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ABSTRACT
Introduction Current treatments for chronic 
musculoskeletal (MSK) pain are suboptimal. Discovery 
of robust prognostic markers separating patients who 
recover from patients with persistent pain and disability is 
critical for developing patient- specific treatment strategies 
and conceiving novel approaches that benefit all patients. 
Given that chronic pain is a biopsychosocial process, this 
study aims to discover and validate a robust prognostic 
signature that measures across multiple dimensions in 
the same adolescent patient cohort with a computational 
analysis pipeline. This will facilitate risk stratification in 
adolescent patients with chronic MSK pain and more 
resourceful allocation of patients to costly and potentially 
burdensome multidisciplinary pain treatment approaches.
Methods and analysis Here we describe a multi- 
institutional effort to collect, curate and analyse a 
high dimensional data set including epidemiological, 
psychometric, quantitative sensory, brain imaging and 
biological information collected over the course of 12 
months. The aim of this effort is to derive a multivariate 
model with strong prognostic power regarding the clinical 
course of adolescent MSK pain and function.
Ethics and dissemination The study complies with the 
National Institutes of Health policy on the use of a single 
internal review board (sIRB) for multisite research, with 
Cincinnati Children’s Hospital Medical Center Review Board 
as the reviewing IRB. Stanford’s IRB is a relying IRB within 
the sIRB. As foreign institutions, the University of Toronto 
and The Hospital for Sick Children (SickKids) are overseen 
by their respective ethics boards. All participants provide 
signed informed consent. We are committed to open- access 
publication, so that patients, clinicians and scientists have 
access to the study data and the signature(s) derived. After 
findings are published, we will upload a limited data set for 
sharing with other investigators on applicable repositories.
Trial registration number NCT04285112.

INTRODUCTION
Up to 5% of adolescents suffer from debil-
itating, chronic musculoskeletal (MSK) 
pain1 2 affecting quality of life, school 

attendance, mood and family function, and 
posing a significant economic burden.3–14 
Current treatments for chronic MSK pain 
are suboptimal.15 Despite multidisciplinary 
pain treatment approaches, only 40%–60% 
of adolescents with chronic MSK pain 
achieve and sustain improvements in rele-
vant clinical endpoints including pain and 
functional disability.16–21 Discovery of robust 
prognostic markers differentiating patients 
who recover from patients with persistent 
pain and disability is essential to develop 
more resource efficient and patient- specific 
treatment strategies and to conceive novel 
treatment approaches that benefit patients 
whose pain and disability are refractory to 
current options. Such discovery is particu-
larly pressing for the paediatric population, 
as the management of paediatric chronic 
pain is often absent from policy and funding 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ This study simultaneously assesses different crit-
ical domains with aid of neuroimaging, immune 
profiling, somatosensory testing and psychological 
assessments to characterise the clinical course of 
pain and function in adolescent patients suffering 
from chronic musculoskeletal pain.

 ⇒ A multivariate modelling approach using cross- 
validation is applied to derive robust and minimally 
biased prognostic signatures in a high dimensional 
data set where the number of features (predictors) 
is larger than the number of observations (sample 
size).

 ⇒ The multicentre study design render findings more 
generalisable.

 ⇒ Conclusion regarding the effectiveness of the inter-
vention strategies will be limited due to the open- 
label design and the heterogeneity of interventions.
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initiatives.22–24 Moreover, the rate of persistently high 
levels of pain up to 1 year in adolescents exceeds rates 
documented in younger peers,16 and many adolescents 
with MSK pain continue suffering from pain into adult-
hood.3 25 As such, studying MSK pain in adolescence is an 
urgent priority in pain medicine.22

METHODS AND ANALYSIS
Study design
The primary goal of this multisite prospective study, 
Signature for Pain Recovery IN Teens (SPRINT), is to 
discover and validate a prognostic signature of recovery 
versus persistence of pain and functional disability in 
adolescents with chronic MSK pain undergoing multidis-
ciplinary care, by integrating four major domains: neural, 
somatosensory, immune and psychological profiles. The 
approach summarised here entails the study timeline 
(figure 1) and overview (figure 2). SPRINT was prereg-
istered at  ClinicalTrials. gov in February 2020. In the 
multivariate signature discovery phase, our study teams 

will enrol adolescent patients (11–18 years) who report 
to one of three large, multidisciplinary paediatric pain 
clinics in the USA and Canada. Individuals will be char-
acterised at baseline via neural, somatosensory, immune 
and psychological metrics. Unbiased machine learning 
algorithms will derive multivariate models comprising 
neuroimaging, immune, somatosensory and/or psycho-
logical markers that will classify adolescents with MSK 
pain who will or will not recover after pain treatment 
intervention as measured by pain and disability levels. 
Two prognostic signatures will be derived: one for pain 
and the other for disability. These models will be tested 
in a second independent prospective cohort of patients 
in the validation phase. We will estimate the negative 
prognostic value of the derived signatures for pain and 
disability non- recovery.

Rationale for study design
Adolescence represents a critical developmental phase 
for neuronal encoding and plasticity and coincides with 
the peak onset of chronic pain in childhood. Thus, 

Figure 1 Study sequence. After baseline SPRINT assessment of neuroimaging, quantitative sensory testing, immunological 
markers in blood and self- report questionnaires, healthcare use and clinical endpoints of pain and function are closely tracked 
every 2 weeks prior to 3- month follow- up, then at 6 months, 9 months and 12 months. SPRINT, Signature for Pain Recovery IN 
Teens.

Figure 2 Study overview. A cohort of youth with chronic MSK pain enrol in sprint across three participating sites: Stanford, 
Cincinnati Children’s and Sick Kids in Toronto, Canada. Individuals are thoroughly characterised at baseline. Unbiased machine 
learning algorithms identify two multivariate models composed of biological and/or psychological markers that predict recovery 
or persistence of pain and disability in adolescents with MSK pain after multidisciplinary pain treatment. The model will reveal 
two prognostic signatures to be tested in the R33 validation phase. In an independent cohort of patients, we will capture our 
metrics at clinic presentation to test the positive and negative prognostic value of the signatures predicting persistence of MSK 
pain and disability after multidisciplinary pain treatment. MSK, musculoskeletal.
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elucidating multiple markers or a ‘signature’ of recovery 
versus persistence in chronic MSK pain during this sensi-
tive period is critical for risk stratification and targeted 
treatment for the more effective prevention of lifelong 
MSK pain.26–29 Emerging evidence indicates that brain 
structure and function, sensory profiles (pain facili-
tation/inhibition)21 30 and psychological factors16 31 32 
distinguish recovery versus persistence of pain in adoles-
cents. Additional findings in adult chronic MSK pain 
patients demonstrate pre- existing abnormalities and 
pain- related changes in the central nervous system as 
evidenced by immune,33–35 brain structure and func-
tion,36–38 somatosensory39–45 and psychological markers 
(eg, pain catastrophising).46–48 While cogent, these 
studies are limited by small sample sizes, focus on a single 
metric (eg, imaging) and report associations rather than 
predictive values. Given that chronic pain is a biopsycho-
social process,49 the discovery and validation of a robust 
prognostic signature for recovery versus persistence 
requires measurements across multiple dimensions in 
the same patient cohort, in combination with a suitable 
multivariate computational analysis pipeline including 
cross- validation, for the extraction of reliable results from 
a multilayered and complex dataset.

