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Parasites have profound fitness effects on their hosts, yet these are often

sub-lethal, making them difficult to understand and quantify. A principal

sub-lethal mechanism that reduces fitness is parasite-induced increase in

energetic costs of specific behaviours, potentially resulting in changes to

time and energy budgets. However, quantifying the influence of parasites

on these costs has not been undertaken in free-living animals. We used accel-

erometers to estimate energy expenditure on flying, diving and resting, in

relation to a natural gradient of endo-parasite loads in a wild population

of European shags Phalacrocorax aristotelis. We found that flight costs were

10% higher in adult females with higher parasite loads and these individuals

spent 44% less time flying than females with lower parasite loads. There was

no evidence for an effect of parasite load on daily energy expenditure,

suggesting the existence of an energy ceiling, with the increase in cost of

flight compensated for by a reduction in flight duration. These behaviour

specific costs of parasitism will have knock-on effects on reproductive suc-

cess, if constraints on foraging behaviour detrimentally affect provisioning

of young. The findings emphasize the importance of natural parasite loads

in shaping the ecology and life-history of their hosts, which can have

significant population level consequences.
1. Introduction
Parasites are among the most successful life forms and infect nearly every

known animal taxon [1]. It is well known that parasites can have major detri-

mental fitness consequences on their hosts (e.g. [2–4]). Such consequences

may arise because of multiple costs imposed by parasites, such as immune or

stress responses or the direct extraction of resources from their hosts [5–7].

These costs are frequently sub-lethal, whereby they alter fitness-related traits,

yet these processes are poorly understood because they are challenging to quan-

tify [8]. A principal sub-lethal effect of parasites that can readily be quantified is

the impact on performance in terms of movement and foraging. This is a critical

mechanism since impairment of these behaviours can have substantial negative

fitness consequences [9,10].

Since energy in wild animals is limited [11], there can be a trade-off between

allocation of resources to parasite-induced immune responses and perform-

ance-related behaviours [12]. Using an energetics framework with energy as

the central currency can therefore shape our understanding of how parasites
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impose behavioural costs on their hosts, and whether hosts

compensate for these costs by changing the duration of beha-

viours to regulate overall energy expenditure. An energetics

framework requires the measurement of variation in perform-

ance-related behaviours in relation to parasite burdens [13].

However, linking parasitism mechanistically to performance

in free-ranging animals has been undertaken in only a very

small number of cases and often in tractable invertebrate

systems [13].

For most taxa, foraging for resources is tightly linked to

fitness [9,14], and can be quantified through its impacts on

rates of energy expenditure and gain [15,16]. Foraging is an

energetically costly behaviour, especially for breeding indi-

viduals commuting between a fixed breeding site and

foraging locations, because the energetic costs of travel

imposes limits on the allocation of time and resources for

self-maintenance and offspring provisioning [17,18]. Even

with unlimited energy availability, energy expenditure for

foraging and other activities is limited in wild animals [11].

There is evidence that intrinsic constraints may impose an

‘energy ceiling’ in terms of a limit or optimum to daily

energy expenditure (DEE, the total energy expenditure of

an animal over 24 h) defined as the sum of the cost of activi-

ties multiplied by time spent on those activities [19]. As such,

to maintain DEE, any increase in costs of a behaviour may be

compensated for by reducing the time allocation to that be-

haviour. Such compensation may then lead to changes in

fitness [20,21]. However, these processes have not previously

been quantified in free-living animals.

