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We present an analytical technique for solving
Fokker–Planck equations that have a steady-state
solution by representing the solution as an infinite
product rather than, as usual, an infinite sum. This
method has many advantages: automatically ensuring
positivity of the resulting approximation, and by
design exactly matching both the short- and long-
term behaviour. The efficacy of the technique is
demonstrated via comparisons with computations of
typical examples.

1. Introduction

(a) Objectives
In this paper, we propose a novel analytical procedure for
solving diffusion equations of the form

∂f
∂τ

= − ∂

∂y
[A(y)f ] + ∂2f

∂y2 ≡L†f

and f (0, y) = δ(y − Y0),

⎫⎪⎬
⎪⎭ (1.1)

where the steady-state solution is well defined, i.e. a
normalizable probability density (we call this the ‘stable’
case): ∫∞

−∞
exp

(∫ y

0
A(η) dη

)
dy<∞.

Generally, this partial differential equation (PDE)
describes diffusion in the presence of a potential. For
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example, if it governs the concentration of diffusing charged ions in an electrostatic potential
well it is generally referred to as the Nernst–Planck equation [1]. If the potential is not quadratic
then one has (1.1) with A nonlinear and the equation is analytically intractable; techniques are
therefore required to deal with it so that one does not have to fall back on full numerical solutions
of the PDE.

More often, it arises as the forward (Fokker–Planck, FP) equation associated with the mean-
reverting diffusion process

dYτ = A(Yτ ) dτ +
√

2 dWτ (1.2)

in dimensionless form.
It is perhaps worth clarifying what we mean by ‘nonlinear diffusion’ as the term is ambiguous.

A diffusion process such as (1.2) is said to be nonlinear if the drift term is nonlinear or the volatility
term is non-constant; hence whenever A is nonlinear we have a nonlinear diffusion process. But
the FP equation (1.1) that arises from it is always a linear diffusion equation (linear in f ). That does
not mean, however, that it is easy to solve. What is unusual about this paper is that we will
be modifying (1.1) through a nonlinear change of the dependent variable f so that the diffusion
equation does become nonlinear, and our thesis is that this nonlinear PDE is actually easier to
handle than its linear counterpart.

In general, (1.2) is an important model of physical phenomena such as electronic noise and
kinetics [2], electronic circuits with nonlinear resistance [3], and systems with overdamped
Langevin dynamics [4] or from nonlinear friction [5,6]. Another example of application has been
a model of variability of chemical concentration in ice-core data as a proxy of climate variability
[7], where it is necessary to model large excursions. If A(y) = −y, we are left with the familiar
Ornstein–Uhlenbeck (OU) process [8], or Langevin equation [9], but the nonlinear examples have
A(y) �= −y and these require attention.

An analytical approximation to a PDE has considerable practical value aside from providing
an immediate insight into the form of the PDE’s solution as there is a considerable improvement
in computation speed over the standard numerical grid-based methods. This is particularly true
in the context of statistical signal processing techniques such as Markov chain Monte Carlo [10],
where one wishes to sample from the distribution of Yt2 given Yt1 , for t2 > t1; knowing the density,
one can sample using the rejection method [11]. Then an approximate solution that captures
the short- and long-term behaviour is considerably more practical than having to regenerate the
solution by numerically solving the PDE at each step. The time saved in that calculation can then
be spent on running more Monte Carlo simulations. In fact, we suggest that even our leading-
order term (3.23) is sufficiently accurate for the vast majority of practical applications, whatever
the discipline.

Although there are physics applications of (1.2), as we have said, in fact it was mathematical
finance that provided the main impetus for this research. The process (1.2) is a model of mean
reversion and in the case when A(y) = −y it is the OU process which in dimensional coordinates is

dXt = −κXt dt + σ dWt. (1.3)

But this has an important disadvantage, in that its steady-state distribution is Normal, so that
large excursions are very unlikely in the model. Despite the fact that this has been known for
years, the Normal distribution is still used in risk management in areas where it should not be.
For example, investigation of JP Morgan Chase’s ‘London whale’ trading losses, estimated at
at least $5bn, shows that the Normal distribution function was used to transform a number of
standard deviations into a loss probability even at high levels of confidence.1 Before that, the
demise of Long Term Capital Management (LTCM) in 1998 can be directly attributed to over-
leveraged ‘convergence trades’ [13]. In reality, the following two mechanisms occur when the
market is far from equilibrium, and these cause such excursions to occur much more often than
in the simple OU model.

1[12, p. 286]: correspondence of P. Hagan, dated 7 February 2012.
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Figure 1. Basis examples: (a) Itraxx Main index basis history (market minus intrinsic level, divided by market level).
(b) Corporate bond (Lennar 5.5% 14s) basis history. These are fitted quite well by (1.4). Relative value examples: (c) USD swap
fly history, which is better fitted by (1.6).

The first mechanism is that the volatility is likely to be higher. This is seen in the so-called basis
risks, in which the price difference between two closely related financial instruments should be
zero: in times of market stress, when the distance from equilibrium is large, market liquidity is
lower and the volatility higher, so large excursions become likely. One recent example is the so-
called credit default swap (CDS) index basis, which is the difference between the index level of a
CDS index contract and the level implied by its constituents, which should theoretically be nearly
zero (see [14] for a general discussion on this). Another is the CDS-bond basis during the 2007–
2009 financial crisis, where the credit spread of credit-risky cash bonds deviated violently from
the level implied by the CDS market (e.g. [15, fig. 1], [16, fig. 1]). The effect is clear in figure 1a,b,
with pronounced departure from the mean during the 2007–2009 financial crisis. A convenient
formulation increasing the volatility away from equilibrium is

dXt = −κXt dt + σ

√
1 + γ 2X2

t dWt. (1.4)

Models such as this, in which the volatility depends deterministically on the spot price Xt and/or
time, are called local volatility models (as distinct from stochastic volatility models; e.g. [17]). In
fact (1.4) is precisely the same recipe as suggested in the aforementioned climate change paper
[7]. It is also encountered as one of the Pearson–Wong diffusions [18,19] but has received less
attention than the more commonly encountered OU and square-root processes also in that class,
because it is less analytically tractable.