Participants and setting
Two cohorts of patients, one for the multivariate model 
discovery and the second for independent model vali-
dation, are recruited from three academic medical 
centres specialising in paediatric pain management. 
The three centres are comprehensive multidisciplinary 
programmes that collectively evaluate over 800 new 
patients with chronic pain each year. Stanford Children’s 
Health Pediatric Pain Management Center (PPMC) 
houses multiple ambulatory paediatric pain clinics 
across the San Francisco Bay Area. The Toronto Hospital 
for Sick Children (SickKids) Chronic Pain Clinic is the 
largest paediatric pain clinic in Canada. Cincinnati Chil-
dren’s Hospital Medical Center (CCHMC) is one of the 
larger specialised multidisciplinary centres for paedi-
atric chronic pain management in the USA. PPMC and 
SickKids patients are recruited in ambulatory clinics. 
CCHMC patients are recruited in ambulatory clinics 
and when hospitalised in the Functional Independence 
Restoration Program.

Research staff review patient charts for eligibility via 
electronic medical record (EMR) before their clinic 
appointments and notify clinicians (physicians and 
psychologists) of potentially eligible patients. The clini-
cian extends an offer to the patient and caregiver(s) to 
meet with a research coordinator to learn about ongoing 
clinical research studies, including SPRINT. If the patient 
and caregiver(s) agree, a research coordinator meets with 
the family to describe SPRINT. If interested, the patient 
undergoes a second, more thorough screening to ensure 
eligibility. Text Box 1 details the inclusion and exclusion 
criteria.

Measures
Questionnaire, self report and somatosensory (quantitative 
sensory testing (QST)) data are collected and managed 
using Research Electronic Data Capture (REDCap) hosted 
at each respective site (Stanford, Cincinnati Children’s 
and SickKids).50 51 REDCap is a secure (encrypted, HIPPA- 
compliant), web- based software platform designed to 
support data capture for research studies, providing: (1) an 
intuitive interface for validated data capture; (2) audit trails 
for tracking data manipulation and export procedures; (3) 
automated export procedures for seamless data downloads 
to common statistical software packages; and (4) proce-
dures for data integration and interoperability with external 
sources. MRI data are collected and managed via Flywheel, 
hosted at the Lucas Centre, Stanford University. Flywheel 
is a virtual platform designed specifically for the curation, 
archiving, preprocessing, and analysis of both structural 
and functonal MRI data. Blood- derived biological data are 
archived at Stanford Biobank.

Clinical endpoint and signature candidate measures are 
detailed in table 1 by domain, measure name, reporter/
test type and time point.

Clinical endpoints
Pain
Pain intensity is measured using a visual analogue scale 
(VAS) and numerical rating scale (NRS). VAS ratings 
of pain intensity and unpleasantness involve moving 
a slider from no pain intensity/not at all unpleasant to 
most intense pain imaginable/most unpleasant imag-
inable without visible numerical values. The distance 
on the marker signifies a numerical value (range 0–10, 
increments 0.1) are only visible to the experimentor. The 
VAS has been demonstrated to exhibit ratio scale proper-
ties.52 53 VAS is the primary pain metric.

Given the wide use of NRS in clinical practice, pain is 
also assessed using the NRS from the Brief Pain Inven-
tory.54 Pain is rated on an 11- point integer scale ranging 
from 0=‘no pain’ to 10=‘pain as bad as you can imagine’ 
for current pain, for worst, least and average pain during the 
last 7 days. NRS is the secondary pain metric.

Functional disability
Functional impairment is measured using the Functional 
Disability Inventory (FDI).28 The FDI consists of 15 items 
that are rated on a 5- point Likert scale ranging from 0 (no 
trouble) to 4 (impossible to do). The FDI is widely used 
in paediatric pain research and is recommended as the 
gold standard to assess physical functioning for school 
age children and adolescents in clinical trials of chronic 
pain.5556

VAS pain intensity, VAS pain unpleasantness and functional 
disability are completed online through REDCap at baseline 
and at 2- week intervals through 3- month follow- up (primary). 
Assessment of clinical endpoints resume at 6- month, 9- month 
and 12- month follow- up (secondary/exploratory). All data 
collection intervals are detailed in figure 1.
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Table 1 Tests, measures and timeline of events for the SPRINT study

Domain Questionnaires or assessment Type

Timeline of events

Screen Baseline Bimonthly
3- month 
follow- up

Clinical endpoints           

Functional disability Functional Disability Inventory (FDI)104 Q × × × ×

Pain intensity Average pain over the past week (0–100 visual 
analogue scale (VAS))105

Q × × × ×

Prognostic metrics – demographic, physical and psychological factors           

  Demographic Age (years), sex (M/F), socioeconomic status Q   ×     

  Pain parameters – child ICD- 11 diagnosis M   ×     

  Body Map Q   ×   ×

  McGill Pain Questionnaire- Short Form106 Q   ×     

  Revised Pain Symptom Assessment Tool (R- PSAM) Q   ×     

  Child Pain Questionnaire (CPQ) Q   ×     

  Pediatric Pain Screening Tool (PPST) Q   ×     

  Brief Pain Inventory – Pain Severity & InterferenceNIH Q   ×   ×

  Physical functioning and 
QoL

Pediatric Quality of Life (PedsQL) InventoryNIH Q   ×   ×

Adverse Childhood Experiences Questionnaire Q   ×     

PROMIS- Fatigue Q   ×     

Pubertal Development Scale107 Q   ×     

Height/weight (T) A   ×     

  Sleep Adolescent Sleep Wake ScaleNIH Q   ×   ×

  Psychological             

  Catastrophising Pain Catastrophizing Scale108 for childNIH Q   ×   ×

  Anxiety/depression Generalized Anxiety Disorder 2- item (GAD- 2)NIH Q   ×   ×

  Patient Health Questionnaire- 2 (PHQ- 2)NIH Q   ×   ×

  PROMIS Anxiety, Depression109 110 Q   ×     

  Fear of pain Fear of Pain Questionnaire111 for child Q   ×     

  Other Pain Stages of Change Questionnaire- Adolescent112 Q   ×     

  8- item Chronic Pain Acceptance Questionnaire Q   ×     

  Bodily Threat Index Q   ×     

  Global satisfaction with 
treatment

Patient Global Impression of ChangeNIH Q   ×   ×

  Substance use screener NIDA Modified Assist Tool- 2NIH Q   ×   ×

  Parent measures Parent Health Q   ×     

  GAD- 2NIH     ×   ×

  PHQ- 2NIH     ×   ×

  Parent Risk and Impact Screening Measure Q   ×     

  Adult Responses to Children’s Symptoms (ARCS) – 
Protect Subscale (ARCS- Protect*)