Here, we quantify the costs of nematode endo-parasites

on the cost and time allocation of specific behaviours

(flying, resting and diving) in breeding European shags

Phalacrocorax aristotelis. Breeding adult shags are central

place foragers commuting between the nest site and for-

aging grounds, experiencing high energetic costs of

foraging activities [22]. Furthermore, recent experimental

work has illustrated the critical role of parasitism in European

shag reproduction [4,23]. As such, they are a useful study

species to test the effects of parasitism on the cost and allo-

cation to key foraging activities. In this study, we aim to

quantify the costs of endo-parasites by testing three main

hypotheses: (H1) parasite load is linked to an increase in

the energetic cost of behaviours; (H2) time allocated to

affected behaviours is negatively related to parasite load;

and (H3) increases in energetic cost of behaviours will be

compensated for by changes in time allocation resulting in

no link between parasite load and DEE.
2. Material and methods
(a) Study site and species
The study was carried out on the Isle of May National Nature

Reserve, south-east Scotland (568110 N, 28330 W) during the

breeding seasons of 2014–2017. All individuals were part of a

long-term population study and are marked with a unique

metal ring and a darvic ring for identification. Adults are sexu-

ally dimorphic, with males 22% larger than females [24], and

are sexed by vocalizations [25]. Populations of European shags

P. aristotelis are susceptible to nematode gastro-intestinal paras-

ites, in particular anisakid nematodes Contracaecum rudolphii.
Previous sampling of this population through dissection,

faecal egg counts and endoscopy has shown a high prevalence

of C. rudolphii [4,23,26], though parasite loads vary markedly
between individuals [23,26]. Effects are usually sub-lethal,

whereby parasites compete with the host for nutrients and

initiate costly immune responses [27]. Shags become infected

with third stage larvae via their fish diet. Larval worms moult

to become sexually mature adults which attach to the lining of

the proventriculus and lower oesophagus in the final seabird

host [26,27].

(b) Measuring parasite loads
Adult European shags were captured on the nest using a crook

on the end of a long pole. Endoscopy to quantify individual

parasite burdens was undertaken in early chick rearing (when

the chicks were between 5 and 38 days old). To ensure that indi-

viduals had empty stomachs, endoscopy was performed

between 03.30 and 07.30, before they had left for their first fora-

ging trip of the day. Worm burdens were counted visually using

the endoscope video screen, though counts of worms for burdens

of greater than 40 were not possible owing to the number of

worms preventing good visibility. Counts of worms greater

than this were recorded as greater than 40. These methods

were found to be repeatable within an individual across a

season [26]. For detailed endoscopy methods see Burthe et al.
[26]. All endoscopy was performed by trained personnel (S.B.)

holding a personal licence operating under a project licence

issued by the UK Home Office under the Animals (Scientific Pro-

cedures) Act 1986.

(c) Measuring energy expenditure
All birds were then equipped with tri-axial accelerometers

(D3GT, little Leonardo, Tokyo, Japan, AXY3-Depth, Technos-

mart, Rome, Italy and Gulf Coast Data Concepts X8) to

measure the energetic cost of variation in parasite load. Acceler-

ometers ranged in mass from 6.5–9 g but all were less than 0.7%

of the minimum shag body weight in this study well within the

recommended acceptable limit of logger weights. Accelerometers

were set to record at 25 or 50 Hz and attached on the midline of

the mid back of individuals (as close to the centre of gravity as

possible) using Tesa tape. All birds were successfully recaptured

and accelerometers were retrieved after four days of deploy-

ment (92 deployments on endoscoped individuals across four

years with 57 unique individuals; n ¼ 4 in 2014, n ¼ 24 in 2015,

n ¼ 39 in 2016, n ¼ 25 in 2017).

Data logger traces were used to differentiate between diving,

flying and resting (the three main activities of shags) in two

steps. Firstly the Ethographer application, which was developed

to classify behaviour states in European shags [28], in IGOR PRO

software (Wavemetrics Inc., Portland, OR, USA, 2000, version

6.3.5) was used to assign data as diving (including surface and

subsurface periods) or non-diving behaviour, through super-

vised cluster analysis using k means methods on the depth

trace [28]. In the case of the accelerometers where depth data

were not available, cluster analysis was performed on the surge

axis. Secondly, the remaining accelerometer data was assigned

as either flight or resting behaviour (either at sea or on land)

using frequency histograms of the standard deviation of the

heave axis and pitch (calculated over 60 s) [29].