The second mechanism is that the reversion speed may decline. This is seen in examples where
there is no strict requirement that prices must converge, and arises if the market volume directed
towards a convergence bet declines, even if the total liquidity remains the same. An example is
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Figure 2. Typical realizations: (a) OU, i.e. γ = 0; (b–d) equations (1.4)–(1.6) with γ = 1
2 , i.e. ν = 5. (Using the same

excitation processWt each time; σ = 2, κ = 2, ν = 1 + 2κ/γ 2σ 2.) Note the visual similarity between (b) and figure 1a,b;
also between (d) and figure 1c.

figure 1c, which shows the deviation between interest swap rates of three different tenors; this
is the so-called ‘butterfly’ trade (e.g. [20]). We calculate the 5Y rate minus the weighted average,
weights 0.3 and 0.7, respectively, of the 2Y and 10Y rates, after which the 10-year exponentially
weighted moving average is subtracted so as to take out the long-term average; not the length
of the excursion from 2009 (post-crisis) onwards. This second mechanism is captured by the
following models:

dXt = − κXt√
1 + γ 2X2

t

dt + σ dWt (1.5)

and

dXt = − κXt

1 + γ 2X2
t

dt + σ dWt, (1.6)

and also by (1.4) after transformation by γX = sinh γ̂Y, γ̂ = γ σ/
√

2κ , giving

dYt = − (1 + γ̂ 2)κ
γ̂

tanh(γ̂Yt) dt +
√

2κ dWt. (1.7)

The same effects can also easily be seen in simulation (figure 2a–d).
We have distinguished two mechanisms, but although the distinction is important for

motivating an underlying model, it is unimportant to the issue of solving the forward equation.
Indeed, as we just did with (1.4)�(1.7), we can transform the process to arrange for the volatility
to be constant and thereby work with the canonical form (1.2). Examples (1.5) and (1.6) simply
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require a trivial rescaling Y = X/
√
σ 2/2κ ; also τ = κt. In general, the transformation Y = η(X) with

η(x) = ∫
dx/σX(x) does this, provided σX is non-zero. The canonical forms are therefore (where we

have non-dimensionalized (1.5) and (1.6) to use Y = X/
√
σ 2/2κ rather than X)

(1.5) : A(y) = − y√
1 + γ̂ 2y2

(1.6) : A(y) = − y
1 + γ̂ 2y2

(1.7) : A(y) = −1 + γ̂ 2

γ̂
tanh γ̂ y

and the corresponding invariant densities are

(1.4) : fX(∞, x) = γ (1 + γ 2x2)−(ν+1)/2

B(ν/2, 1/2)

(1.5) : fY(∞, y) = γ̂

2K1(ν − 1)
· exp

(
−(ν − 1)

√
1 + γ̂ 2y2

)

(1.6) : fY(∞, y) = γ̂ (1 + γ̂ 2y2)−(ν−1)/2

B((ν − 2)/2, 1/2)

(1.7) : fY(∞, y) = γ̂ (cosh γ̂ y)−ν

B(ν/2, 1/2)

(B and Kν denoting as usual the Beta function and the modified Bessel function of the second
kind; see [21]) and throughout

γ̂ = γ

√
σ 2

2κ
; ν = γ̂−2 + 1

so that the non-dimensional parameter γ̂ or ν measures the deviation from the OU model (γ̂ = 0,
ν = ∞).

In each case, the density is fatter tailed than Gaussian. In (1.6), the density is fatter tailed
than in (1.5) because the reversion disappears completely as the diffusion process moves far from
equilibrium, and so it is left to wander around aimlessly.

There is a reasonable amount of similarity, at least visually, between figures 2b and 1a,b. We
therefore tested the model (1.4), using the standard likelihood-ratio test, with the null hypothesis
H0 : γ̂ = 0 against the alternative H1 : γ̂ > 0. The method yields a maximum-likelihood estimate
for the parameter in question and an estimate of the relative likelihood of H0 versus H1 given
the data (the p-value). For figure 1a, we found ν = 3.8 with p-value 1 × 10−8, and for figure 1b we
found ν = 3.2 with p-value 1 × 10−32. The rejection of the basic OU model is unsurprising, given
the huge excursions from equilibrium in both datasets. Similarly, figure 2d bears a resemblance to
figure 1c. Testing (1.6) in the same way on figure 1c, we found ν = 4.4 with p-value 5 × 10−6. This
suggests that (1.6) is preferable to the simple OU model. (For the purposes of risk management,
it is clearly prudent to use any of (1.5)–(1.7) in place of the basic OU, even if there is no firm
statistical evidence.)

We round off this section by returning to physics, with an example that is considerably
further from the OU process, qualitatively, at least in the sense of not being in a one-parameter
deformation of the OU model. This is the double-well potential, where the invariant density is
bimodal. This has been studied by Caroli et al. [22], who used the Wentzel–Kramers–Brillouin
(WKB) approximation to study the behaviour in different time regimes; here we shall demonstrate
a method of solution valid on all time scales simultaneously. For the sake of concreteness, we
confine ourselves to a particular example

dXt = κ

(
−x + c1x

1 + c2
2x2

)
dt + σ dWt, (1.8)
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Figure 3. Simulations of the Ito process described by the double-well example (1.8) with σ = 2, κ = 2, c1 = 4, c22 = 2 and
τ = κ t.

where we require c1 > 1 (so that there are two wells), c2 �= 0 (for asymptotic stability). Figure 3
shows typical realizations of the corresponding Ito process, for σ = 2, κ = 2, c1 = 4, c2

2 = 2, τ = κt.
In some realizations such as figure 3a the process hops from one well to the other (these are centred

at X = ±
√

3
2 ); but it can spend a long time in one well (figure 3b). In non-dimensional form, this is

A(y) = −y + 4y
1 + 2y2 , fY(∞, y) = 1

3
√

2π
(1 + 2y2) e−y2/2; (1.9)

in general, fY(∞, y) = Gaussian × polynomial, with the polynomial factorizable as a product of
strictly positive quadratics, is a form that will construct multi-modal examples of arbitrary
complexity.

(b) Infinite products
The main thrust of this paper is that one benefits significantly from studying the logarithmic
derivative, in the spatial direction, of the solution. An immediate advantage is that upon
integration and re-exponentiation a positive solution must be obtained (there is still a time-
dependent normalizing factor to obtain, but as we show later it is easy to ensure that this is
positive).

Next, the logarithmic derivative is an algebraically simpler construction. Indeed, for the OU
model one has

fX | X0 (t, x) = 1√
2πξ2(1 − e−2κt)

exp

(
− (x − X0 e−κt)2

2ξ2(1 − e−2κt)

)
, ξ = σ√

2κ
(1.10)

whereas

− ∂

∂x
ln fX | X0 (t, x) = x − X0 e−2κt

ξ2(1 − e−2κt)
.

