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A B S T R A C T   

Multimodal neuroimaging assessments were utilized to identify generalizable brain correlates of current body 
mass index (BMI) and predictors of pathological weight gain (i.e., beyond normative development) one year 
later. Multimodal data from children enrolled in the Adolescent Brain Cognitive Development Study® at 9-to-10- 
years-old, consisted of structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), resting state 
(rs), and three task-based functional (f) MRI scans assessing reward processing, inhibitory control, and working 
memory. Cross-validated elastic-net regression revealed widespread structural associations with BMI (e.g., 
cortical thickness, surface area, subcortical volume, and DTI), which explained 35% of the variance in the 
training set and generalized well to the test set (R2 = 0.27). Widespread rsfMRI inter- and intra-network cor
relations were related to BMI (R2

train = 0.21; R2
test = 0.14), as were regional activations on the working memory 

task (R2
train = 0.20; (R2 

test = 0.16). However, reward and inhibitory control tasks were unrelated to BMI. 
Further, pathological weight gain was predicted by structural features (Area Under the Curve (AUC)train = 0.83; 
AUCtest = 0.83, p < 0.001), but not by fMRI nor rsfMRI. These results establish generalizable brain correlates of 
current weight and future pathological weight gain. These results also suggest that sMRI may have particular 
value for identifying children at risk for pathological weight gain.   

1. Introduction 

Obesity is associated with a myriad of health consequences that in
crease mortality rates (Kelsey et al., 2014). In the United Sates, child
hood obesity rates are near 19 % (Hales, 2017), while 70 % of the adult 
population is either overweight or obese (Fryar et al., 2018). Obesity 
rates may remain a public health concern for the foreseeable future as 
the complex blend of heritable (Vainik et al., 2018), behavioral and 
environmental factors (e.g., food-cues, obesogenic home environments, 
access to healthy foods and activities)(Gurnani et al., 2015; Hem
mingsson, 2018; Schemepft et al., 2018) play a role its initiation and 

maintenance. Obesity stems from myriad behaviors and causes, but 
overeating combined with decreased energy expenditure are the largest 
contributors (Hill et al., 2012). Under ideal circumstances, the brain 
tightly regulates food intake (Berthoud et al., 2012), but hedonic (i.e., 
reward) mechanisms can override appetitive homeostasis, and 
contribute to overeating and subsequent weight gain. Because the brain 
plays such a critical role in food intake mechanisms, understanding the 
associations between childhood obesity and the brain structure and 
function may benefit intervention programs targeted at changing 
behavior. Currently, there is little consistency regarding the relation
ships between childhood obesity and brain structure and function. A 
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clearer understanding of these relationships will be pivotal for 
weight-related intervention programs. 

Structural (s) and functional (f) magnetic resonance imaging (MRI) 
studies have associated childhood obesity to differences in brain anat
omy (e.g., cortical thickness (Laurent et al., 2019), total gray matter 
volume (Mestre et al., 2017; de Groot et al., 2017; Alosco et al., 2014; 
Ronan et al., 2019; Perlaki et al., 2018; Rapuano et al., 2017), white 
matter architecture (Carbine et al., 2019; Geserick et al., 2018)), and 
altered functioning between networks at rest (Black et al., 2014; Mor
eno-Lopez et al., 2016) and, in response to rewarding stimuli in regions 
implicated in reward (Yokum et al., 2014a; Bohon, 2017; Batterink 
et al., 2010; Bruce et al., 2010) and inhibitory control (Bruce et al., 2010; 
Davids et al., 2010; Bruce et al., 2013; Van et al., 2016). However, 
inconsistent findings are a hallmark of MRI studies investigating child
hood obesity with some studies finding differences in broad cortical 
brain territories, like the frontal cortex (Laurent et al., 2019; Alosco 
et al., 2014; Ronan et al., 2019; Carbine et al., 2019), or specific 
subcortical structures such as the hippocampus (Mestre et al., 2017), 
pallidum (de Groot et al., 2017), amygdala and accumbens (Perlaki 
et al., 2018; Rapuano et al., 2017), while others report no relationships 
(de Groot et al., 2017; Alosco et al., 2014; Sharkey et al., 2015). There 
have also been inconsistent fMRI findings. Differences in 
blood-oxygen-level-dependent (BOLD) response by weight status have 
been observed in prefrontal and orbitofrontal cortices (Batterink et al., 
2010; Bruce et al., 2010), inferior frontal gyrus (Bruce et al., 2013; Van 
et al., 2016), insula (Bohon, 2017; Boutelle et al., 2015), amygdala 
(Boutelle et al., 2015), or not at all (Adise et al., 2018; Adise et al., 
2019). Additionally, the directionality of effects has varied. Childhood 
obesity has been related to an imbalance between reward and inhibitory 
control (Burger and Berner, 2014), hyperfunctioning (Bohon, 2017; 
Boutelle et al., 2015; Kroemer and Small, 2016), and hypofunctioning 
(Batterink et al., 2010; Van et al., 2016; Stice and Yokum, 2016) of 
reward and inhibitory control networks. Discrepancies across studies 
muddles the interpretation of findings, which may hinder the develop
ment of treatment options in children. 