Q   ×     

  Diagnostic Uncertainty Q   ×     

  10- item Parent Psychological Flexibility Questionnaire Q   ×     

  Pain Catastrophizing Scale for parentsNIH Q   ×   ×

Prognostic metrics – immune           

  Cell abundance Mass cytometry (MC): abundance of 24 different 
immune cell types

T   ×     

  Basal cell function MC: cell- type specific activity of signalling molecules/
cascades (phosphorylation) at basal state

T   ×     

  Evoked cell function MC: cell- type specific activity of signalling cascades in 
response to LPS, IL2, IL4 and IL6

T   ×     

Continued
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Signature candidates
Demographic, physical and psychological indicators
Demographic, physical and psychological measures are 
completed through REDCap or derived from the EMR. 
Measures include NIH Common Data Elements (CDEs; 
https://cde.nlm.nih.gov/home) deployed in all studies 
funded via the National Institutes of Health (NIH) 
Helping End Addiction Long- Term (HEAL) initiative, 
along with study- specific questionnaires (see table 1 for 
detailed measures list). NIH HEAL CDE domains include 
pain intensity, pain interference, physical functioning/
quality of life, sleep, pain catastrophising, depression, 
anxiety, global satisfaction with treatment and substance 
use. SPRINT study- specific candidate markers that span 
demographic, physical functioning/quality of life and 
psychological domains were derived from established 
or emerging evidence in the realm of pain risks and 
include adverse childhood experiences,57 58 readiness to 
take a self- management approach to pain16 and parent 
behaviour in the context of child chronic pain.59 60

Collection of blood for biobanking and immune profiling by mass 
cytometry
A phlebotomist collected 32.5 mL of venous blood from 
each participant using a standard venipuncture tech-
nique into one 10 cc tube containing sodium heparin (BD 

366480), two 10 cc tubes containing dipotassium EDTA 
(BD 366643) and one 2.5 cc PAXgene RNA isolation tube 
(BD 762165). The 10 cc sodium heparin tube is main-
tained at ambient temperature until further processing 
with mass cytometry. Within 2 hours of collection, hepa-
rinised whole blood samples (1 mL) are aliquoted into 
Smart Tubes (Smart Tube Inc, Las Vegas, Nevada, USA) 
for stimulation and fixation of cells according to well- 
established protocols.61 Each custom- manufactured Smart 
Tube is preloaded with a lyosphere either containing 
1 µg lipopolysaccharide (Invivogen TLRLPEKLPS), 1 µg 
recombinant human interleukin- 1β (Invitrogen RIL1BI), 
a cocktail of 100 ng each recombinant human interleu-
kin- 2 (Peprotech 200–02), interleukin- 4 (Peprotech 
200–04), interleukin- 6 (Peprotech 200–06) or excipient 
only (unstimulated). After processing, Smart Tubes are 
immediately stored at −80°C. Plasma and buffy coat are 
obtained from the EDTA tubes, and mRNA is collected 
using PAXGene RNA tubes, which are banked for future 
genetic analysis. External sites ship overnight in tempera-
ture tracked boxes with dry ice to Stanford Biobank in 
batches of 14 participants for storage.

Structural MRI (sMRI) and functional MRI (fMRI)
Participants undergo an MRI session lasting approx-
imately 90 min. On arrival, participants and a caregiver 

Domain Questionnaires or assessment Type

Timeline of events

Screen Baseline Bimonthly
3- month 
follow- up

Prognostic metrics - imaging           

  Morphometry T1- weighted 3D magnetisation- prepared rapid gradient 
echo scan113

T   ×     

  Resting state Simultaneous multislice echo planar imaging (SMS- EPI) 
resting state sequence

T   ×     

  Evoked brain activation 4 min multisensory task SMS- EPI sequence (same 
parameters as resting state)114

T   ×     

Prognostic metrics - quantitative sensory testing           

  Pain facilitation TP: gradual increase in pain intensity of a repeated (at a 
constant rate) painful stimulation.

T   ×     

  Pain inhibition CPM: reduction of pain sensitivity (test stimulus) 
following a cold- water immersion (conditioning stimulus 
at a remote contralateral site).

T   ×     

Multidisciplinary pain care           

  Pain treatment history Healthcare Use History Q   ×     

  Current pain treatment Healthcare Use Diary Q   × × ×

FDI and VAS: as part of the inclusion criteria, FDI patients are moderate to severe (FDI=13–60)72 at baseline. FDI will be reassessed at the 3- month 
follow- up to determine if disability has: (A) improved (eg, indicating recovery based on a reduction to mild disability (0–12)) or (B) persisted (eg, 
indicating no recovery based on moderate to severe disability (13–60).72 Similar strategy will be used for VAS in which patients will need to have 
moderate to severe pain at baseline (VAS=30–100).115 Additionally, pain intensity (VAS) will be reassessed at the 3- month follow- up to determine 
if disability has: (A) improved (eg, indicating recovery based on reduction to mild pain (0–29)) or (B) persisted (eg, indicating no recovery based on 
moderate to severe (30–100).115

Prior and current treatments: information about prior and current treatments (and other heathcare usage)116 will be collected to track different types of 
pain treatment (pharmacological, physical and psychological therapies). Parents will complete these surveys.
Other abbreviations: part of the NIH Common Data Elements.
CPM, conditioned pain modulation; ICD- 11, Eleventh revision of the International Classification of Diseases; M, medical record; Q, self- report 
questionnaire; SPRINT, Signature for Pain Recovery IN Teens; T, test.