(In the case of an arithmetic Brownian motion with no reversion and starting from the origin, this
would simply read x/σ 2t.) We wish to replicate this exactly when A is linear, and this solution is
a starting point in our analysis. Note that the form of (1.10) and the stochastic representation of
the OU process as a scaled time-transformed Wiener process [23]

Xt = X0 e−κt + ξ e−κtWe2κt−1

suggest a substitution q = e−2κt, and indeed we use this as an ansatz for mean-reverting processes
in general.
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Figure 4. The truncation of the Mehler series expansion (1.11) of the OU solution is oscillatory, as shown here for x varying and
t = 0 for varying truncation of the series to N terms. (Parameters: X0 = −2, ξ = 1, κ = 1

2 .)

The next issue is that we want a technique in which short- and long-time behaviour can be
specified explicitly, and that these be replicated. This is because the former must be a Gaussian
distribution as t → 0, while the latter is the already-identified invariant density. Thus arrives the
notion of an infinite product expansion, in the sense of writing the logarithmic derivative as
the sum of a term that replicates the short-time behaviour, another that replicates the long-time
behaviour, and a series that corrects the middle.

The infinite product is a significant departure from ‘standard’ techniques for solving parabolic
PDEs; these have in common that they are all infinite sums. Three such are: spectral methods
(Fourier transformation in the spatial coordinate [24]); orthogonal expansions (expand the spatial
dependence as a time-weighted sum of eigenfunctions of the infinitesimal generator); and Laplace
transformation in time. All suffer from the problem that it is difficult to represent the initial
condition effectively. As a case in point, take the Mehler series expansion [25], in terms of Hermite
polynomials Her(x), to the OU PDE:

fX | X0 (t, x) = exp(−x2/2ξ2)

ξ
√

2π

∞∑
r=0

e−rκt

r!
Her

(
X0

ξ

)
Her

(
x
ξ

)
, ξ = σ√

2κ
. (1.11)

For κt � 1, it is clear from the sum that the convergence is very slow, because the basis functions,
which are oscillatory, are required as t → 0 to sum to give a delta function; truncation therefore
generates oscillatory artefacts. Figure 4 shows the situation for t = 0; indeed, the truncated Mehler
series (taking only terms 0 ≤ r<N) can be approximated around the spike x = X0 by the sinc
function

sin(
√

N(x − X0)/ξ )
π (x − X0)

.

This behaviour is not specific to the OU process, and the slowness of convergence and the
concomitant Gibbs phenomenon are a consequence of the Riemann–Lebesgue lemma. Yet for an
infinite product, it is easy to make the short-time solution zero at all x �= X0, and hence like a delta
function. One simply arranges for one of the terms in the product to be zero for t = 0, x �= X0, and
then it does not matter what the rest of the terms are: so another can be responsible for modelling
the long-term behaviour, and the others for the middle-time region—as we intimated above. Even
if one does not bother to correct the ‘middle-time’ behaviour, the results are remarkably good: this
is seen later in equation (3.23) and in §3e and accompanying figures.

Probabilistically, infinite products have the attractive interpretation that each term in the
product is the Radon–Nikodym derivative of the successive partial products. In statistical physics,
the entropy is an important concept, and an infinite product represents this much more effectively
than does a sum; from the point of view of an approximation, it is clearly disastrous to have
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a negative probability density anywhere. Note also that under a change of ‘spatial coordinate’
X, to Y = η(X) say, a multiplicative factor of |η′(X)| enters, so multiplicative representations are
preserved under change of variable (because the Jacobian is just another term in the product) in
a way that additive ones are not. Accordingly, it is quite incorrect to view an infinite product as a
minor variant on an infinite sum: rather, we argue, the infinite product is fundamentally different
and also a clearer way of thinking about the problem. On the other hand, the introduction of
a logarithm causes a quadratic nonlinearity to appear in the FP equation, making the algebra
considerably more difficult. In fact, the series expansion of its solution generates a quadratic
recurrence of self-convolutive type somewhat analogous to that discussed in [26].

2. Preliminaries
By substituting fX(t, x) = gX(t, x)fX(∞, x) or fY(t, y) = gY(t, y)fY(∞, y) and working with g instead,
we arrive at the adjoint FP equation. This is similar to (1.1):

∂gY

∂τ
= A(y)

∂gY

∂y
+ ∂2gY

∂y2 (2.1)

and is also known as the backward equation (a term that we do not use here, because the equation
arises as a forward equation: τ represents calendar time). This development is useful because we
are going to ensure that, when we approximate gY (and hence gX also), its long-term asymptote
is unity. By so doing, we ensure that the approximated f tends to the correct invariant density.

As motivated in the Introduction, we deal with the logarithmic derivative of gY rather than
with gY itself. We therefore introduce a function hY,

hY(τ , y) = − ∂

∂y
ln gY(τ , y),

so that hY satisfies an equation analogous to Burgers’:

∂hY

∂τ
= ∂

∂y

{
A(y)hY + ∂hY

∂y
− h2

Y

}
. (2.2)

Conventionally, the Hopf–Cole transformation [27] is used to convert the (nonlinear) Burgers
equation into the (linear) diffusion equation, which is regarded as being more easily analysed.
We are doing it backwards here, which may seem perverse: but note that this is also how the
WKB approximation works [28], so the logarithmic transformation to a nonlinear equation has a
well-established precedent.

The apparent similarity to the WKB expansion is worth discussing briefly. The similarity in
form of the recursion is similar, as the logarithmic-derivative transformation also gives rise to
what is, in essence, a Riccati equation. However, WKB is most naturally applied to problems in
which the coefficient of the second derivative—here, the volatility (noise) term—is small. It gives
rise to a singular expansion, because for zero noise the order of the differential equation reduces
from two to one. That is not what we do: our approach is to take the OU solution for hY(τ , y) and
add terms to correct it. Thus whereas WKB expands the solution around a deterministic system,
our techniques expand it around a known stochastic one. If the noise is very small, WKB may be
more effective, but we have not observed a general failure of our methods in that limit.

