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Abstract: 
Attachment of a myristoyl group to NH2-terminus of a nascent protein among protein post-translational modification (PTM) is called myristoylation. The myristate 
moiety of proteins plays an important role for their biological functions, such as regulation of membrane binding (HIV-1 Gag) and enzyme activity (AMPK). 
Several predictors based on protein sequences alone are hitherto proposed. However, they produce a great number of false positive and false negative predictions; 
or they cannot be used for general purpose (i.e., taxon-specific); or threshold values of the decision rule of predictors need to be selected with cautiousness. Here, 
we present novel and taxon-free predictors based on protein primary structure. To identify myristoylated proteins accurately, we employ a widely used machine-
learning algorithm, support vector machine (SVM). A series of SVM predictors are developed in the present study where various scales representing 
physicochemical and biological properties of amino acids (from the AAindex database) are used for numerical transformation of protein sequences. Of the 
predictors, the top ten achieve accuracies of >98% (the average value is 98.34%), and also the area under the ROC curve (AUC) values of >0.98. Compared with 
those of previous studies, the prediction accuracies are improved by about 3 to 4%.  
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Background: 
Myristoylation is an irreversible post-translational protein modification (PTM), 
in which a myristoyl group is derived from myristic acid and covalently 
attached via an amide bond to the alpha-amino group of an NH2-terminal 
residue of a nascent polypeptide. This PTM occurs most commonly on glycine 
residues exposed during co-translational NH2-terminal methionine removal. 
The usual irreversible modification is absolutely essential for the biological 
functions of most myristoylated proteins. A cytosolic enzyme, N-myristoyl 
transferase (NMT; E.C. 2.3.1.97), is responsible for the transfer of myristate 
(from myristoyl-CoA) onto the NH2-terminal residue of protein substrates. 
Therefore, NMT is a potential chemotherapeutic target in antifungal [1] and 
anticancer drug design [2]. The protein substrates of NMT (reviewed by Boutin 
[3]) are so diverse, including regular enzymes, such as the protein kinase A, 
protein kinase G, cytochrome b5 reductase, NO synthase, most of G 
proteinαsubunits, and key enzymes in transforming processes, such as non-
receptor associated tyrosine kinase (fyn, lyn, src, hck), and structural proteins 
(gag, UL, etc) of retroviruses and other viruses which include poliovirus, 
polyma virus, herpes simplex, influenza virus and so on. Attachment of the 
myristoyl residue provides hydrophobicity to influence the partitioning of 
proteins to cellular membranes; it can serve to promote protein-protein 
interactions [4]. Since myristoylation has a central role in virus maturation and 
oncogenesis, specific NMT inhibitors might also lead to potent antivirus 
agents. The experimental procedure for identifying a myristoylated protein 
includes cellular labeling by [3H] myristate, isolation of the protein, and 
recognition of the released fatty acid. The experimental techniques involve 
reverse phase high-performance liquid chromato- graphy (RP-HPLC), gas 
chromatography and mass spectrometry. The ionization techniques of mass 
spectrometry also involve fast-atom bomdartment, chemical ionization, 

electrospray and tandem mass spectrometry. The sensitivity of these techniques 
is insufficient and they often require much more biological materials. It is, 
therefore, desirable to identify precisely and reliably myristoylated proteins for 
protein functional annotations in the proteome-wide, especially when 
experimental measurements are unavailable.  
 
Studies of specificity of NMT protein substrates [5] led to a proposed model of 
the 8-residue NH2-terminal consensus sequence (GNXXXXRR). In PROSITE 
[6], a 6-residue sequence model, pattern PS00008 (G−{EDRKHPFYW} 
−X(2)−[STAGCN]−{P}), is presented as the consensus sequence of 
myristoylated proteins. In this motif, uncharged residues are allowed in 
position 2 while charged residues, proline and large hydrophobic residues are 
not allowed; most residues are allowed in position 3 and 4; small uncharged 
residues are allowed in position 5 and Serine is favored; proline is not allowed 
in position 6. Then, Johnson et al. [4] focused on the fifth position of the 8-
residue model and proposed one which only Ser or Thr is allowed in the fifth 
position (GXXXS/TXXX). Later, sequence analysis of myristoylated proteins 
[7] suggests a protein motif that has three regions: positions 1-6 for fitting the 
binding pocket, positions 7-10 for interacting with the surface of N-
myristoyltransferase at the mouth of the catalytic cavity and positions 11-17 for 
containing a hydrophilic linker. Many attempts have been done for developing 
predictors for myristoylated proteins, such as pattern search, scoring system, 
neural network (NN). Hitherto, the proposed predictors are based on protein 
sequences alone. Among them, PS00008 of PROSITE [6] constructed from a 
small dataset was available in 1990; however, it had not been updated since 
then, and was reported that it produces a great number of not only false positive 
but false negative predictions. Maurer-Stroh et al. [8] showed a taxon-specific 
and score-based predictor named as NMT predictor. Regarding predictions 
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with scores lower than the threshold, they gave a lower bound and defined 
them as ”twilight zone” predictions. Although Boisson, Giglione and Meinnel 
(BGM) [9] attempted to modify its threshold parameter and improve 
identification for plant protein sequences, “twilight zone” predictions are still 
unsolved. Bologna et al. [10] suggested a rule-based model using average 
output scores generated from 25 NNs, and Podell and Gribskov [11] put 
forward a plant-specific hidden Markov model. However, the former one needs 
much more samples to optimize the rule set and the latter one is also taxon-
specific. In the present study, we show new predictors, trained by using support 
vector machine (SVM), to improve the prediction of myristoylated proteins. 
 
