the majority of enteric pathogens, adhesion to and
invasion of intestinal epithelium are critical for virulence and
infection in a host. Specific proteins contribute to adhesion
and invasion in various microbes. For example, Inl A and
Inl B are surface proteins that facilitate receptor-mediated
entry of L. monocytogenes in intestinal cells [167]. Several
PDAs have been shown to reduce these virulence attributes
in major food-borne pathogens such as L. monocytogenes
[105], uropathogenic E. coli [168], and Salmonella enterica
serovar Enteritidis [104] by downregulating the expression of
virulence genes. In addition, reduction in capsule production
has been documented inK. pneumoniae on exposure to PDAs
[169], which affects its virulence and survival inside the host.
These results highlight the ability of plant compounds to
successfully target virulence factors critical for pathogenicity
and pave the way for the development of compounds that
target bacterial virulence.

3.6. Reducing Toxin Production. Microbial toxins are chem-
ical compounds critical for virulence and pathogenesis in
the host and therefore are prime targets for therapeutic
interventions. Microbial toxins include exotoxins (secreted
by the bacteria) and endotoxins (released after bacterial
lysis), whereas mycotoxins are toxic secondary metabolites
produced by fungi with diverse chemical structures and
biological activities causing a variety of illnesses in humans.
The drugs of choice for treating bacterial infections have been
antibiotics; however the use of antibiotics to kill toxigenic
microorganisms has several disadvantages such as resistance
development [170], disruption of normal microbiota [171],
and enhanced pathogenesis due to increased toxin produc-
tion and cell lysis as observed in E. coli O157:H7 [172, 173].
Moreover, toxin-mediated pathogenesis can continue in the
host even after bacterial clearance [174].Therefore, antibiotics
in general are contraindicated to treat toxigenic organisms
and it is beneficial to employ an alternative approach to
counteract the toxin-mediated virulence of pathogens.

In the past, plant extracts and their active molecules have
proven effective against bacterial toxins produced by Vibrio

spp., S. aureus, E. coli, and fungal toxins from Aspergillus spp.
For example, a natural plant-derived dihydroisosteviol has
been observed to prevent cholera toxin-mediated intestinal
fluid secretion [175]. Plant polyphenols such as RG-tannin
and apple phenols have been reported to inhibit ADP-
ribosyltransferase activity critical for cholera toxin action
[176, 177]. These researchers also observed a reduction in the
toxin induced fluid accumulation in mouse ileal loops. In a
recent study byYamasaki et al. [178], extracts from spices such
as red chilli, sweet fennel, and white pepper were found to
substantially inhibit the production of cholera toxin. These
researchers found that capsaicin was an important compo-
nent among the tested fractions and significantly reduced the
expression of major virulence genes of V. cholerae, including
ctxA, tcpA, and toxT. Similarly, eugenol, an essential oil from
clove, was observed to significantly reduce the production
of S. aureus 𝛼-hemolysin, enterotoxins (SEA, SEB), and
toxic shock syndrome toxin 1 [106]. Transcriptional analysis
conducted by these researchers revealed a reduction in the
expression of critical virulence genes (sea, seb, tst, and hla)
involved in various aspects of S. aureus toxin production.
Similarly, a compound from olive, 4-hydroxytyrosol, was
found to successfully inactivate S. aureus endotoxin produc-
tion in vitro [179].

Enterohemorrhagic E. coli (EHEC) is responsible for
causing severe human infections, characterized by hemor-
rhagic colitis and hemorrhagic uremic syndrome [180]. In
a recent study by Doughari and coworkers [181], extracts
of Curtisia dentata were found to inhibit expression of
vtx1 and vtx2 genes in EHEC. The extracts from this
plant have been traditionally used as an antidiarrheal agent
[182]. Similar verotoxin inhibitory activity was observed in
other plant extracts such as Haematoxylon brasiletto [183],
Limonium californicum (Boiss.), Cupressus lusitanica, Salvia
urica Epling, and Jussiaea peruviana L. [184]. Inactivation
of Shiga toxins by antitoxin antibodies [185] and by certain
synthetic carbohydrate and peptide compounds designed to
compete with the active site of the toxin for receptor sites
on cell membranes has also been investigated [186–189].
Quiñones and coworkers [190] found that grape seed and
grape pomace extracts exhibited strong anti-Shiga toxin-2
activity and conferred cellular protection against Shiga toxin-
2. Likewise, Daio (Rhei rhizoma), apple, hop bract, and green
tea extracts have been shown previously to inhibit the release
of Shiga toxin from E. coli O157:H7 [176, 191].