3. Infinite product expansion

(a) Solution of nonlinear partial differential equation by series expansion
We now seek a series expansion as a solution of (2.2). In the regular OU case, A(y) = −θy, we have

hY(τ , y) = θqy − θ
√

qY0

1 − q
, q = e−2θτ .
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Now for general A, we still have a diffusion starting from Y0, in which the distribution’s variance
initially grows with time as 2τ , so if we expand around τ = 0, i.e. q = 1, in powers of (1 − q), we
are led to consider a development

hY(τ , y) = θ (y − Y0) + o(1 − q)
1 − q

, q = e−2θτ ,

where θ is an arbitrary constant, and will be set later. This can also be established by dominant
balance in (2.2), as on the RHS the h2

Y term predominates as τ → 0. The basic OU solution is
corrected by a series expansion thus:

hY(τ , y) = θqy − θ
√

qY0

1 − q
+

N−1∑
r=0

q(1 − q)rbr(y) + RN(τ , y) (3.1)

with RN denoting the remainder. Note that N = 0, which we call the leading-order approximation,
means that no (br) terms enter. Many of the manipulations in the first part of this section serve to
exchange terms of the form 1,

√
q, q, the point simply being that any two of these differ by o(1 − q)

in the vicinity of q = 1.
The form of (3.1) is very important. Any truncation of the series must vanish as τ → ∞, which

is what we need, because all terms contain a factor of q or
√

q. Note also that the truncated error
is uniformly bounded in τ , because the expansion is in q(1 − q)r and q lies in the compact interval
[0, 1]. Thus, for each N and each y the error in hY(τ , y) is bounded in 0 ≤ τ ≤ ∞. Such uniformity
is obviously not shared by, for example, a series expansion in powers of τ , which is why we
dismissed that idea out of hand.

The functions (br), and the remainder, are dependent on Y0, and should therefore be thought of
as br(y | Y0): for reasons of conciseness we just write br(y) or just br, and when we write b′

r it means
that the y-dependence, not the Y0-dependence, is being differentiated.

We are shortly going to equate coefficients of powers of (1 − q), and for that reason the
√

q term
in (3.1) is unwelcome; we therefore exchange

√
q for q plus a Taylor series around q = 1. Writing√

q = (1 − (1 − q))1/2 and using the binomial theorem, we find

√
q − q

1 − q
≡

∞∑
r=0

q(1 − q)rδr, δr = 1
22r+1

(
2r + 1

r

)
, |1 − q|< 1. (3.2)

Note also that δ0 = 1
2 and (r + 2)δr+1 = (r + 3

2 )δr, which is needed later. Thus, the revised series is

hY(τ , y) = θq(y − Y0)
1 − q

+
N−1∑
r=0

q(1 − q)r(br(y) − θδrY0) + RN(τ , y) (3.3)

with a modified remainder term (the term RN now contains all of RN , plus the r ≥ N part of the
infinite sum in (3.2)). The next step is to compute the (br) by comparing coefficients in q(1 − q)r.
Note that the recurrence we are about to derive for the (br) will be obtained from (3.3), but for
computational purposes we use (3.1), of course omitting the remainder term.

It is convenient to write b−1(y) ≡ θ (y − Y0) so that the first term can be absorbed into the
summations, and also δ−1 = 0. We then substitute (3.3) into

2θq
∂h
∂q

+ ∂

∂y

{
Ah + ∂h

∂y
− h2

}
= 0 (3.4)

and equate terms in q(1 − q)r. (Note that terms of the form q2(1 − q)r, which arise from the
quadratic term in (3.4), have to be written as q(1 − q)r − q(1 − q)r+1.) This gives

2(r + 1)(br − θδrY0 − br+1 + θδr+1Y0) + (Abr − AθδrY0)′ + b′′
r

− 2
r+1∑

j=−1

b′
j(br−j − θδr−jY0) + 2

r∑
j=−1

b′
j(br−1−j − θδr−1−jY0) = 0.
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For r = −1, we deduce

((y − Y0)(b0 − 1
2 θY0))′ = 1

2 ((y − Y0)A)′ + θ (y − Y0),

so

b0 = 1
2

(A + θy) + const.
y − Y0

/
(3.5)

with the last part being discarded as it is singular at y = Y0. Note that b0 happens not to depend
on Y0, but all the others generally will. Thus, for r ≥ 0,

θ (y − Y0)b′
r+1 + θ (r + 2)br+1

= θ

(
r + 3

2

)
br +

(
θ (y − Y0) + 1

2
A
)

b′
r + 1

2
b′′

r +
r∑

j=1

(br−j − θδr−jY0)(b′
j−1 − b′

j). (3.6)

(The summation is void if r< 1.) Accordingly,

br+1(y) = θ−1(y − Y0)−r−2
∫ y

Y0

(η − Y0)r+1

⎡
⎣θ (r + 3

2

)
br(η) +

(
θ (y − Y0) + 1

2
A(η)

)
b′

r(η)

+ 1
2

b′′
r (η) +

r∑
j=1

(br−j(η) − θδr−jY0)(b′
j−1(η) − b′

j(η))

⎤
⎦dη. (3.7)

When y = Y0, this is just 1/θ (r + 2) × r.h.s.(3.6). The lower limit in the integral must be Y0 as
otherwise br+1 becomes singular at y = Y0 in a similar manner to (3.5). Successive terms may be
extracted recursively; and fortunately, just as with the WKB expansion, the (differential) equation
for br+1 is first-order linear, even though it is nonlinear in the ‘known’ terms (bj)r

j=0. Thus, the
recurrence involves no more than a succession of integrals.

(b) The parameter θ
The parameter θ allows us to expand the FP equation at hand around that of any of a one-
parameter family of OU equations in which θ governs the reversion speed. We want to know
what is the best θ to use for any given A, and intuitively it is clear that one should use a θ that best
approximates, in some sense, the (y-dependent) rate of mean reversion that A gives. In so doing,
we will have matched not just the short- and long-time behaviour of the function h, but also the
rate of transition from one regime to the other.

The bound states of (1.1) are the normalizable eigenfunctions of L†. In the OU case with
Y0 = 0, it is plain from the Mehler expansion (1.11) that the eigenfunctions ψr(y) and associated
eigenvalues λr are

ψr(y) =
√
θ

2π
e−θy2/2 Her

(√
θy
)
, λr = −θr, r ∈ N0.

Importantly, up to normalization one has ψr+1 =ψ ′
r.

Now in the general case we know ψ0, which is the invariant density, and λ0 = 0, but we do
not know any of the other eigenfunctions or eigenvalues. However, let us assume that the first
eigenfunction is approximately ψ ′

0, and write ψ̂1 =ψ ′
0 for this approximated eigenfunction. Then

L†ψ̂1 =ψ ′′′
0 − (Aψ ′

0)′ = (A′ψ0)′.