Methodology: 
Training Datasets: 
We retrieved 447 entries, each of which is clearly labeled with ”N-myristoyl 
glycine” in the field of feature table, through online search with a keyword 
“myristate” against the UniProtKB database. Each sequence length of these 
proteins is larger than 100 residues; they cover a wide range of functions, 
including kinases, phosphatases, cytochrome c oxidase and so on. We noted 
that Maurer-Stroh’s learning dataset and ours share 210 common entries. The 
negative dataset [12] consists of 429 entries, which were selected from 
GenBank by text-based searching. These entries contain four kinds of proteins: 
cytosolic proteins, secreted proteins, N-TM-C (transmembrane proteins with an 
NH2-terminal export signal predicted by SignalP and a hydrophobic COOH-
terminus), and transmembrane proteins. Homology similarity of sequences in 
the negative set was reduced to less than 50% by the employment of Smith-
Waterman algorithm. Sequence-length requirement for these proteins in the 
negative dataset is also larger than 100 residues.  
 
Feature vector construction: 
According to the motif proposed by Maurer-Stroh et al. [7], we used 17 
residues at NH2-terminus as input for each protein sequence. To transform 
these residues into a numerical format (called a feature vector), we applied a 
binary transform (20 binary values per residue), or the value Kyte-Doolittle 
(KD) scale, or their combination. Here, we exemplify the numerical 
transformation of a protein sequence with the feature vector named 
“KD+binary”, which is a vector of 355 components. Of 355 components, the 
first 15 components are generated by applying the KD scale (window size of 
three residues; 15 windows in a 17-residues sequence), and the remaining 340 
components (17×20) are generated from binary transformation. Also, we tried 
to combine KD with another scale representing physicochemical and biological 
properties of amino acids. As for this additional scale, we examined all the 543 
scales in AAindex database [13]. 
 
SVM and Cross-validation assessment: 
In this study, 1-norm soft margin optimization of SVM [14] and Radial basic 
Function (RBF), as the kernel function, were employed for our task. A K-fold 
cross validation (CV) scheme was used to prevent the over-fitting problem and 
K = 5 was adopted here, i.e. the whole data set was divided at random into five 
equal subsets, each of them served as the test set in turn and the remaining 
subsets used for training. Regarding CV assessment, the most frequently used 
performance measure, the area under the ROC curve (AUC) that provides us a 
single numeric value, was also used in this study; the closer AUC is to 1.00, the 
better performance of the predictor is; AUC of 0.50 means the predictor that 
predicts the class at random. 
 
Discussion: 
Since myristoylation has a central role in virus maturation and oncogenesis, 
NMT inhibitors would be potent antivirus and anticancer agents. Hence, the 
ability to computationally recognize NMT substrate has important implications. 
Apart from accelerating NMT protein substrate annotation in the current 
database, it would be helpful for designing NMT inhibitors. The assessments of 
various SVM predictors are summarized in Table 1 (see Supplementary 
material). As it’s shown, the “Binary” predictor shows better performance than 
the “KD” or the “KD+binary” predictor; however, the remaining predictors in 
Table 1 improve the performance of the “Binary”. Owing to addition of 
properties of amino acids, the prediction accuracies are all over 98% (the 
average value is 98.34%) and corresponding AUC values are also over 0.98, 
which is close to the perfect value (1.0). Regarding the top ten of 543 
predictors whose features were generated by utilizing KD with other scales (the 
remains of them are not listed here), these ten scales representing properties of 
amino acid could be roughly classified into three categories: preference of 