Aflatoxins, produced by Aspergillus flavus, A. parasiticus,
A. nomius, A. tamari, A. bombycis, and A. pseudotamarii,
cause both acute and chronic toxicity in humans and animals
[192–195]. Common food products associated with myco-
toxicosis include peanuts, corn grain, cottonseed [196, 197],
chicken meat [198] cheese [199], canned mushrooms [200],
rawmilk [201, 202], and pork [203, 204]. Several studies have
highlighted the efficacy of essential oils in reducing myco-
toxin production. Crude aqueous extracts of garlic, carrot,
and clove have been shown to exert a significant inhibitory
effect on aflatoxin production in rice [205]. Capsanthin and
capsaicin, the coloring and pungent ingredients of red chilli
(Capsicum annum), completely inhibited both the growth
and toxin production in A. flavus [206]. Mahmoud [207]
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studied the effect of several plant essential oils on growth and
toxin production of A. flavus and found that five essential
oils, namely, geraniol, nerol, citronellol, cinnamaldehyde, and
thymol, completely suppressed the growth of A. flavus and
prevented aflatoxin synthesis in a liquid medium. Similarly,
curcumin and essential oil from Curcuma longa have also
been reported to inhibit A. flavus toxin production [208]. In
another study, cumin and clove oils have been found to exert
inhibitory effects on toxin production in A. parasiticus [209],
wherein aflatoxin production was decreased by 99%. Similar
findings have been observed with ochratoxin-producing
aspergilli, where essential oil from wild thyme reduced
ochratoxin production by more than 60% [210]. In addition,
essential oils have been found to inhibit spore germination
in toxin producing Aspergillus species [211]. In a recent study,
Kumar and coworkers [212] demonstrated that amaryllin, a
15-kDa antifungal protein from Amaryllis belladonna bulbs,
exerts significant inhibitory effect against toxin producing A.
flavus and Fusarium oxysporum. The aforementioned studies
collectively suggest that plant polyphenols and other plant
compounds are potential agents that can be used to protect
humans against toxin-mediated food-borne diseases.

3.7. Beneficial Effects on Host Immune System. Pioneering
research has demonstrated the existence of intriguing par-
allels between plant and animal immune responses against
microbial infections. These include recognition of invari-
ant pathogen-associated molecular patterns (PAMPs) [213],
apoptosis of infected cells [214, 215], and production of
antimicrobial peptides [216, 217]. However, unlike microbe-
specific immune response in animals, plants depend on
innate immunity of individual cells coupled with signals
emanating from the site of infection [28, 218–220] to combat
infections. This is mediated by the production of a wide
variety of low molecular weight secondary metabolites [26,
221]. A mounting body of evidence suggests that plants
extracts, in addition to their role in plant defense, exert
immune-modulatory effects in animals [222, 223] and are
increasingly being used for treating inflammatory diseases,
allergy, and arthritis [224]. For example, tea tree [225, 226]
and lavender oils [227] were found to ameliorate allergy
symptoms by reducing histamine release [228, 229] and
cytokine production [230]. The immune-modulatory effects
of many PDAs have been demonstrated in mouse, chicken,
and human cell lines [231–233]. Since the majority of the
enteric pathogens colonize and invade the gut epithelium,
followed by systemic spread via macrophages resulting in
infection, the intestinal mucosal immune response (IMIS)
is critical for conferring protection against such bacterial
infections. A growing body of evidence suggests that PDAs
in addition to attenuating bacterial virulence modulate IMIS
[224, 234] through both nonspecific inflammatory response
and antigen specific adaptive interactions in the intestine,
thereby affecting pathogen survival. Plant preparations such
as Eucalyptus oil [224], babassu mesocarp extract [235], and
oil from seeds of Chenopodium ambrosioides L. [236] were
found to activate the phagocytic activity of macrophages,
whereas essential oils from Petroselinum crispum [234],
Artemisia iwayomogi [237], and Jeju plant extract [116] were

found to suppress activity of splenocytes and macrophages,
indicating that the two oils may act through different mech-
anisms.