Let us assume this to be roughly λ1ψ̂1, i.e. λ1ψ
′
0. Then integrating once, we have A′ψ0 ≈ λ1ψ0, and

then integration from −∞ to ∞ gives

λ1 ≈ 〈A′〉 ≡
∫∞

−∞
A′(y)fY(∞, y) dy = −

∫∞

−∞
f ′
Y(∞, y)2

fY(∞, y)
dy< 0; (3.8)

given that in the OU case λ1 = −θ , we use

θ = −〈A′〉> 0. (3.9)
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This has considerable intuitive appeal, as 〈−A′〉 is, in a sense, the average rate of mean reversion,
and by construction is necessarily positive. Of the ‘OU deformations’, it is easily calculated in
two of the four cases, but (1.5) requires an integral, to which we provide the first term in a Padé
approximation:

(1.5) : 〈−A′〉 ≈ ν − 1
ν + 1/2

; (1.6) : 〈−A′〉 = ν − 2
ν + 1

; (1.7) : 〈−A′〉 = ν2

ν2 − 1
. (3.10)

In the double-well example,

(1.9) : 〈−A′〉 = 7 − 8π1/2 e1/4Φ(−1/
√

2)
3

≈ 0.878 (3.11)

with Φ the cumulative Normal distribution function.
The above discussion gives an unambiguous prescription for θ , but it should not be thought

that the value is critical. For example, one can expand the OU model A(y) = −θ∗y using any θ > 0,
thereby picking up a series of correction terms that arise from the inequality of θ and θ∗. It is
easily verified that the resulting series is convergent for |1 − q|< 1, i.e. all τ ≥ 0.

(c) Initial results; the remainder term
For a numerical demonstration, we set γ̂ = 1

2 , i.e. ν = 5. Figure 5 shows the functions br(y) for
r = 0, 1, 2, . . . for each of the three models ((1.5)–(1.7)), and with Y0 = 0, −2 in each. (From (3.10)
we have θ = 0.727, 0.50, 1.04, respectively.)

Apparently, the partial sums converge at power law in r, i.e. br(y) ∝ r−λ, as is corroborated by
figure 5c. This is consistent with hY having a singularity of the form qλ at q = 0, which in turn
implies exponential decay in t as t → ∞ (which seems reasonable, given our previous discussion
on spectral theory). There is no universal scaling law, so λ depends on the problem at hand.

An estimate of λ, even if rudimentary, can allow us to estimate the discarded part of the
summation, at least to the extent that we get a better estimate than assuming it to be zero. Using
the result given in appendix A, the assumption br(y) ∝ r−λ leads to the approximation

q
∞∑

r=N

(1 − q)rbr(y) ≈ (1 − q)Nqλ(N − 1)λ

(1 + q(N − 1))λ
bN−1(y). (3.12)

In the examples we have investigated, we have found λ to lie between 0.2 and 0.6. One can use
an empirical estimate, but we suggest using λ= 1

2 throughout—a principle to which we will have
recourse later—and applying (3.12) when N� 5.

We have also computed the partial sums hY with the solution obtained from a PDE solver to
satisfy ourselves that they converge to the correct result. Wherever we refer to a PDE solver, we
have used the method of lines with finite differences in space and DASSL (see [29]) as the time
solver; this is a well-established, highly effective, and often used approach for numerically solving
potentially highly nonlinear and stiff diffusion-like equations in fluid mechanics and elsewhere
[30]. To compute hY, we compute gY and then take the logarithmic derivative, rather than solving
the nonlinear PDE (2.2) directly.

(d) Derivation of the normalizing factor
We now know hY(τ , y), but this only allows us to reconstruct gY(τ , y) up to an arbitrary
multiplicative time-dependent factor nY(τ ) say, which we must now obtain:

gY(τ , y) = nY(τ ) exp
(

−
∫ y

Y0

hY(τ , y′) dy′
)

. (3.13)
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Figure 5. Panels (a–c) show br(y) versus y for r = 0, 1, 2, 5, 10, 90 (arrows in (c) and (f ) show the direction of increasing r) for
the three models: (a) (1.5), (b) (1.6), (c) (1.7), with Y0 = 0. (d–f ) are the same, but nowwith initial condition Y0 = −2. Panels
(g–i) show the variation of br(5) versus r for Y0 = 0 (dashed) and Y0 = −2 (solid). Panels are for (g) (1.5), (h) (1.6), (i) (1.7) and
the slope− 1

2 is shown in panel (i) for reference.

(The lower limit of the integral is arbitrary, and taken as Y0 for convenience.) Inserting this into
(2.1) gives a first-order linear differential equation for nY:

1
nY

∂nY

∂τ
=

∫ y

Y0

∂hY

∂τ
dy − AhY − ∂hY

∂y
+ h2

Y
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and its solution must be, as nY(∞) = 1,

nY(τ ) = exp
{∫∞

τ

(
−

∫ y

Y0

∂hY

∂τ
dy + AhY + ∂hY

∂y
− h2

Y

)
dτ
}

.

Note that the r.h.s. seems to depend on y, but does not actually do so, because hY obeys (2.2). Thus
any y can be chosen, and using the same value as the lower limit of the y-integral causes the

∫
dy

term to vanish:

nY(τ ) = exp

{∫∞

τ

(
AhY + ∂hY

∂y
− h2

Y

)∣∣∣∣
y=Y0

dτ

}
. (3.14)

Substituting (3.1) into (3.14) and performing the time integral (note dτ = −dq/2θq) gives

nY(τ ) = 1√
1 − q

exp

⎧⎨
⎩

√
q − q

1 − q
θY2

0 − Y0(A(Y0) + θY0) ln(1 + √
q)

+ 1
2θ

N−1∑
r=0

B(1, r + 1; q)(A(Y0)βr + β ′
r) −

N−1∑
r=0

(
B(2, r; q) − B

(
3
2

, r; q
))

Y0βr

− 1
2θ

N−1∑
r=0

B(2, r + 1; q)
r∑

j=0

βjβr−j + ρN(τ )

⎫⎬
⎭ , (3.15)

where the coefficients (βr), (β ′
r) are defined by

βr = br(Y0 | Y0), β ′
r = b′

r(Y0 | Y0). (3.16)

Remember, as emphasized by the · | Y0 notation in (3.16), that the functions (br), for r ≥ 1, depend
parametrically on Y0. Thus, if Y0 is altered then one must recalculate all the (br) from r = 1
upwards, using (3.7), for (3.15) to remain correct: it is insufficient to keep the same (br) and
evaluate them at a different point. The symbol B(a, b; q) denotes the incomplete Beta function,

B(a, r; q) =
∫ q

0
pa−1(1 − p)r−1 dp.

Note that

B(a, 1; q) = qa

a
, B(1, r; q) = 1 − (1 − q)r

r

and

B(2, r; q) = 1 − (1 − q)r

r
− 1 − (1 − q)r+1

r + 1
,

whereas B( 3
2 , r; q) requires a recurrence:

B
(

3
2

, r; q
)

= 2
2r + 1

q3/2(1 − q)r−1 + 2(r − 1)
2r + 1

B
(

3
2

, r − 1; q
)

.