Table 1 Continued

https://cde.nlm.nih.gov/home
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complete the participant screening form to ensure partic-
ipant safety prior to entering the 3T MRI scanner. Coor-
dinators train participants on the multisensory task62 with 
an instructional presentation and practice. Due to using 
different MRI magnets at each site (Siemens Prisma at 
University of Toronto, GE Premier (Software RX27.0) 
at Stanford, Philips Ingenia Elition at Cincinnati), the 
imaging protocol was piloted and acquisition sequence 
parameters were aligned across sites for maximum consis-
tency given the hardware differences at sites. Acquisition 
sequences, scanner- specific field maps and shimming is 
detailed in table 2. During the resting state fMRI scan 
participants are instructed to keep their eyes open, not 
think of anything in particular and are presented with a 
black screen with white crosshair, across all three sites. The 
multisensory evoked task consists of four trials of alter-
nating 30 s simultaneous multisensory motor stimulation 
(visual, auditory and tactile–motor during finger opposi-
tion task) and rest periods of 22.5 s on average (20–30 s). 
Following each multisensory stimulation period and after 
a short interstimulus interval of 3 s on average (2–4 s), 
a 10 s rating period is shown where patients answer the 
question ‘How unpleasant was the sensory experience 
you just experienced?’ using computerised VAS ranging 
from ‘not at all unpleasant’ (0) to ‘the most unpleasant 
you can imagine’ (100).62

Quantitative sensory testing (QST)
All tests are conducted by researchers at each centre who 
have received equivalent training, and the researchers 
undergo regular calibration across sites. The patient sits in 
a comfortable position. A standardised set of instructions 
are read, and a practice trial of each test is performed on 
the experimenter for demonstration purposes to ensure a 
participant understands the procedure. The test protocol 
is based on standardised sequences from other groups 
and our own63–67 and includes two primary QST measures 
and several secondary QST measures (table 3).

Primary measures
Dynamic QST modalities that have predicted persistent 
MSK pain outcomes include enhanced temporal summa-
tion (TS) in adults45 in addition to impaired conditioned 
pain modulation in adults45 and children.21 These 
measures reflect central modulation and will be used 
as our primary predictors of recovery versus persistence 
in adolescents with chronic MSK pain. TS, reflects an 
increase in reported pain intensity to a repeated train 
(at a constant rate) of stimuli using a standardised 
pinprick stimulator (PinPrick stimulator, MRC Systems) 
either at 256 mN or 128 mN (if the 256 mN could not 
be tolerated). TS is quantified by comparing VAS ratings 
of single pinprick stimulation (VAS1) to the VAS rating 
following a 1 /sec train of 10 repeated pinprick stimuli 
(VAS10) applied within a small area. Conditioned pain 
modulation (CPM) reflects an alteration in pain sensi-
tivity to a test stimulus by the simultaneous application 
of a painful conditioning stimulus at a contralateral 

body site. For the SPRINT protocol, CPM is evaluated 
using pressure pain threshold (PPT) as the test stimulus 
and a cold conditioning stimulus. Specifically, PPT is 
assessed at the non- dominant trapezius with a hand- held 
algometer (AlgoMed, Medoc) at three periods. First, 
baseline PPT is collected (three trials) in the absence 
of the conditioning stimulus. Then, PPT (two trials) is 
collected during the conditioning stimulus, immersion 
of the dominant hand into a circulating 10.0°C water 
bath (Techne TE- 10D Thermoregulator, B- 18 Bath 
and RU- 200 Dip Cooler). Finally, postimmersion PPT 
(two trials) is assessed 10 s after removal of the partici-
pant’s hand from the water bath. CPM is quantified by 
comparing the change in PPT (from baseline) during 
and following cold immersion.

Secondary measures
Several secondary measures are used to characterise 
somatosensory function. First, mechanical detection 
threshold (MDT) is used to assess the ability to detect 
tactile sensations. Using a series of von Frey filaments 
(Aesthesiometer II Filaments, Somedic), MDT provides 
quantitative evidence of altered activity in low threshold 
mechanoreceptive fields, which could indicate the pres-
ence of neuropathy. Second, a series of weighted pinprick 
stimulators (PinPrick stimulator, MRC Systems) is used to 
assess mechanical pain threshold, which could provide 
evidence of neuropathy or mechanical allodynia. Third, 
the same weighted pinprick stimulators are used for supra-
threshold ratings of pain intensity (mechanical pain sensi-
tivity (MPS)). Fourth, PPT is assessed with a hand- held 
algometer to test the first sensation of blunt pressure at 
three separate, bilateral sites (trapizious, thenar and knee). 
Lastly, participants undergo a cold pressor test at the end of 
the QST assessment, which involves placing their hand into 
cold water (8.0°C) and reporting the first sensation of cold 
pain (cold pain threshold) and as long as they can tolerate 
(cold pain tolerance; up to 180 s). Cold pain intensity is 
collected following removal of their hand.

Multidisciplinary chronic pain care
Pain care utilisation including appointments with general 
and specialist medical, physical therapy, psychology/
mental health providers, alternative healthcare practi-
tioners, medications and hospital admissions is tracked 
through REDCap assessments deployed to the caregiver 
to complete at baseline, biweekly until 3- month follow- up 
and then subsequently at 6- month, 9- month and 12- month 
postbaseline.

Procedures
Study visit
Total study visit time is approximately 4 hours, including 
breaks between data collection activities. In order to maxi-
mise retention of our paediatric chronic pain patients, 
participants are allowed to skip any assessments that they 
are unable to tolerate or testing may be divided into two 
sessions.
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Table 2 MRI parameters

Scanner manufacturer

Stanford Cincinnati Toronto

GE premier Philips Ingenia Elition Siemens Prisma

Structural MRI

T1 weighted

  Sequence FSPGR ME- MPRAGE ME- MPRAGE

  TR 6.8 ms 10 ms 2530

  TI 0.6 ms 1100 1100

  TE 3 ms Multiecho Multiecho

  FOV 256×256 mm 256×256 mm 256×256 mm

  Matrix 256×256 256×256 256×256

  Voxel dimensions 1 mm3 1 mm3 1 mm3

  Number of Slices 160 200 176

Diffusion weighted

  TR 3600 ms 4154 ms 3600 ms

  TE 80 ms 71 ms 80 ms

  FOV 220×220 mm 220×220 mm 220×220 mm

  Matrix 110×110 112×110 110×110

  Voxel dimensions 2 mm3 2 mm3 2 mm3

  Number of slices 62 56 64

  In- plane acceleration Acceleration phase=2 SENSE=2 GRAPPA=2

  Multiband factor 2 2 2

  Number of diffusion encoding directions 60 64 60

  Number of B0s 10 7 10

T2 weighted

  TR 3390 ms 3390 ms 3390 ms

  TI 1100 1100 1100

  TE 155 ms 388 ms 244

  FOV 256×256 mm 256×204 mm 256×256 mm

  FOV phase 90% 79.7% 79.7%

  Matrix 512×512 256×204 256×256

  Voxel dimensions 0.5 mm3 1 mm3 1 mm3

  Number of slices 344 176 176

  In- plane acceleration Acceleration phase=2 SENSE=2 GRAPPA=2

Functional MRI

Simultaneous multislice (SMS) echo planar imaging (EPI)