Insufficient consistency across studies in identifying reliable and 
reproducible neural correlates (Turner et al., 2018) of childhood obesity 
may be due in part to historically small samples (N < 100) with ho
mogeneous populations. In addition, differences in experimental para
digms and/or using different cohorts to test each modality (e.g., reward 
processing, inhibitory control) may further add to replication issues. To 
our knowledge, no studies have used the same cohort to investigate how 
childhood obesity relates to differences in the neural circuitry across 
various modalities (e.g., structure and function) and tasks (e.g., reward, 
inhibitory control). In addition, given the unreliability of the effects 
reported in the literature, it is currently unknown if any differences in 
sMRI or fMRI are reliable and robust enough for diagnostic and prog
nostic purposes. Understanding which brain functions and regions relate 
to childhood obesity may have particular benefit for developing suc
cessful prevention and intervention programs to target specific behavior 
changes. In addition, prevention programs may benefit from having a 
diagnostic tool to assess obesity risk in children prior to excess weight 
gain. 

Moreover, relatively little is known regarding the brain mechanisms 
causing some children to gain excess weight, while others remain weight 
stable. In adolescents, some studies have investigated how differences in 
BOLD response predicted weight gain but results have varied. In ado
lescents with obesity, increased BOLD response in the striatum predicted 
weight gain at one-year later for one group (Yokum et al., 2014b) whilst 
this was not true in a different group of adolescents (Stice et al., 2013). 
In addition, a third study showed that decreased activation in the stria
tum was correlated with weight gain in adolescents one-year later (Stice 
et al., 2010). In the orbitofrontal cortex, both increased (Yokum et al., 
2014b, 2011; Stice et al., 2015) and decreased (Stice et al., 2010) BOLD 
responses have predicted weight gain. In healthy weight adolescents, an 
elevated response in the prefrontal cortex and insula predicted weight 

gain over a 3-year follow-up (Winter et al., 2017). Importantly, no 
research on neurobiological predictors has been conducted in children 
or adolescents under 15-years-old. Understanding how the brain plays a 
role in the prediction of weight gain in prepubescent children is 
imperative, as puberty is a critical time for weight gain (Kaplowitz, 
2008). 

To address these outstanding issues, the present study investigated 
how child body mass index (BMI) relates to neural circuitry across 
different modalities (e.g., structure and function) and multiple func
tional assessments (e.g., reward sensitivity, inhibitory control, working 
memory) in a large, racially and culturally diverse sample of 9-and-10- 
year-old children enrolled in the Adolescent Brain Cognitive Develop
ment Study (ABCD Study®). This study sought to use a cross-validated 
framework to: 1) identify brain correlates associated with BMI across 
several structural and functional modalities in children at 9-to-10-years- 
old ; and 2) Determine if these brain modalities were predictive of 
weight gain at a one-year follow-up. Findings from these analyses may 
provide insight into the biomarkers associated with obesity from a dis
ease perspective. Determining brain differences associated with BMI will 
be important for understanding the mechanisms underlying weight gain 
and, ultimately, for informing successful interventions. 