3.8. Beneficial Effects on Gastrointestinal Microflora. The
human intestinal tract hosts a vast population of diverse
bacterial communities that amount to as many as 1012 cells
per 1 g of fecal mass in an average human being [238, 239].
The gutmicrobiota interacts with the host and influences var-
ious biological processes [240], including microbial defense
[241]. With advances in high throughput sequencing and
metagenomics and development of gnotobiotic animals, the
ability to explore the variations in gut microbiota compo-
sition and their effect on human health has significantly
improved [242, 243]. Modulations in dietary components
have been associated with fluctuations in the composition
of gut microbial population and diversity [244, 245], which
in turn affects host’s metabolic functions [246] and suscep-
tibility to gastrointestinal bacterial infections [247]. David
and coworkers [248] observed that short-termmacronutrient
variation leads to a change in the gut microbial commu-
nity structure, with animal protein-based diet increasing
the abundance of bile-tolerant microorganisms (Alistipes,
Bilophila, and Bacteroides) and reducing the levels of Fir-
micutes that metabolize dietary plant polysaccharides (Rose-
buria, Eubacterium rectale, and Ruminococcus bromii). Bailey
and group [249] demonstrated that stress exposure disrupted
commensal microbial populations in the intestine of mice
and led to increased colonization of Citrobacter rodentium.
These researchers in their subsequent study observed that
Lactobacillus reuteri attenuated the stress-enhanced severity
of C. rodentium infection in mice [250]. Interestingly, recent
studies have shown that PDAs that are highly bactericidal
towards enteric pathogens exert low antimicrobial effect
against commensal gut microbiota [251, 252]. Thapa and
coworkers [253] found that nerolidol, thymol, eugenol, and
geraniol inhibited growth of enteric pathogens such as E. coli
O157:H7, Clostridium difficile, and S. Enteritidis. Moreover,
the degree of inhibition was more on the pathogens than
the commensal bacteria. Since PDAs and probiotics exert
their antimicrobial effects by different mechanisms [254], a
combinatorial approach using both could bemore effective in
controlling pathogens as compared to using them separately.
However, research investigating their synergistic interactions
is scanty. Further research is necessary to comprehensively
elucidate the mechanism of action of such dietary interven-
tions and their effect on gutmicrobiota for designing effective
therapies that promote health by targeting diverse microbial
communities.

4. Challenges Associated with Using PDAs for
Pathogen Control

The efficacy of PDAs in controlling pathogens in the environ-
ment, high-risk foods, or their virulence in the host depends
on various intrinsic and extrinsic factors. Physiochemical
properties of PDAs such as solubility in aqueous solutions,
hydrophobicity, biodegradability, and stabilities are major
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challenges that thwart their usage as natural biocontrol agents
in the environment [32, 255]. In addition, factors such as
environmental temperature and atmospheric composition
also modulate their antimicrobial efficacy [256]. In food
products, the presence of fat [257], carbohydrates [258],
and proteins [259] affects the efficacy of PDAs. Moreover,
chemical variability in PDAs, originating from differences
in extraction protocols [260, 261], affects the antimicrobial
efficacy [12]. Another concern for PDAs is their strong aroma,
which may modulate the organoleptic property and taste
profile of food products. Therefore, careful selection of PDAs
based on their chemical composition and effect on sensory
attributes of food product is warranted before recommending
their usage as food preservatives or direct oral supplements
for human consumption [262].