In the OU case, A(y) ≡ −θy, the only effective terms in (3.15) are the (1 − q)−1/2 prefactor and the
first exponential term, with the Y2

0 in it; this is as it should be. In the special case where A is an
odd function, as it is with all of our examples, and Y0 = 0 also, this simplifies to

[A odd] nY(τ ) = 1√
1 − q

exp

{
1

2θ

N−1∑
r=0

1 − (1 − q)r+1

r + 1
β ′

r|Y0=0 + ρN(τ )

}
. (3.17)

Now (3.15) and its special case (3.17) are rather slowly convergent for small τ , i.e. q → 1. This
difficulty can in fact be finessed, as we now show. Multiply both sides in (3.13) by fY(∞, y), and
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set y = Y0 and τ → 0, getting

fY(τ , Y0)
τ→0∼ fY(∞, Y0)√

1 − q
exp

⎧⎨
⎩1

2
θY2

0 − Y0(A(Y0) + θY0) ln 2 + 1
2θ

N−1∑
r=0

B(1, r + 1)(A(Y0)βr + β ′
r)

− 1
2θ

N−1∑
r=0

B(2, r + 1)
r∑

j=0

βjβr−j −
N−1∑
r=0

(
B(2, r) − B

(
3
2

, r
))

∗
βr + ρN(0)

⎫⎬
⎭ .

The ∗ symbol signifies the following: when r = 0 the Beta function B(a, r) is undefined, but B(2, r) −
B( 3

2 , r) is taken to mean the value of B(2, r; q) − B( 3
2 , r; q) in the limit q ↗ 1, which is well defined

and in fact equals 1 − 2 ln 2. But by direct analysis of the FP equation, we find

fY(τ , Y0)
τ→0∼ 1√

4πτ
τ→0∼ 1√

2π (1 − q)/θ
.

By comparison of these two results, we are able to establish two things, or, rather, one thing that
can be used in two ways. First, we have an infinite product representation of the invariant density
at the point Y0:

fY(∞, Y0) = e−θY2
0/2√

2π/θ
exp

⎧⎨
⎩Y0(A(Y0) + θY0) ln 2 − 1

2θ

N−1∑
r=0

B(1, r + 1)(A(Y0)βr + β ′
r)

+
N−1∑
r=0

(
B(2, r) − B

(
3
2

, r
))

∗
Y0βr + 1

2θ

N−1∑
r=0

B(2, r + 1)
r∑

j=0

βjβr−j − ρN(0)

⎫⎬
⎭ . (3.18)

As we said above, altering Y0 requires a complete recalculation of the (βr). But in fact only one
point is needed to determine fY(∞, y) for all y, since

fY(∞, y) = fY(∞, Y0) exp
(∫ y

Y0

A(y) dy
)

.

In the symmetrical case where A is an odd function, it is obvious to choose Y0 = 0, and then (3.18)
simplifies to

[A odd] fY(∞, 0) = 1√
2π/θ

exp

(
− 1

2θ

N−1∑
r=0

β ′
r|Y0=0

r + 1
− ρN(0)

)
. (3.19)

However, fY(∞, y) is often known, as we said earlier with (1.5)–(1.7), or else can be calculated
as an exponential integral followed by normalization to unit probability mass. The second idea,
therefore, is to reverse the previous logic and use fY(∞, y) to obtain ρN(0):

ρN(0) = ln

(
e−θY2

0/2/
√

2π/θ
fY(∞, Y0)

)
+ Y0(A(Y0) + θY0) ln 2 − 1

2θ

N−1∑
r=0

B(1, r + 1)(A(Y0)βr + β ′
r)

+
N−1∑
r=0

(
B(2, r) − B

(
3
2

, r
))

∗
Y0βr + 1

2θ

N−1∑
r=0

B(2, r + 1)
r∑

j=0

βjβr−j; (3.20)

or, when A is odd,

[A odd] ρN(0) = ln

(
e−θY2

0/2/
√

2π/θ
fY(∞, Y0)

)
+ Y0(A(Y0) + θY0) ln 2 − 1

2θ

N−1∑
r=0

B(1, r + 1)β ′
r. (3.21)

The first term in either of the above is the logarithm of the quotient of the Normal distribution
(mean 0, variance 1/θ ) and the true invariant density.

We can use this (exact) expression for ρN(0) to sharpen the approximation in (3.15), thereby
making it match at τ = 0; recall that it already does so at τ = ∞. Judging from (3.17) and the
discussion surrounding (3.12), β ′

r = O(r−λ) as r → ∞ for some positive λ, and the expression



15

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150084

...................................................
∑∞

r=1 r−λ−1(1 − q)r defines an analytic function of q that is of order qλ as q ↘ 0, by the Tauberian
theorem. Accordingly, we are motivated to write

ρN(τ ) = ρ


N(τ ) + qλρN(0). (3.22)

Thus, ρN(0) = ρ


N(∞) = 0 for all N. As we can easily compute ρN(0), we reduce the truncation error
in (3.15) from ρN(τ ) to ρN(τ ). As any λ> 0 will exactly remove the truncation error at τ = 0, we are
free to choose λ= 1

2 throughout, as previously intimated.

(e) Leading-order expansion
We are now ready to put everything together, and in the first instance we use no correction terms,
thereby ignoring all the (br). We have in this approximation, by (3.1),

exp
(

−
∫ y

Y0

hY(τ , y′) dy′
)

N=0≈ exp

(
−(1/2)θq(y2 − Y2

0) + θ
√

qY0(y − Y0)
1 − q

)
;

and by (3.15), (3.20) and (3.22),

nY(τ ) N=0= 1√
1 − q

exp
(√

q − q
1 − q

θY2
0 − Y0(A(Y0) + θY0) ln(1 + √

q) + qλρ0(0)
)

ρ0(0) ≈ ln

(
e−θY2

0/2/
√

2π/θ
fY(∞, Y0)

)
+ Y0(A(Y0) + θY0) ln 2.