  Task and resting state

  Orientation Oblique, aligned to OFC Oblique, aligned to OFC Oblique, aligned to OFC

  TR 1500 ms 1500 ms 1500 ms

  TE 30 ms 35 ms 30 ms

  Flip Angle 70° 70° 70°

  FOV 220 220 220

  Matrix 88×88 88×87 88×88

  Number of slices 57 57 57

  Voxel dimensions 2.5 mm3 2.5 mm3 2.5 mm3

  In- plane acceleration Acceleration phase=2 SENSE=1 GRAPPA=1

  Multiband factor 3 3 3

Continued
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Consent
A member of the research staff obtains informed parent 
consent and youth assent/consent and confirms the 
patient has refrained from short- acting analgesic medica-
tions for at least 4 hours prior to the visit due to its poten-
tial impact on brain activation during MRI and sensory 
response during QST. The consent process takes approx-
imately 30 min.

Baseline assessment
Adolescents and a caregiver attend an in- person study 
visit across 1 or 2 days, depending on site logistics and 
participant availability. After informed consent/assent 
procedures, the adolescent and caregiver complete ques-
tionnaires (table 1), and a blood draw from the adoles-
cent is obtained. Then, adolescents undergo a single MRI 
session followed by QST assessment.

Chronic pain treatment
After initial evaluations, patients undergo multidisci-
plinary pain management treatment through their clinical 
recruitment site or locally. Multidisciplinary treatment for 
primary MSK pain involves medical, physical therapy, pain 
psychology and complementary treatments.68 As indi-
cated and per standard practice, medical management 
includes: diagnostic studies, medications and injections 
as indicated and education about pain and is treatment 
is provided as per standard practice. Moreover, patients 
receive some level of pain science education.69 Physical 

therapy treatment is individually tailored and based on 
the Guide to Physical Therapy Practice 3.0 ( guide. apta. 
org), consisting of: (1) therapeutic exercise, (2) balance 
and proprioception, (3) strength training/endurance 
and (4) use of modalities (eg, heat/cold pack, Trans-
cutaneous Electrical Nerve Stimulation (TENS)). Pain 
psychology is grounded in cognitive–behavioural therapy 
and includes sessions focused on education about the 
biopsychosocial model and pain processing, goal setting, 
pain coping skills training (eg, relaxation) and cognitive 
restructuring.70 Complementary treatments span massage, 
herbal remedies, acupuncture, etc. As complete unifor-
mity even within clinic is not possible, the treatments 
rendered are carefully tracked. Biweekly assessments 
completed by the caregiver track pain care utilitisation 
through 3- month follow- up and then every 3 months for 
6- month, 9- month and 12- month follow- up. We antici-
pate treatment variability. Although each site provides stan-
dardised treatments to adolescents with chronic MSK in 
their pain clinics, we have a rigorous biweekly electronic 
tracking of patient service use (Healthcare Use Diary; see 
online supplemental appendix).

Clinical endpoint tracking
Biweekly assessments track clinical endpoints of pain and 
functional disability through 3- month follow- up to cate-
gorise adolescents recovered versus persistent (primary). 
Additional assessments of clinical endpoints are collected 

Scanner manufacturer

Stanford Cincinnati Toronto

GE premier Philips Ingenia Elition Siemens Prisma

  Volumes (rs- fMRI) 257 257 257

  Volumes (task) 180 180 180

FOV, Field of View; TE, Time to Echo; TI, Inversion Time; TR, Repetition Time .

Table 2 Continued

Table 3 Expanded quantitative sensory testing methods

Procedure Equipment and device(s) Primary site Secondary site

Mechanical detection threshold Aesthesiometer II Filaments* Control hand (dorsum – thumb web) Most affected site

Mechanical pain threshold PinPrick stimulator† Control hand (dorsum – thumb web) Most affected site

Mechanical pain sensitivity PinPrick stimulator† Control forearm (ventral)

Pressure pain threshold AlgoMed‡ Bilateral thenar
Bilateral trapezius
Bilateral knee

–

Temporal summation PinPrick stimulator† Control forearm (ventral) Most affected site

Conditioned pain modulation AlgoMed‡ Non- dominant trapezius –

  Techne Water Bath* Immersion of dominant hand –

Cold pain tolerance Techne Water Bath§ Immersion of dominant hand –

*aSomedic (http://somedic.com/en/).
†MRC Systems GmbH (https://www.mrc-systems.de).
‡Medoc (https://medoc-web.com).
§Techne (Techne TE- 10D Thermoregulator (SK-01 262–05); B- 18 Litre, Unheated (SK-16 112–01); RU- 200 Dip Cooler (SK-14 576–05); Finger Guard 
for Pain Batch (SK- 00383YU)).

https://dx.doi.org/10.1136/bmjopen-2022-061548
http://somedic.com/en/
https://www.mrc-systems.de
https://medoc-web.com
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at 6- month, 9- month and 12- month follow- up (secondary/
exploratory).

Analysis plan
Deriving recovery versus persistence for clinical endpoints
Pain and function
Defining recovery versus persistence of pain and function 
can be approached from a categorical (cut- off score or 
metric of clinical improvement (eg, 30%)) or continuous 
(trajectory) standpoint.

Categorical
Category driven classification uses a clear cut- off scores for 
what is considered recovery for pain (VAS rating <30)71 
and function (FDI score <13)72 or sets a threshold using 
a widely accepted metric of clinical improvement of, for 
example, 30%.73 The cut- off score is a single value not 
tied to baseline status, and thus, critical information is 
lost regarding degree of improvement. The metric of 
clinical improvement addresses this issue but an indi-
vidual could remain within the same clinical range (eg, 
moderate, severe), yet still evidence a 30% improve-
ment. Current recommendations suggest a combined 
categorical approach that merges distribution- based 
methods (cut- off scores) and responder analysis (metrics 
of clinical improvement).73–75 This combined categorical 
approach has also been used within paediatric chronic 
pain to examine clinically meaningful change in func-
tional disability among youth with juvenile fibromyalgia 
after pain psychology.76 The advantage of this approach 
is the well- established nature of these values, but they are 
static outcomes that likely do not reflect the complexity of 
recovery or persistence over time.