protein secondary structure (AURR980117, RICJ880115, MAXF760104, 
MAXF760105, TANS770107 and ISOY800108), relative stability 
(ZHOH040102) and geometry property (FAUJ880104, FAUJ880106 and 
LEVM760102). The motif search by PS00008 of PROSITE, reported by 
Maurer-Stroh et al. [8] and Bologna et al. [10], generates a great number of the 
false positive hits as applied to large database scan. Therefore, we first 
compared our results with those of NMT predictor developed by Maurer-Stroh 
et al. [8]. They showed the jack-knife tests for their learning dataset show that 
for the fungi dataset, the prediction accuracy is 95.9% (353/368) and is 95.5% 
(21/22) for the eukaryotic and viral sequences. Comparing with these results, 
the average prediction accuracy (98.34%) produced by our SVM predictors is 
higher and improved by 3%. The NMT predictor is based on a statistical 
scoring scheme and is taxon-specific, i.e., one has to choose the parameter set 
according to the taxonomy of the query protein sequences. There are two 
taxon-specific fields: one is fungi, the other is eukaryota and their viruses (non-
fungal). In contrast, our SVM predictors are taxon-free and have few 
parameters. Further, the classification rule of the NMT predictor generated is 
based on positive sequences. For screening of unknown proteins, however, it is 
difficult to balance between false positive and false negative errors.  
 
Second, we also compared our predictors with the NN predictor [10]. In the 
NN predictor, Bologna et al. used 16 amino acids after the NH2-terminal 
glycine. NN input vectors of amino acids were encoded by sparse coding, i.e., 
binary values. Each amino acid was represented by 40 binary values. The first 
20 binary values stand for amino acid types and the last 20 binary values stand 
for properties of each amino acid which are based on taxonomy of 20 amino 
acids, such as aromatic, aliphatic, neutral, charge, and so on. The prediction 
accuracy produced by the NN method is 93.8%. Compared with those in Table 
1 (except for “KD”), the prediction accuracy is improved by 4.12% (97.92%) 
for “Binary”, 3.53% (97.15%) for “KD+binary” and 4.54% (average 98.34%) 
for the remaining predictors. Compared with predictors proposed in the 
previous studies, the current predictors trained in this work show higher 
performance. We must note that since there is a subtle difference among the 
conditions used in the different methods, it could not make us do a complete 
fair comparison.  
 
Conclusion: 
In this study, we presented new predictors based on the SVM for myristoylated 
protein prediction. The ten SVM predictors, whose features were generated by 
applying the KD scale and other scales, showed average accuracies of 98.34%. 
Roughly compared with those of previous studies, the prediction accuracies 
were improved by about 3 to 4%. Achievement of the higher prediction 
accuracies of our SVM predictors may imply that, except for hydrophobicity of 
amino acids represented by the KD scale, preference of protein secondary 
structure, relative stability and geometry property represented by the other ten 
scales might also be important to myristolation. Our SVM predictors have 
remarkable generalization ability by virtue of support vector machine 
algorithm, and we believe that our new predictors will be helpful to identify 
myristolated proteins on the proteomic scale. A crystal structure (PDB code: 
1IID) shows that protein substrate in active site prefers to α helix and coil 
rather than β sheet since β sheet needs more space. Regarding myristoylation of 
proteins, the further investigations of the secondary structure and space 
requirement also need be done in future. 
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Supplementary material: 
 
Table 1: Performance assessment of myristoylated protein prediction by SVM 

Name of SVM predictorsa Winb Total lengthc ACC(%)d AUCe 
Binary 1 17 97.92 0.983 
KD 3 17 90.16 0.919 
KD + binary (3,1) 17 97.15 0.977 
KD + TANS770107 (3,3) 17 98.64 0.989 
KD + RICJ880115 (3,3) 17 98.50 0.988 
KD + FAUJ880104 (3,3) 17 98.48 0.988 
KD + MAXF760105 (3,3) 17 98.41 0.987 
KD + LEVM760102 (3,3) 17 98.37 0.987 
  KD + FAUJ880106 (3,3) 17 98.36 0.986 
KD + MAXF760104 (3,3) 17 98.35 0.987 
KD + ISOY800108 (3,3) 17 98.22 0.986 
KD + ZHOH040102 (3,3) 17 98.05 0.984 
KD + AURR980117 (3,3) 17 98.02 0.984 

aSVM predictors: named after the types of components of the input feature vectors. The top ten of 543 predictors whose features were generated by utilizing KD 
with other scales are shown here. KD: Kyte-Doolittle scale; TANS770107, normalized frequency of left-handed helix; RICJ880115, relative preference value at C-
cap; FAUJ880104, length of the side chain; MAXF760105, normalized frequency of zeta L; LEVM760102, distance between Cα and centroid of side chain; 
FAUJ880106, mini- mum width of the side chain; MAXF760104, normalized frequency of left-handed α-helix; ISOY800108, normalized relative frequency of 
coil; ZHOH040102, the relative stability scale extracted from mutation experiments; AURR980117, normalized positional residue frequency at helix termini C′; 
bWin: the size of sliding window; c Total length: the total number of residues at NH2-terminus for input; dACC: average prediction accuracy of 100 runs of 5-fold 
CV test; eAUC: the value of the area under the ROC curve derived from 100 runs of 5-fold CV test. 
 
 