Multiplying these two to get gY(τ , y), and then by fY(∞, y), gives us what we are after:

fY(τ , y)
N=0≈ 1√

1 − q

(
e−θY2

0/2/
√

2π/θ
fY(∞, Y0)

)qλ

exp

(
Y0(A(Y0) + θY0) ln

(
2qλ

1 +√
q

))

× fY(∞, y) exp

(
−(1/2)θq(y − Y0)2 + θ (

√
q − q) Y0y

1 − q

)
. (3.23)

In effect, this is the invariant density multiplied by a Gaussian of time-dependent width and
centre; we recall that θ comes from (3.9) and (3.10), and we are standardizing on λ= 1

2 .
We are now in a position to explore the efficacy of the expansion scheme versus full numerical

solutions and we proceed to do so in figures 6–8. Each shows a numerical simulation of the full
PDE, using the same parameters as in §3c, i.e. γ̂ = 1

2 , for Y0 = 0, −2; the shift in the source position
illustrates that, in each case, the solution drifts back to the origin as it simultaneously diffuses
outward. In each case, we illustrate for f , on log axes to accentuate any error, the numerical
solution of the PDE for τ = 0.1, 1, 5 versus the N = 0 (just the leading-order) solution (3.23).
The solutions are virtually indistinguishable. As a more stringent, and demanding, test upon
the methodology the double-well example (1.9) is also evaluated both numerically and via the
expansion; the results shown in figure 9 are again remarkably accurate, particularly considering
that it is just the N = 0 approximation that is shown.

(f) Higher order development
We can, however, pursue the approximation to higher order in an attempt to squeeze the error
down further. This we illustrate by plotting the difference between the numerical solution for the
density and the approximation (summarized by equations (3.1), (3.13), (3.15), (3.20) and (3.22))
in figure 10. The numerical solution is evaluated using a highly accurate implicit time solver
and uses central differences that are accurate to O(δy3) ∼ O(10−6), where δy is the gridspacing
that is 10−2 in the simulations shown; thus the observed difference of O(10−6) is to be expected.
Figure 10 shows the N = 0 approximation together with increasing values of N (2, 5, 10, 20, 50)
and it appears that the error converges to zero as N → ∞. For reasons of space, we just show the
results for model (1.5), but the picture is similar for the other cases.
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Figure 6. Numerics and leading-order expansion compared for the model (1.5). Panels (a,b) are for Y0 = 0 and (c,d) are for
Y0 = −2. (a,c) The numerical solution for fY (τ , y) and (b,d) the numerical solution (solid) and the leading-order (N = 0)
expansion (dots) for τ = 0.1, 1, 5.

The integrals in (3.7) are algebraically intractable in general, and by way of numerical
techniques we suggest the use of Chebyshev approximation. Set up an interval [ymin, ymax],
approximate br at the Chebyshev nodes (yk), which allows its derivatives to be evaluated at any
point as a function of the expansion coefficients [11]; then evaluate at each k the integral (3.7) by
Gauss–Legendre quadrature (which, apart from the term containing A, will be exact provided
the quadrature order is ≥ 1

2 r∗ + m − 1
2 , where m is the degree of the Chebyshev approximation,2

and r∗ is the highest value of r desired in (3.7)), and use these values br(yk) as the samples of
an interpolating Chebyshev approximation. The recurrence is initialized by approximating b0.
Incidentally, this method was used to generate the results in figure 5 using degree 21 on the
interval [−10, 10]. Note that y �→ hY(τ , y) is approximated as a polynomial, for each τ ; the integral
in (3.13) can be done by Gaussian quadratures again or directly from the Chebyshev expansion of
the (br).

(g) Divergent (unstable) diffusions
An intriguing question is whether the methods described here also work for ‘unstable’ (non-
reverting) diffusions, i.e. those with no invariant density. Hongler & Desai [31] point out that the
so-called repulsive Wong model admits a closed-form solution in one isolated case. This is

dYt = 2α tanh y dt +
√

2 dWt,

2One less than the order.
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whose FP equation solves for α= 1 as

fY(t, y) = e−(y−(Y0+2t))2/4t eY0 + e−(y−(Y0−2t))2/4t e−Y0

4
√
π t cosh Y0

= e−t

2
√
π t

· e−(y−Y0)2/4t cosh y
cosh Y0

.

Now the above diffusion is not reconcilable with (1.7), on account of the sign in the drift being
wrong. Inasmuch as it is related to the OU process, one has to take (1.4) with negative mean
reversion (κ = −1, σ = 1, γ = 1), and then transform by X = sinh 1

2 Y. There is, of course, no
invariant density. There is an unphysical steady-state solution to the FP equation, which is
∝ cosh2 y. However, division of fY by this to get the solution to the adjoint forward equation
does not give a solution that tends to 1 as t → ∞, so the methods given in this paper, and in
particular (3.23), fall apart. Note that the form of the solution is two diverging blobs of probability
mass. This is important: whereas mean-reverting diffusions do look like the standard OU process,
allowing the solution to the FP equation to be expanded around the solution of the OU process,
divergent ones may exhibit structural features particular to themselves and cannot be regarded
in the same way.

That said, the quantity (−∂/∂y) ln fY is simple,

− ∂

∂y
ln fY(t, y) = y − Y0

2t
− tanh y,
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Figure 8. Numerics and leading-order expansion compared for the model (1.7). Panels (a,b) are for Y0 = 0 and (c,d) are for
Y0 = −2. (a,c) The numerical solution for fY (τ , y) and (b,d) the numerical solution (solid) and the leading-order (N = 0)
expansion (dots) for τ = 0.1, 1, 5.

and it does have a large-time limit, − tanh y. But this limit is not obtainable from the logarithmic
derivative of the unphysical steady-state solution, as that is

− ∂

∂y
ln cosh2 y = −2 tanh y.

We may fairly state the following conclusions: (i) the expansion shown here is inapplicable to
divergent diffusions; (ii) an alternative form of expansion of the logarithmic derivative of the
density may well prove useful; and (iii) it is an interesting avenue for further research.

(h) Convergence
The series (3.1) is derived as an expansion in the limit t → 0. Thus, it may or may not be convergent
in the classical sense, i.e. limN→∞ RN(τ , y) = 0 for each τ , y. For the examples we have considered,
the empirical evidence is that br(y) asymptotically decays at power order in r as r → ∞, and this
is sufficient for the purpose.

Clearly, some conditions must be obeyed by A for convergence to hold. While the N = 0
approximation (3.23) is generally applicable, the usefulness of higher order terms is predicated
on differentiability of A, because, as the order of the approximation (N) is increased, successively
higher derivatives of A are invoked, on account of the b′′

r term. It seems likely that a necessary
condition on A is that it be analytically continuable to the open strip |Im y|<η, for some
η > 0. What further conditions are required for hY to have the posited Laurent expansion (3.1)
convergent in the punctured disc |q − 1|< 1 is a matter for further research.
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Figure 9. Numerics and leading-order expansion compared for the double-well example of equation (1.9). Panels (a,b) are for
Y0 = 0 and (c,d) are for Y0 = −2. (a,c) The numerical solution for fY (τ , y) and (b,d) the numerical solution (solid) and the
leading-order (N = 0) expansion (dots) for τ = 0.1, 1, 5.