Continuous
Continuously driven classification can be derived using 
multiple time points to create a trajectory of recovery/
persistence for pain and function. Trajectories provide 
the opportunity to model the complexity of response 
over time that may or may not neatly fit into a predefined 
category. Our prior work examining response to inten-
sive interdisciplinary treatment in adolescents with 
chronic pain derived two response groups for disability 
(responder/nonresponder) and three groups for pain 
(early responder, late responder and non- responder).16

The data collected in this study will enable the possibility 
of both categorical and continuously driven classification.

Deriving signature candidates
Demographic, physical and psychological
All values are verified for validity (eg, fall within the 
expected value ranges), scores standardised as necessary 
(eg, PROMIS tools) and totals for measures are calculated 
(eg, Pain Catastrophizing Scale for Children).

Mass cytometry (MC) and derivation of immune features
Mass cytometry analysis
On the day of analysis, fixed whole blood samples are 
thawed, processed and stained for mass cytometry analysis 

using a protocol developed in house.77 78 Briefly, after red 
blood cell lysis (Smarttube thaw- lyse buffer), peripheral 
leukocytes are barcoded using a combination of six palla-
dium metal isotopes, allowing for simultaneous analysis of 
up to 20 samples. This step substantially reduces sample- 
to- sample experimental variability due to antibody staining 
and instrument sensitivity.79 80 Barcoded samples are pooled 
and stained with metal- conjugated antibodies using a 40–50 
plex antibody panel. Antibodies are either obtained precon-
jugated from the manufacturer (Fluidigm) or conjugated 
in- house with the appropriate metal isotopes. Purified 
unconjugated antibodies in protein- free PBS carrier are 
labelled using the MaxPAR antibody conjugation kit (Flui-
digm) according to the manufacturer’s instructions. All anti-
bodies used in the analysis (conjugated in- house as well as 
those obtained preconjugated) are titrated and validated on 
samples that are processed identically to the samples used 
in the study. Stained samples are analysed on a Helios mass 
cytometer instrument (Fluidigm) at a flow rate of 600–800 
cells/s. The output FCS files are normalised and debar-
coded using MatLab- based software, as previously described 
and uploaded to the Cell Engine (https://cellengine.com, 
Primity Bio, Fremont, California, USA) flow cytometry anal-
ysis platform.

Derivation of immune features
After normalisation of the single- cell mass cytometry data, 
major innate and adaptive immune cell subsets are identified 
using an agnostic clustering algorithm or a manual gating 
strategy. Three categories of immune features are derived:

Cell frequency immune features
Immune cell frequencies are expressed as a percentage 
of gated singlets in the case of neutrophils and as a 
percentage of mononuclear cells in the case of all other 
cell types.

Endogenous signalling immune features
Cell type specific endogenous signalling immune features 
are derived from the mass cytometry analysis of unstimu-
lated blood samples. The basal (endogenous) signalling 
activity of multiple intracellular proteins (eg, the site- 
specific phosphorylation (p) signal pSTAT1, pSTAT3, 
pSTAT5, pSTAT6, pNFkB, pMAPKAPK2, pP38, prpS6, 
pERK1/2 and pCREB and the total IkB signal) is simul-
taneously quantified for individual immune cell. For 
each cell type, endogenous signalling immune features 
is calculated as the median signal intensity (arcsinh trans-
formed value) of each signalling protein activity. Selected 
intracellular proteins are sentinel components of the 
signalling cascades downstream of Toll- like (NFkB, IkB, 
MAPKAPK2, P38, rpS6, ERK1/2 and CREB) and cytokine 
receptors (STAT 1, 3, 5 and 6).

Evoked signalling immune features
Cell type specific evoked signalling immune features 
are derived from samples stimulated with extracellular 
ligands (LPS, IL- 1β, IL- 2/IL- 4/IL- 6). The activities of the 
same signalign proteins in response to each stimulation 

https://cellengine.com
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condition is quantified on a per cell basis. For each cell 
type, evoked signalling responses are calculated as the 
difference in median signal intensity (arcsinh trans-
formed value) of each signalling protein between the 
stimulated and unstimulated conditions.

Magnetic resonance imaging
Data are uploaded to a FlyWheel repository, where they 
undergo standard quality assurance/quality checks with 
MRIQC. Structural (T1 and T2 weighted) and functional 
MRI (task and resting state) data are then processed with 
fMRIprep.81 Structural data are skull stripped, normalised 
to a standard space template and segmented into tissue 
classes (CSF, WM and GM), and then undergoes surface 
reconstruction (with FreeSurfer – see Morphometry, 
further). fMRI data undergo motion correction, suscep-
tibility distortion correction and coregisteration to the 
normalised T1- weighted image. Confound regressors 
(based on motion and non- neuronal signal) are created. 
Data are then smoothed with a 3D Gaussian kernel. 
Data then undergo independent component analysis 
decomposition for denoising purposes using a Multi-
variate Exploratory Linear Optimized Decomposition 
into Independent Components (MELODIC) in FSL.82 
The resultant components are then be fed to a classi-
fier (ICA- FIX)83 84 trained on a subset of data from each 
site to identify components that comprise of noise and 
those that comprise of signal. The classifier identifies 
and removes signal from components that are classified 
as noise. The data are then reconstructed and ready for 
statistical analysis.

First-level single-subject analysis for the multisensory activation task
We use a massive univariate general linear model (GLM) 
analysis approach as implemented in freely available 
neuroimaging software (eg, SPM12 and FSL) to estimate, 
for each patient, brain responses to the multisensory task. 
Regressors modelling the multisensory activation condi-
tion are created by convolving each period of interest 
(multisensory activation) in the time series fMRI data 
with a canonical haemodynamic response function. 
The model includes motion regressors and appropriate 
regressors for outlier data points (to control for artefacts 
in time series data). Parameter estimates are calculated at 
each voxel using the GLM. A high- pass filter is applied to 
remove low- frequency signal fluctuations (1/180 Hz), and 
global intensity normalisation is applied by dividing each 
voxel in a volume by the mean of all brain voxels in that 
volume. We calculate contrast images for the multisen-
sory condition of interest (beta values for the multisen-
sory regressor) for each patient. The resulting activation 
contrast image patterns are extracted as matrices, which 
are used in the prediction model.