5. Future Directions

With an increasing body of supporting literature, PDAs are
now recognized to play a critical role in the development of
effective therapeutics, either alone or in combination with
conventional antibiotics. However, the major challenges to
this include finding compounds with sufficiently lowerMICs,
low toxicity, and high bioavailability for effective and safe use
in humans and animals.

Based on their modes of action, PDAs are classified
into three categories, including conventional antimicrobials,
multidrug resistance inhibitors, and compounds that target
specific or multiple virulence factors in microbes [221]. As
new approaches that target specific regulatory pathways and
bacterial virulence are becoming the paradigm of antibac-
terial therapeutics in recent years, characterization of the
mechanism of action of these compounds would pave the
way for the development of novel drugs that can circumvent
antimicrobial resistance and control infectious diseases.
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[40] R. P. Krämer, H. Hindorf, H. C. Jha, J. Kallage, and F. Zilliken,
“Antifungal activity of soybean and chickpea isoflavones and
their reduced derivatives,” Phytochemistry, vol. 23, no. 10, pp.
2203–2205, 1984.

[41] P. M. Davidson and A. S. Naidu, “Phytophenols,” in Natural
Food Antimicrobial Systems, pp. 265–293, CRC Press, 2000.

[42] P. W. Taylor, J. M. T. Hamilton-Miller, and P. D. Stapleton,
“Antimicrobial properties of green tea catechins,” Food Science
& Technology Bulletin, vol. 2, pp. 71–81, 2005.

[43] A. Sher, “Antimicrobial activity of natural products frommedic-
inal plants,” Gomal Journal of Medical Sciences, vol. 7, no. 1, pp.
65–67, 2004.

[44] D. Ciocan and I. Bara, “Plant products as antimicrobial agents,”
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Franco, and F. Maŕın-Iniesta, “Antimicrobial activity of vanillin
and mixtures with cinnamon and clove essential oils in con-
trolling Listeria monocytogenes and Escherichia coli O157:H7 in
milk,” Food and Bioprocess Technology, vol. 5, no. 6, pp. 2120–
2131, 2012.

[258] J. Gutierrez, C. Barry-Ryan, and P. Bourke, “The antimicrobial
efficacy of plant essential oil combinations and interactionswith
food ingredients,” International Journal of Food Microbiology,
vol. 124, no. 1, pp. 91–97, 2008.

[259] M. Hyldgaard, T. Mygind, and R. L. Meyer, “Essential oils in
food preservation: mode of action, synergies, and interactions
with foodmatrix components,” Frontiers in Microbiology, vol. 3,
article 12, 2012.

[260] C. F. Bagamboula, M. Uyttendaele, and J. Debevere, “Inhibitory
effect of thyme and basil essential oils, carvacrol, thymol,
estragol, linalool and p-cymene towards Shigella sonnei and S.
flexneri,” Food Microbiology, vol. 21, no. 1, pp. 33–42, 2004.

[261] B. Prakash, R. Shukla, P. Singh, A. Kumar, P. K. Mishra, and N.
K. Dubey, “Efficacy of chemically characterized Piper betle L.
essential oil against fungal and aflatoxin contamination of some
edible commodities and its antioxidant activity,” International
Journal of Food Microbiology, vol. 142, no. 1-2, pp. 114–119, 2010.

[262] J. Gutierrez, G. Rodriguez, C. Barry-Ryan, and P. Bourke,
“Efficacy of plant essential oils against foodborne pathogens
and spoilage bacteria associated with ready-to-eat vegetables:
antimicrobial and sensory screening,” Journal of Food Protec-
tion, vol. 71, no. 9, pp. 1846–1854, 2008.

[263] G. R. Beecher, “Overview of dietary flavonoids: nomenclature,
occurrence and intake,” Journal of Nutrition, vol. 133, no. 10, pp.
3248S–3254S, 2003.

[264] F. Y. Chye and S. N. Hoh, “Antimicrobial activity of flavonoid
extracts from Sabah tea (Camellia sinensis) against Escherichia
coli and Listeria monocytogenes,” Journal of Tropical Food
Science, vol. 35, pp. 245–251, 2007.
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