We reiterate that, whether the series is classically convergent or not, the error is uniformly
bounded in τ , by contrast with an expansion in powers of τ .

(i) Fusion with existing techniques
We argue that it is possible to combine the best features of the series expansion shown here with
those of classical methods of solving PDEs. If (3.1) is non-convergent, it will be impossible to
obtain arbitrary accuracy (in general, this is a perennial problem with asymptotic expansions:
they give excellent accuracy in certain regions but cannot achieve arbitrary accuracy at any given
point)—and, even if it does converge, its convergence may be inconveniently slow. Classical
techniques and the existence theorems that relate to them are not reliant on analyticity, but can
potentially obtain arbitrary accuracy. (From a more general context: on a compact interval any
continuous function may be approximated to arbitrary accuracy by a polynomial or a Fourier
series—but neither constitutes any sort of power series expansion of the function, as it may well
not be analytic. In approximation theory, one does not want to be forced to assume analyticity of
the function being approximated.)

Consider an approximate solution f (τ , y), such as the N = 0 approximation though any other
N would do, and define the relative error ψY via the substitution

fY(τ , y) = f Y(τ , y) eψY(τ ,y),

then writing down the PDE obeyed by ψY. As we have extracted the τ = 0 and τ → ∞ behaviour
correctly in f Y, the initial condition is ψY ≡ 0 (and we expect ψY to vanish as τ → ∞). The
resulting equation for ψY, though nonlinear, can still be solved by grid-based methods or by
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spectral methods. But whereas, before, we said that spectral methods have difficulty coping with
a singular initial condition, they are now being applied to the slowly varying function ψY, and so
their performance will be much better. In essence, as far as numerics are concerned, all the hard
work has been done by extracting f Y.

This idea has been used in different guises for many decades. For example in [21], it is common
to see special functions approximated similarly. After studying the expansion’s behaviour and/or
singularities, apply an appropriate transformation to take these out and map the domain to
[−1, 1]. The transformed function, which by construction is slowly varying and properly behaved
at the endpoints, is then ideally approximated as a Chebyshev series—and this is the kind of
problem for which spectral methods are ideal.

4. Conclusion
We have shown how to expand the solution of the forward and backward equations of modified
OU processes ‘around’ the OU case in a way that respects the characteristics of the problem. The
method generalizes to other processes, and our conclusions are summarized as follows.

— It is more convenient to work in normalized coordinates, hence the transformation from
X to Y and the time change from t to τ . By this transformation, we can assume that
the volatility term is constant. Throughout, q = e−2θτ so that q ∈ [0, 1] and we expand in
q(1 − q)r. The suggested value of θ is that given by (3.9).

— The solution to the forward equation is given by fY(τ , y) = gY(τ , y)fY(∞, y), where gY

solves the adjoint forward equation (also known as the backward equation).
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— The infinite product expansion of gY is given by (3.13) and (3.1). If only the logarithmic
derivative (w.r.t. y) is needed, then this is just −hY, so nY can be ignored.

— The functions br are obtained by the recurrence (3.5) and (3.7), using also (3.2).
— The function nY is given by (3.15), and the remainder term ρN(τ ) is decomposed by (3.22)

into a part
√

qρN(0) that can be evaluated by (3.20) and a pared-down remainder term ρ


N
which is dropped.

— The case with no correction terms, N = 0, is given by (3.23).

In terms of computation, we have found that this method improves upon the use of a standard
PDE solver. One reason for this is that, in common with spectral methods, it gives arbitrary spatial
resolution, whereas to get a spatial resolution of O(δx) using a PDE solver with, say, standard finite
differences typically requires a time step of O(δx)2. We have found that the approximation, with
a handful of correction terms, typically represents an improvement in speed of a couple of orders
of magnitude over the PDE solver; using N = 0 is obviously even faster.

5. Further developments
This section discusses possible avenues for further research, which we think are numerous and
varied.

— Multi-dimensional analogues. These would require the expansion of a multi-dimensional
problem around its associated multi-dimensional OU ansatz.

— Time-varying analogues. In principle, the logarithmic derivative of the associated FP
equation has a useful structure even when the coefficients of the underlying stochastic
differential equation are time-varying, but it is less clear how to proceed as a steady-state
solution can no longer be identified: thus one might have to work directly with the FP
equation rather than its adjoint.

— If the process is strictly positive, as happens in certain financial models, then the natural
ansatz is no longer the OU process, but instead the square-root process

dYt = (a − κYt) dt + σ
√

Yt dWt,

for which the FP equation has a known solution (e.g. [32]). This would allow such
processes as

dXt = (a − κXt) dt + σ
√

Xt(1 + γXt) dWt

to be analysed. A further development is when the process is bounded on both sides,
such as

dXt = (a − κXt) dt + σ

√
1 − X2

t dWt.

— The representation of the solution to the forward equation arising from a Lévy process.
— Barrier problems. These fall into two broad categories. One possibility is to solve the

FP equation with a delta-function initial condition, in the presence of one or more
absorbing barriers. In that case, an infinite product solution can be thought of as a term
corresponding to the initial condition, a set of terms that vanish on the boundary(ies), and
the exponential of a remainder series. An alternative is to solve the backward equation,
giving the density of the stopping-time conditionally on starting from some point X0.
This would allow insight to be gained into such problems as the first passage time of an
OU process through a barrier: no simple solution is available, but approximate analytical
forms are known, and an infinite product expansion should allow the errors in these to
be quantified and corrected in a sensible way.
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Appendix A. Remainder term approximation
Let

Sq,N = q
∞∑

r=N

(1 − q)rr−λ.

We derive the approximation, in the limits q → 0, N → ∞:

Sq,N ≈ (1 − q)Nqλ

(1 + q(N − 1))λ
.

Following an argument of Riemann employed in a similar context, we use the identity

r−λ = 1
Γ (λ)

∫∞

0
xλ−1 e−rx dx;

summing over r, we find, on writing ξ = Nx,

Sq,N = q(1 − q)N

NλΓ (λ)

∫∞

0

ξλ−1 e−ξ

1 − (1 − q) e−ξ/N dξ .

It is necessary to approximate the term in the denominator for ξ � 1, and matching the function
and its first derivative at 0 gives

1
1 − (1 − q) e−ξ/N ≈ q−1e−(1−q)ξ/Nq;

this allows the integral to be performed, with the desired result.
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