Resting state networks
Data are parcellated into 180 subregions based on a an 
atlas derived by identifying brain regions based on conver-
gent multimodal evidence—the Glasser 2016 Atlas.85 A 
whole brain ROI- to- ROI correlation analysis is performed, 

and the resultant matrix for each participant is submitted 
to the prediction algorithm. Different parcellation atlases 
may be adopted, as these are developed.

Morphometry
Grey matter structure is assessed using cortical thick-
ness analysis in FreeSurfer (http://surfer.nmr.mgh. 
harvard.edu/). Cortical thickness values are computed 
for every subregion in the brain based on the Destrieux 
2009 atlas.86 Subcortical volumetric segmentation values 
are derived from the FreeSurfer subcortical processing 
stream, which is based on the Harvard- Oxford Subcor-
tical Atlas.87 Cortical thickness values and subcortical 
volumes are submitted to the prediction algorithm. As 
analytic tools evolve, we may use other validated software 
to ensure that analyses are considered state of the art at 
the time that they are executed.

Diffusion-weighted imaging
Diffusion data will undergo standard preprocessing in 
FSL’s Diffusion Toolbox. Data will first undergo distor-
tion and motion correction with Topup. Next, we derive 
a whole brain structural connectivity matrix on data that 
have been processed for tractography using BEDPOSTx. 
The brain is parcellated into 180 subregions using the 
Glasser 2016 Atlas. An ROI- to- ROI connectivity matrix 
is produced for each participant, and submitted to the 
prediction model.

Quantitative sensory testing
In order to operationalise pain facilitation (TS), the 
intensity from this single pinprick stimulus (VRS1) is 
compared with the perceived intensity following a 1 /
sec train of 10 repeated stimuli of the same intensity 
(VRS10), applied within a small area of 1 cm2. Patients 
are also asked if the stimulus feels the same, more intense 
(ie, sensitisation) or less intense (ie, habituation). TS 
is calculated as a change score (VRS10- VRS1) in which 
higher change score reflects greater facilitation. In order 
to operationalise endogenous pain modulation (Condi-
tioned Pain Modulation), changes in mean PPT and per 
cent change in PPTh from baseline [(PPTh × seconds – 
PPThbaseline) / PPThbaseline) × 100] are calculated. 
We examine changes in PPTh during conditioning to 
identify increases in PPT that reflect the degree of inhibi-
tion and reductions in PPT that reflect facilitation.

Signature detection
The prognostic multivariate signature potentially 
includes blood (immune markers), psychophysiolog-
ical (QST), imaging (brain structure and function) and 
patient report (demographic, physical and psycholog-
ical) measures. This high dimensional dataset composed 
of a large number of data points (eg, millions of cells 
per patient in case of mass cytometry data, hundreds of 
thousands of voxels in MRI) pose unique computational 
challenges that cannot be addressed by traditional bioin-
formatics tools.88 The detection of the signature occurs via 
derivation of a multivariate model with aid of the Elastic 

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Net (EN) algorithm.89 We anticipate that our study will 
generate a large and highly correlated dataset. For analysis 
of the immune system, traditional univariate (eg, signifi-
cance analysis of microarray90 or multivariate (eg, least 
absolute shrinkage and selection operator (LASSO)91 
approaches are often limited, as they do not account for 
the intercorrelated nature of the data.89 92 93 Members of 
our group recently developed an adapted EN algorithm 
for immunological data (iEN analysis pipeline.94 Figure 3 
depicts our analysis pipeline and is adapted from iEN.94 
This novel penalised regression method is derived from 
the EN algorithm.90 95 96 The iEN algorithm is particu-
larly adapted to the analysis of highly correlated datasets, 
as it eliminates redundant parameters but retains inter- 
related parameters. In a side- by- side comparison, the 
iEN algorithm outperformed the most common alter-
native predictive methods including the EN,90 Support 
Vector Machine,97 LASSO, random forest98 and KNN.99 
Other psychophysiological, imaging and patient reported 
modalities are directly integrated into these models using 
stack generalisation, as previously described.100 101

Dependence on expensive and less accessible metrics
In developing our model, we have planned to develop 
an optimal model that evaluates all assessed parameters 
across all modalities. In a secondary exploratory model, 
we can then weight parameters by their accessibility/
cost during model development in order to obtain an 
implementation- ready model that contains accessible 
parameters and balances cost versus accuracy to promote 
practical use in non- tertiary centres. As an example, a 

difficult to obtain predictive imaging parameter may 
potentially be substituted by a quantitative sensory, 
psychological or omic parameter, or by a combination of 
those parameters based on their strong correlation with 
the imaging parameter. However, at this stage, there are 
no known prognostic markers for treatment response in 
adolescents with MSK pain. Even if MRI remains too costly 
to serve as an MSK pain prognostic marker in clinical prac-
tice, it does not preclude using MRI to discover potential 
prognostic markers and therapeutic targets. Additionally, 
an integrated model containing imaging parameters next 
to QST, OMIC and psychological parameters may reveal 
signatures that are convergent and as such particularly 
plausible. Plausibility weighs high on the list of criteria to 
promote further refinement and validation of a predic-
tive signature. MRI is currently the most promising tool 
to identify pain- related prognostic markers in light of our 
preliminary data and data of others in the field (used to 
successfully identify markers for acute pain),102 the tran-
sition from subacute to chronic pain,38 placebo response 
in chronic pain,103 fibromyalgia4 and in other disease 
groups such as depression.5 Its inclusion in our experi-
mental approach seems therefore well justified.

Sample size justification and power analysis
For analysis of the primary study outcome where we 
expect 40%–60% of patients to be persistent (vs recov-
ered), we estimated the sample size required to identify 
moderate effect sizes of at least 0.52 (Cohen’s w) for 
binary prognostic markers and at least 0.27 (Cohen’s 
d) for standard normal continuous prognostic markers, 

Figure 3 The Elastic Net (EN) analysis pipeline. Neuroimaging (MRI), quantitative sensory testing (QST), immunological 
(blood) and self- report questionnaire prior knowledge for each feature is extracted by a panel of experts (A) and encoded into 
a prior knowledge tensor to guide the model optimisation process (B). Individuals within the study cohort (C) provide MRI, 
questionnaire and QST data, and blood samples, which are subsequently preprocessed (MRI), scores calculated (questionnaire, 
QST) or stimulated with ligands ex vivo to activate various signalling pathways of the immune system (blood) (D). This produces 
a a complex set of biopsychosocial features for the prognostic signature (E). This dataset is then fed into the EN algorithm (F) for 
prognostic modelling of the outcome of interest (G).
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assuming 50% as our event rate, an alpha of 0.05% and 
80% power. Under these assumptions, a sample size of 
175 patients is required for the signature discovery phase.