Overall dynamic body acceleration (ODBA) was calculated

by first smoothing each of the three acceleration channels with

a running mean to represent acceleration primarily owing to

gravity. In our study, the running mean was 1 s (i.e. 25 data

points for 25 Hz accelerometers) as in [29]. The smoothed value

was then subtracted from the corresponding unsmoothed data

for that time interval to produce a value of g resulting primarily

from dynamic acceleration [30]. Derived values were then con-

verted into absolute positive units, and the values from all

three axes were summed to give an overall value for dynamic

acceleration experienced.
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Estimates of oxygen consumption ð _Vo2, ml min�1Þ were

derived from ODBA values using calibration equations from

Hicks et al. [31] to determine behavioural specific energy expen-

diture values for all behavioural bouts. For each individual, we

calculated a mean daily rate of oxygen consumption for each be-

haviour, averaging all bouts of that behaviour on that day. DEE

was the sum of the energetic costs of all behavioural bouts within

a full 24 h period of activity. Individuals had between one and

four of these periods, dependent on the length of the logger

deployment. We treated estimates of energy expenditure at the

individual level as a measurement, as in previous studies of

field energetics using a variety of approaches [32,33].
Proc.R.Soc.B
285:20180489
(d) Extrinsic variables
We incorporated extrinsic variables that impact on the foraging

behaviour of breeding adults since the effect of parasitism in

this system varies across environmental conditions [23]. Mean

population productivity (measured as the average number of

fledged young per incubated nest in a series of long-term moni-

toring plots from the wider island population) was included as

a measure of annual environmental conditions, following [23].

Chick age of the oldest chick in the brood was estimated from

wing length at ringing at approximately 20 days of age (a

reliable indicator of chick age [34]) and used to back calculate

an estimate of age in days at time of logger deployment.

Brood size (number of chicks at logger deployment) was also

incorporated in analyses, as adult energy expenditure and fora-

ging effort is likely to vary with the total brood mass that must

be provisioned [35].
(e) Statistical analysis
To test H1, we first considered the cost of three behaviours in

response to parasite load. We modelled mean daily rate of

oxygen consumption for each bird each day ð _Vo2, ml min�1Þ sep-

arately for flight, diving and resting behaviours using linear

mixed effects models. Parasite load, mean population pro-

ductivity, brood size and chick age in days were fitted as

continuous explanatory variables and we accounted for variation

among individuals and years by including individual, year and a

year by individual interaction as random factors. Interactions

between parasite load and each of the other three explanatory

variables were considered. We fitted models for males and

females separately owing to non-independence of nest pairs

and differing parasite load distributions between sexes and indi-

cations that similar parasite loads have different impacts on

males and females [4,23]. See the electronic supplementary

material, ST1 for a description of model structures and expla-

nations; all possible subsets of fixed effects were considered

when running the model selection (subject to the standard

restriction that interaction terms are only included alongside

the corresponding main effect terms). To test H2 and quantify

how the proportion of time spent per day in behaviours changed

with parasite load, we modelled logit transformed proportion

per day of each behaviour (flight, diving and resting on land)

in separate models, using the same set of explanatory variables

as in the analysis of costs of behaviours. Finally, to test H3 we

modelled DEE using the same model structure as those for the

individual behaviours.