2. Methods 

2.1. Study design 

Data for these analyses were obtained from the ABCD Study® study 
(Volkow et al., 2018) data version 2.0.1 (released, August 2019). The 
ABCD Study® is a 21-site, 10-year longitudinal investigation of cogni
tive development in U.S. children. In brief, 11,880 children were 
enrolled in the ABCD Study® at the ages of 9-and-10-years-old (between 
2016–2018). Assessments are conducted in the laboratory each year 
while MRI is assessed every two years. Data presented in this paper 
include sMRI and fMRI, anthropometric, and demographic information 
from the baseline visit and anthropometric data from the 
one-year-follow-up. Currently, baseline data are available for the entire 
sample (n = 11,875), while year 1 (Y1) assessments have been released 
for 4915 children. 

2.2. Exclusion criteria 

Exclusion criteria for the ABCD Study® are documented elsewhere 
(Casey et al., 2018; Auchter et al., 2018; Garavan et al., 2018; Feldstein 
Ewing et al., 2018; Uban et al., 2018). In brief, children were ineligible if 
they had any MRI contraindications, like metal implants, not fluent in 
English, a history of major neurological disorders, prematurity at birth 
<28 weeks and/or hospitalization at birth >30 days. In addition, chil
dren were excluded from the present analyses for the following reasons: 
1) underweight (according to the CDC age-sex-height-weight-specific 
cutoffs (Kuczmarski et al., 2000)); 2) had neurological, psychiatric or 
learning disabilities; 3) were taking medications known to affect food 
intake; 4) met diagnostic criteria for eating disorders (as assessed by the 
Kiddie Schedule for Affective Disorders and Schizophrenia [K-SADS]) 
(Kaufman et al., 1997); 5) mislabeled sex assigned at birth, incorrect 
sex-specific puberty questionnaire, or transgendered children; and 6) 
missing data for sex, puberty, age, race, or education. Because this study 
included MRI data, children were excluded from the analyses for the 
following MRI specific reasons: 1) failed FreeSurfer segmentation 2) 
excessive motion (volume scrubbing based on >0.2 mm framewise 
displacement for resting state fMRI (rsfMRI) and >0.9 mm for task 
fMRI), 3) < 200 degrees of freedom for each task fMRI and <12 min of 
rsfMRI data; 4) failed behavior performance on the task fMRI; 5) missing 
tabulated data. The Data Analysis, Informatics and Resource Center of 
the ABCD Study® was responsible for conducting all quality control, 
fMRI preprocessing, and calculation of behavioral performance. In 
addition, fMRI data collected using the Philips scanners was excluded 
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due to an error in preprocessing detected after the data were released. 

2.2.1. Baseline sample 
The sample size differed across MRI scans because not all children 

completed the entire MRI battery. The structural analyses contained the 
largest sample (n = 6852); fMRI analyses had smaller samples (rsfMRI n 
= 4856; Monetary Incentive Delay [MID] Task: n = 4707; Stop Signal 
Task (SST): n = 4000; Emotional n-Back [EN-back]: n = 4453) as per
formance rates differed across scans, and rsfMRI scans had stricter in
clusion criteria (see Tables 1 and 2  for demographics). 

2.2.2. Y1 sample 
At Y1, data were available for 4951 children but only 3422 passed 

the aforementioned exclusion criteria. In addition, to avoid including 
children who were dieting or had restrictive eating habits, children who 
lost weight from baseline to year one were excluded (n = 70). An 
additional 47 children were excluded due to measurement error (e.g., 
children were “taller” at baseline than Y1 by more than an inch). This 
left a final sample of 3052 children eligible for Y1 analyses (see Table 3). 

2.2.3. Classification of child weight stability at Y1 
All children and adolescents gain some weight throughout develop

ment, regardless if they are healthy weight or have obesity. However, 
extreme weight gain in a short period of time poses great health con
sequences (Attard et al., 2013) and may be early signs of preclinical 
eating disorders, such as binge eating. In this sample, children were free 
from eating disorders, yet a substantial number of children gained 
weight beyond normative development (see Fig. 1A). Therefore, we 
were interested in understanding if there were underlying brain asso
ciations between children with excessive (i.e., pathological) weight gain 
beyond normative development versus those who would remain weight 
stable (i.e., children who had normal developmental weight gain). Un
derstanding differences in the brain between these groups may provide 
insight into the neurobiology associated with preclinical eating disor
ders, which are not detectable via diagnostic methods. Intervention 
programs targeting pathological overeating may also benefit from un
derstanding what brain regions and functions relate to excessive weight 
gain. Therefore, to study the neural correlates of extreme weight gain, 