With multiple markers, we are performing multiple 
testing. In order to ensure the family- wise type I error 
remains at the nominal 5% and we maintain power at 
80%, we will employ a correction for multiple testing 
that increases the minimum effect size needed to detect 
significant prognostic markers. Assuming the conserva-
tive Bonferroni correction and taking the example of 100 
markers, we would detect all markers with effects 1.543 
times those calculate above. For continuous markers, 
this is 0.35 (0.42 for n=175) and for binary 0.69 (0.80 for 
n=175). Both are medium to large effect sizes, and so even 
with 100 predictors, we are well placed under the assump-
tions above for our sample size to find multiple prognostic 
markers. Furthermore, when using machine learning for 
each dataset, we expect to have greater power to detect 
sets of markers due to the regularisation imposed by EN. 
For the overall integrated prognostic modelling of which 
50% are persistent, assuming an alpha of 0.05% and 80% 
power, any model achieving an Area Under the Curve 
(AUC) of at least 0.8 will be demonstrated as statistically 
significantly better than our defined threshold for success 
of AUC=0.7.

In the validation of the prognostic model phase in a 
second independent prospectively collected patient 
cohort, assuming 50% of patients are persistent (vs recov-
ered), an alpha of 0.05% and 80% power for testing the 
observed AUC exceeds 0.7, we will require 100 patients 
and an observed AUC of 0.83. This ensures we maintain 
the minimum threshold set in the discovery phase of 
the study, and we observed a slightly higher effect size to 
ensure the model has generalised well. This sample size 
was set as 80% of our target recruitment of 125 for the 
validation phase, which if achieved, will improve power 
for the estimate of 0.83%–87% power.

Ethics and dissemination
The study complies with the NIH Policy on the use of 
single IRB (sIRB) for multisite research, with CCHMC 
Review Board as the reviewing IRB. Stanford’s IRB is a 
relying IRB within the sIRB. As foreign institutions, the 
University of Toronto (UoT) and The Hospital for Sick 
Children (SickKids) are overseen by their respective 
ethics boards for IRB approval rather than within the 
sIRB. Research procedures are conducted according to 
good clinical practice and monitored by the lead inves-
tigator at each site, as well as the protocol director Dr 
Laura Simons.

Patient and public involvement
Patient and public were not involved in the design of the 
study.

Data sharing
We are committed to open- access publication, so that 
patients, clinicians and scientists can have access to 

the study data and the signature(s) derived. After find-
ings have been published, we will upload a limited data 
set for sharing with other investigators on applicable 
repositories. Potential repositories include: OpenPain, 
OpenNeuro, Open Science Framework, flowrepository 
and ImmPort. This will also include a data dictionary to 
facilitate and provide code used to create analytic files 
for primary and secondary findings so that reporting of 
certain variables is consistent and fully transparent. More-
over, there will be a publication charter and committee in 
place to review requests for data access and proposals so 
that we grant access to investigators to ensure scientific 
integrity of studies conducted using these data (and to 
avoid overlap). We will also present our findings at local, 
national and international conferences. Furthermore, 
all sites (Stanford, SickKids and CCHMC) have dedi-
cated media relations offices, who help disseminate the 
research findings to the media.

DISCUSSION
The SPRINT study represents a multi- institutional effort 
from Stanford University School of Medicine, University 
of Toronto/Hospital for Sick Children and Cincinnati 
Children’s that is leveraging a standardised specimen 
collection, processing, storage and distribution system 
via Stanford Biobank to aggregate the sample inven-
tory with clinical annotations for an accessible, virtual 
biobank. Evidence to date informed the selection of 
novel candidates for neuroimaging, immune, quantita-
tive sensory and psychological markers, and we are lever-
aging machine learning approaches to extract reliable 
and prognostic multivariate signatures from a large and 
complex data set. This pipeline will provide the basis for 
the development of robust algorithms to set long- term 
benchmarks for the entire field. We will probe whether 
and to what extent each data domain contributes to an 
integrated model predicting the course of MSK pain and 
whether the number of model parameters can be reduced 
to a set of parameters that can be practically implemented 
in clinical decision making and the enrichment of clinical 
trials studying the condition.

We foresee a number of clinical benefits that can result 
from this work. A signature robustly predicting the clin-
ical course of paediatric chronic MSK pain will facilitate 
risk- stratifying patients, which will enable clinicians to 
educate their patients and families regarding their prog-
nosis. Risk stratification enables a precision medicine 
approach where individual patients can be assigned to 
distinct care pathways differing in treatment selection, 
timing and duration. For example, only a portion of 
patients with poor predicted recovery trajectories may 
require resource- intense and demanding multidisci-
plinary treatment approaches. A predictive model will 
also provide new insights into biological and behavioural 
processes that drive the clinical course of MSK pain, 
which may lead to novel interventions, particularly prof-
iting those who remain refractory to current approaches. 



13Simons L, et al. BMJ Open 2022;12:e061548. doi:10.1136/bmjopen-2022-061548

Open access

Finally, our work will generate data- driven hypotheses 
that can be tested to further our understanding of the 
mechanisms and patient vulnerabilities that underlay the 
complex pathogenesis and clinical course of paediatric 
chronic MSK pain. Such understanding will help mitigate 
the risk of long- term chronic pain in adolescence during 
a sensitive period of human development.

Reduction of model parameter to a few biological and/
or clinical features that can readily be assessed is critical 
for the implementation of such a model as a predictive 
tool in clinical practice. As such, the current approach 
simultaneously examining important biological, imaging, 
sensory, psychometric and clinical domains offers distinct 
advantages. For example, we may detect that redundan-
cies echoed in different domains can be exploited. More 
specifically, a particular prognostic parameter that is diffi-
cult to assess in daily clinical practice such as a neuro-
imaging correlate (eg, nucleus accumbens structure) 
could be substituted with a redundant but easier to assess 
parameter (eg, self- report of motivation/readiness to 
change). Importantly, if a few biological features are crit-
ical in a reduced model, such features can be measured 
by clinical laboratories. For example, select prognostic 
immune features can be assessed with aid of widely avail-
able flow cytometry technologies. The context- of- use 
has to be carefully considered when deriving prognostic 
signatures. Our study is tailored towards the prediction of 
the clinical course of MSK pain in adolescence to enable 
personalised treatment pathways from those with poor 
prognosis to resource intense, demanding interventions 
and for those with a positive prognosis to educational and 
self- directed inteventions.
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