In all model sets, model selection was based on Akaike’s

information criterion (AIC), which penalizes the inclusion of par-

ameters in models, and hence should lead to the removal of

unnecessary parameters [36]. The model with the lowest AIC is

usually chosen to be the ‘best’ model, but models within two

DAIC of the lowest value are generally considered to have similar

empirical support to that of the best model. All models were

fitted using the lme4 package in R [37,38].
Finally, to investigate the links between energetic costs,

behaviours and DEE in full, we used predicted values from

our models to estimate the total cost of each behaviour per

day in high and low parasite burden scenarios. This was

achieved by multiplying the predicted energetic rates by the pre-

dicted proportion of time spent in each behaviour under

maximum and minimum parasite loads measured in the

study. We also summed the total simulated costs of each of

the three behaviours to estimate DEE for each parasite burden

scenario. This enables us to understand whether changes in

costs of behaviours were compensated for via changes in dur-

ation of that behaviour.
3. Results
(a) The effect of parasite load on the energetic cost of

behaviours
In females, an effect of parasite load on the cost of foraging

behaviours was detected in all three behaviour specific

models; effect sizes varied with the largest effect apparent in

flight behaviour (see figure 1 for comparison of all behaviours

on the same scale). In males, there was weak evidence for a posi-

tive effect of parasitism on flight behaviour but no evidence for

the effect of parasitism on dive or rest behaviour.

(i) Flight behaviour
The best supported model for the effect of parasitism on the

cost of flight in females showed a positive relationship

between parasite load, with the cost of flight behaviour

increasing by approximately 10% from the minimum to

maximum parasite load (see the electronic supplementary

material, ST2). This model also incorporated a positive

effect of brood age and a negative effect of brood size on

the cost of flight (see the electronic supplementary material,

figure S2). A positive effect of parasite load was included in

all of the six best supported models (within two DAIC of

the top model). For males, the best supported model

included a positive effect of parasite load as well as a positive

effect of brood age and an interaction between brood age and

parasite load (see the electronic supplementary material,

figure S2). However, in this case, parasite load was only

included in four of the six best supported models and the

null model is 1.53 DAIC within the top model, suggesting

some caution in interpreting this result (see the electronic

supplementary material, ST2).

(ii) Dive behaviour
The best supported model for the effect of parasite load on

the cost of diving behaviour for females included a negative

effect of parasite load, though the effect size was small in that

the dive costs at maximum observed parasite loads were just

0.7% lower than at the minimum observed parasite load.

Equally some caution must be exercised as parasite load is

only included in two of the four best supported models

(see the electronic supplementary material, ST3). For males,

the best model was the null model.

(iii) Rest behaviour
The best supported model for females included a positive

effect of parasitism, with the cost of rest increasing by 5%

from the minimum to maximum parasite load. This model

also incorporated a negative effect of brood size, a positive



0
0

50

100

150

10 20

parasite load

30 40

V
O

2 
(m

l m
in

–1
)

·
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effect of brood age (see the electronic supplementary

material, figure S3) and mean population productivity as

well as an interaction between parasitism and mean popu-

lation productivity (electronic supplementary material, ST4).

In lower productivity years there is a greater positive relation-

ship between parasite load and the cost of rest than in high

productivity years. However, the null model is only 1.16

DAIC within the top model. The best supported model for

males was the null model.

(b) The effect of parasite load on the proportion of
time spent in foraging behaviours

In females, the effect of parasite load was found to be strongly

negatively related to the proportion of time spent in flight be-

haviour but no effect on diving or resting time budgets could

be identified (figure 2). In males, there was no evidence for the

effect of parasite load on the time budgets of any behaviour.

(i) Proportion of time spent in flight
The best supported model showed a negative effect of para-

site load on the proportion of time spent in flight for

females (electronic supplementary material, ST5) such that

individuals with the highest parasite loads spend 44% less

time in flight than individuals with the lowest parasite

loads (figure 2). The best supported model for males

(electronic supplementary material, ST5) did not include

parasite load but contained a positive effect of brood age

on the proportion of time spent in flight behaviour (see the

electronic supplementary material, figure S4).

(ii) Proportion of time spent in diving
The best supported model for females included a positive

effect of brood age on the proportion of time spent diving

(electronic supplementary material, ST6). The best supported

model for males also included a positive effect of brood age
on the proportion of time spent in diving behaviour (see

the electronic supplementary material, figure S5).