children were categorized into two groups: Weight Stable (WS) vs. 
Weight Gain (WG). WS and WG was defined using a previously pub
lished method: BMI z-score standard deviation (SD) change scores were 
calculated between two time points where WS was defined as a BMI 
z-score SD between -0.2− 0.2, while weight gain was defined as > = 0.2 
(Geserick et al., 2018), but we expanded upon this criterion. Thus, WS 
was defined as having a BMI z-score standard deviation (SD) between 
-0.2− 0.2 (Geserick et al., 2018) and a BMI percentile <70 % at both 
baseline and Y1. WG was defined as having a BMI z-score SD >= 0.2 and 
weight gain of >20 pounds within one year (i.e., > 1.0 SD above the 
mean weight gain for all children (see Table 4)). Of note, children who 
lost weight between baseline and year one were not included in these 
analyses in order to avoid children who may be dieting or have 
restrictive eating. We chose to define two groups for the analyses rather 
than include everyone using BMI change score for several reasons. First, 
we were interested in evaluating the relationship between the brain and 
weight gain beyond normative development. Noting that some weight 
gain is typical at this age (see Fig. 1A) we did not want to conflate 
excessive weight gain with normative weight gain. In children, excessive 
weight gain cut offs are not clearly defined so we based our threshold on 
a previous method (as described (Geserick et al., 2018)) and added an 
arbitrary threshold of 20-pounds to capture children who gained more 
pounds than one standard deviation from the mean. Of note, the mean 
weight gain for this group was 26.9 (SD = 7.1; Range: 20.5–61.9 
pounds). Additionally, BMI z-scores and percentiles were not be 
appropriate as we previously found that they are not adequately 
adjusting for age and sex within the ABCD sample (Adise et al., 2020, 
Under Review). Second, changes in BMI, especially at the high ends, 
lacked sensitivity for rapid extreme weight gain (see Fig. 1B). For 
example, the BMI change for a child with a baseline BMI of 30 who 
gained 20 pounds one year later would be small and would not reflect 
substantial weight gain (see Fig. 1C). Third, although BMI change score 
cutoffs are used to define pathological weight gain in adults, these 
cutoffs do not exist for children, and therefore, it is not known what 
change score would be indicative of pathological weight gain in chil
dren. For these reasons, BMI alone is not a sensitive measure for clinical 
utility for extreme weight gain. 

2.3. Non-imaging measures 

2.3.1. Anthropometric measurements 
A trained researcher measured children’s height (to the nearest inch) 

and weight (to the nearest 0.1 pound) at baseline and Y1 in light 
clothing and stocking feet twice. The average was recorded. Height and 
weight were converted to BMI age-sex-weight-height-specific percen
tiles and z-scores according to the Center for Disease Control (CDC) 
guidelines (Kuczmarski et al., 2000). 

2.3.2. Pubertal assessment 
Children and parents reported puberty using the sex-specific puber

tal developmental scale (Fischl et al., 2002; Petersen et al., 1988) at 
baseline and Y1. Parent and child reports were averaged. The scale 
ranged from 1 (prepubescent) to 5 (post puberty). 

2.3.3. Demographic assessments 
The child’s age, sex, and race/ethnicity were reported by the parent 

at the baseline assessment. The highest reported parental education was 
used as a proxy for socioeconomic status. There were 22 options for race, 
which were collapsed into five categories: White, Black, Asian, Hispanic, 
Mixed/Other. There were 29 categories for education, which was 
treated as a continuous variable. 

2.3.4. Kiddy schedule for affective disorders and schizophrenia for school- 
age children (KSADS) 

The KSADS is an interview style questionnaire that assesses several 
psychiatric disorders, including eating disorders, in children (Kaufman 

Table 1 
The number of children included for each modality after exclusion criteria were 
applied. BMI = body mass index; QC = Quality control; Structure = included 
cortical thickness, surface area, subcortical volume, Diffusion Tensor Imaging 
(DTI) which included fractional anisotropy (FA) and mean diffusivity (MD); w =
weighted; FD = framewise displacement; ROI = Region of interest; SST = Stop 
Signal Task  

Description n 

Released data 11,875 
BMI percentile >5 11,393 
No reported medications known to affect food intake 10,620 
No reported neurological, psychological or learning disabilities 9504 
No reported eating disorders 8808 
Correct sex information/ not transgender 8717 
Complete info for sex, age, puberty, race, and education 8375 
Passed Freesurfer QC 7843 
Acceptable T1w image 7796   

Structure RS MID SST EN-back 

Acceptable T2w image 7456 – – – – 
Passed DTI QC 7254 – – – – 
Two runs that passed QC – 7535 6251 6194 6150 
Data without Philips scans – 6523 5460 5392 5369 
Resting state data >12 min – 4873 – – – 
FD < 0.9 mm – – 5317 5172 5127 
Degrees of freedom >200 – – 4990 4810 4760 
Trials included >50 – – 4976 – – 
Passed performance QC – – 4719 4437 4467 
Available ROI tabulated data 6852 4856 4707 4225 4453 
SST performance pass    4000   

S. Adise et al.                                                                                                                                                                                                                                    



Developmental Cognitive Neuroscience 49 (2021) 100948

4

et al., 1997). It generates 32 DSM child psychiatric diagnoses. It includes 
categories for present, remission, and lifetime diagnoses. The scores are 
labeled as 0 (absence of diagnosis) and 1 (definitive diagnosis). 

2.4. Neuroimaging measures 

2.4.1. Image acquisition and preprocessing 
Details of the ABCD Study® recruitment strategy, procedures, and 

MRI data acquisition and analyses are documented elsewhere (Volkow 
et al., 2018). Data were collected from 29 3 T scanners across 22 sites but 
three sites (e.g., data from Phillips scanners) were excluded from ana
lyses. Children underwent a T1- and T2-weighted MRI, diffusion tensor 
imaging (DTI), rsfMRI, and three task-based fMRI scans. The scanning 
parameters (Garavan et al., 2018), imaging processing and analytics 
(Casey et al., 2018) and details describing each task are detailed else
where (Hagler et al., 2018). Data were parcellated with FreeSurfer using 
the Destrieux atlas (Casey et al., 2018), which contained 148 bilateral 
cortical regions of interest (ROIs). Fourteen bilateral subcortical ROIs 
were parcellated using FreeSurfer’s subcortical segmentation (Destrieux 
et al., 2010). ROI estimates (e.g., mean beta weight, total gray matter 
volume) were available from the tabulated National Institutes of Mental 
Health Data Archive (NDA). As a quality control and outlier detection 
step, the top and bottom 1% of the data for each ROI were winsorized 
before statistical analyses were conducted. 

2.4.2. sMRI 
Structural data consisted of cortical thickness (mean thickness per 

ROI), cortical surface area (total surface area per ROI), and subcortical 
volume (total gray matter volume). 

2.4.3. DTI 
DTI assesses water diffusion in biological tissue to assess micro

structural changes in white matter architecture. From these data, frac
tional anisotropy (FA) and mean diffusivity (MD) are computed. The FA 
calculation is presumed to reflect directionality estimates of tissue 

Table 2 
Demographic characteristics of children who were included in the baseline structural, resting state (rs) functional magnetici resonance imaging (fMRI) and task fMRI 
linear elastic net regression analyses. The means, standard deviation (SD) and the range or sample size and percent are presented below. BMI z-score and percentiles 
were calculated using the CDC standards for age-sex-weight-height-specific cut offs (Kuczmarski et al., 2000). BMI = Body Mass Index; Kg = kilograms; cm = cen
timeters; HS = High school; GED = Generalized Education Degree. EN-back = Emotional N-back; MID = monetary incentive delay; SST = stop signal task.   