(iii) Proportion of time spent in resting
The best supported model for females included a negative

effect of brood age on the proportion of time spent resting.

For males, the best supported model also included a negative

effect of brood age on the proportion of time spent resting

(electronic supplementary material, ST7).

(c) The effect of parasite load on daily energy
expenditure

There was no evidence for an effect of parasite load on DEE

for females or males (electronic supplementary material,

ST8). For females, the model containing parasite load was

2.36 AIC units greater than the best-supported model and

for males the model containing parasite load was 2.24 AIC

units greater than the best-supported model. The best sup-

ported models showed only a positive effect of brood age

on DEE for both males and females (see the electronic sup-

plementary material, figure S7).

(d) Predicted behavioural costs
Despite costs of flight increasing with parasite load, the maxi-

mum parasite load scenario has a lower total energy

expenditure spent in flight. Given that the proportion of

flight per day decreases with parasite load, this suggests

that individuals with high parasite loads reduce flight time

more than is actually required (figure 3).
4. Discussion
In this study, we quantified the energetic cost of parasitism to

individuals of a free-living population, to our knowledge for
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the first time. We detected a change in the energetic cost of

behaviours and time budgets owing to variation in natural

endo-parasite load in female European shags but no relation-

ship between parasite load and DEE in either sex. Specifically,

in support of H1 and H2, we found the cost of flight to be

higher in females with higher parasite loads and these individ-

uals spent a smaller proportion of their time in this behaviour

than females with lower parasite loads. We found a small

effect of parasitism on the cost of diving and resting behaviour

in female shags but no change to their time energy budgets as

a result of parasite load. Overall, in support of H3, this com-

pensation suggests that European shags are limited in their
DEE and must compensate for increased activity costs by

reducing their duration; this suggests energetic trade-offs

exist between performance-related behaviours and immune

responses to parasitism.

Flight usually comprises a large proportion of an individ-

ual’s daily energy budget in volant birds with flapping flight

[39]. For species such as the European shag, where energy

expenditure is limited by a tight energy budget or optimal

energy ceiling, we would expect a reduction in investment

in more costly behaviours. Accordingly, we found that indi-

viduals with higher parasite burdens and greater flight

costs spent a smaller proportion of time in flight than individ-

uals with low parasite burdens. Similarly, experimentally

parasitized honeybees were found to perform a lower

number of daily flights than control individuals [40].

While flight behaviour in any species requires large energy

outputs and efficient muscle use, endo-parasites can affect

nutrient assimilation and muscle efficiency essential for

flight [41]. Shags like other cormorant species are continuous

flapping flyers and have limited flight performance as a

trade-off to their diving ability [42]. Consequently, any

damage to muscle efficiency or feather quality could have sig-

nificant impacts on flight costs. There is evidence of the

negative impacts of endo-parasites on feather repair and

development as well as stress on feather quality in other

species of birds [43,44]. Additionally preen gland size is nega-

tively related to immune function which, via preen oil

production, can also impact feather condition function [43,44].

By measuring the costs of active behaviours such as

flight and diving behaviour, we can gain an understanding

of how these high cost behaviours might link to energetic

limits. However, resting behaviour costs should partially

reflect the maintenance costs of an individual and be

elevated with an increase in immune response [45,46].

That we see a small increase in the cost of resting behav-

iour with increased parasite load could be an indication

of increased maintenance cost. However it is known that

accelerometry is not a good proxy for resting costs in

active animals [47] and further measurements of resting
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or basal metabolic rate using a more appropriate approach

is recommended.

In establishing the response of DEE to parasite load our

results suggest that adult shags may have an optimum

energy ceiling, as demonstrated in several other seabird

species during the breeding season [20,48]. This optimum

energy ceiling means that any increase in cost to an activity

must be counteracted by either a reduction in duration of

that activity or a reduction in cost of other activities. This

assertion is supported by our finding that individuals with

more costly flight behaviour spent a lower proportion of

their time per day in flight, ensuring that DEE was unaf-

fected. In calculating total behavioural costs (figure 3) we

found individuals with high parasite loads decreased the pro-

portion of time spent in flight more than would be predicted

solely from the increase in the cost of this behaviour, as there

was an overall decrease in the mean total cost of flight per

day (figure 3). This trade-off between flight costs and allo-

cation suggests that changes in the proportion of time spent

in flight may also be compensating for other costs or changes

in energy use. We would expect that any increase in mainten-

ance costs arising from an immune response, that were not

measureable in this study, would require additional compen-

sation through reduced activity [20]. As flight is the most

costly behaviour that shags can use to divest energy expendi-

ture, it may be that maintenance costs in the highly

parasitized individuals are being compensated for with the

extra reduction in flight time.

Previous work has shown that extrinsic variables such

as wind, presence of food in the stomach and other environ-

mental conditions can affect foraging energetics, behaviour

and breeding success [49,50]. Our findings are consistent

with this finding, providing additional evidence that environ-

mental drivers are important in energy use. Our finding that

brood age was positively related to flight costs in females is

expected, since adults provisioning large chicks return from

foraging grounds with larger food loads, which incurs

higher costs on the inbound flight [50]. This relates to the

experimental evidence of Reed et al. [4] where females

spent more time foraging with increasing age of their off-

spring when they were relieved of their parasite load.

Similarly, DEE also increased with brood age which we inter-

pret to mean that shags have an optimal energy ceiling at any

given stage of the breeding season, perhaps reflecting the

demands of provisioning the chicks and/or investment

made to that point. DEE of provisioning birds often increases

to accommodate extra energetic needs of offspring [51], how-

ever the scope to which DEE can be raised further in response

to parasites appears to be limited, either owing to physiologi-

cal, extrinsic or other factors [15].

The negative relationship found between brood size and

cost of flight behaviour may relate to the quality of the individ-

uals, such that individuals with larger broods are likely to be

higher quality individuals in better condition with more

energy to assign to maintenance such as feather condition

and therefore may experience lower costs in flight. It is known

that parasite effects can vary with environmental conditions

[23]; therefore it is important to note that effects in this study

were all from data collected in years with high mean population

productivity (our proxy for environmental conditions). We

would expect to see more extreme effects of parasitism in

lower productivity years where poor foraging conditions can

cause individuals to be under more severe energetic constraint.
We consistently found limited evidence for the effect of

parasite load on energy budgets or costs of behaviours in

male European shags. This difference among sexes corrobo-

rates previously established differences in investment in

reproduction and consequently different constraints on

energy expenditure in females compared to males across

many species [52]. Experimental work in shags also shows

stronger effects on foraging time in females than males

when parasites are removed [4]. The larger of the sexes

often show higher foraging efficiency in bird species [49].

Consistent with the assumption that females (the smaller

sex in shags) are more constrained energetically, only females

showed an energetic and behavioural response to parasitism

despite both sexes showing a positive increase in DEE with

brood age. These sex differences in the impact of parasites

could have consequences for survival; indeed, previous

work has shown that during winter female shags have

lower survival than males [53].
5. Conclusion
In most parasite-host systems there is marked heterogeneity

with respect to parasite load within the population, which

often leads to demographic differences among individuals

[54]. In this study, we demonstrated that, parasite load

was related to energy expenditure and time budgets of

foraging behaviours, which may be a key process underpin-

ning the demographic consequences of parasites. This work

demonstrates that energetics is a powerful framework to aid

the understanding of individual-level mechanisms driving

life-history. This study provides a potential mechanism

behind experimental evidence of sex biased fitness effects

of parasitism in a free-ranging population. The findings

emphasize the importance of natural parasite loads in

shaping the ecology and life-history of their hosts, which

can have significant population level consequences [8].
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