Structural MRI rsfMRI EN-back fMRI MID SST 

Variable Mean (SD) Range Mean (SD) Range Mean (SD) Range Mean SD Range Mean SD Range 

Age 119.1 (7.5) 107− 132 119.5 (7.6) 107− 132 119.5 (7.6) 107− 132 119.3 (7.6) 107− 132 119.4 (7.6) 107− 132 
Puberty 1.9 (0.8) 1− 5 1.9 (0.8) 1− 5 1.9 (0.8) 1− 5 1.9 (0.8) 1− 5 1.9 (0.8) 1− 5 
BMI 19.1 (4.0) 13.8 - 53.9 18.8 (3.8) 13.8 - 52.8 19.0 (3.9) 13.8 - 53.9 18.9 (3.9) 13.8 - 53.9 19.0 (3.9) 13.8–42.8 
BMI z-score 0.6 (1.0) − 1.6 - 3.1 0.5 (1.0) − 1.6 - 3.1 0.5 (1.0) − 1.6 - 3.1 0.5 (1.0) 1.6 - 3.1 0.5 (1.0) − 1.6 – 2.8 
BMI percentile 64.7 (28.0) 5 - 99.9 62.7 (28.0) 5.0–99.9 63.2 (28.2) 5.0–99.9 63.6 (28.2) 5.0–99.9 64.3 (28.3) 5.0–99.8 
Weight (kg) 38.2 (10.3) 21.3–97.1 37.8 (9.9) 21.3 - 93.9 38.0 (10.1) 21.3–97.1 38.0 (10.2) 21.3 - 93.9 38.0 (10.1) 21.3–97.1 
Height (cm) 140.8 (8.0) 88.1 - 177.8 141.0 (7.9) 93.0 - 177.8 140.9 (8.0) 93.0 - 167.0 140.8 (8.0) 93.0 - 172.7 140.9 (7.8) 96.5–167.0   

n % n % n % n % n % 
Sex           

Male 3358 49.0 2233 46.0 2100 47.2 2216 47.1 1864 46.6 
Female 3493 51.0 2623 54.0 2353 52.8 2491 52.9 2136 53.4  

Race           
White 3770 55.0 2718 56.0 2571 57.7 2638 56.0 2332 58.3 
Black 844 12.3 593 12.2 473 10.6 534 11.3 431 10.8 
Hispanic 1430 20.9 964 19.9 897 20.1 981 20.8 790 19.8 
Asian 147 2.1 97 2.0 94 2.1 99 2.1 86 2.2 
Other 660 9.6 484 10.0 418 9.4 455 9.7 361 9.1  

Education           
<HS 282 4.1 162 3.3 122 2.7 1143 24.3 121 3.1 
HS/GED 565 8.2 373 7.7 314 7.1 1295 27.5 298 7.5 
Some college 1680 24.5 1198 24.7 1087 24.4 1750 37.2 941 23.5 
Bachelor’s Degree 1820 26.6 1331 27.4 1248 28 149 3.2 1114 27.9 
Postgraduate 2504 36.5 1792 36.9 1682 37.8 370 7.9 1526 38.2  

Table 3 
The number of children included after applying exclusion criteria for each scan 
separately. BMI percentiles were calculated using the CDC standards for age-sex- 
weight-height-specific cut offs (Kuczmarski et al., 2000). BMI = body mass 
index; Y1 = Year 1; QC = Quality control; Structure = included cortical thick
ness, surface area, subcortical volume, Diffusion Tensor Imaging (DTI) which 
included fractional anisotropy (FA) and mean diffusivity (MD); FD = framewise 
displacement; ROI = Region of interest. fMRI = functional magnetic resonance 
imaging; rsfMRI = resting state functional magnetic resonance imaging; SST =
Stop Signal Task.  

Description n 

Released data 4915 
Passed baseline inclusion 3422 
No measurement error 3375 
Y1 BMI percentile >5 3338 
Y1 No reported medications known to affect food intake 3300 
Y1 No reported neurological, psychological or learning disabilities 3300 
Y1 Correct sex info/ not transgender 3282 
Y1 Complete info for sex, age, puberty, race, and education 3243 
Passed Freesurfer QC 3085 
Acceptable T1 image 3052 
Met weight stable/gainer criteria 1034   

Structure rsfMRI MID SST EN- 
back 

Acceptable T2 image 1002 – – – – 
Passed DTI QC 970 – – – – 
Two fMRI scans that passed QC – 994 822 810 806 
Available data without Philips 

scans 
– 869 728 712 719 

Resting state data >12 min – 555 – – – 
Framewise displacement <0.9 

mm 
– – 720 697 690 

Degrees of freedom >200 – – 669 649 632 
Included 100 time points – – 666 – – 
Passed performance QC – – 630 619 607 
Available ROI tabulated data 809 420 545 528 521 
SST performance pass    490   
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characteristics like myelination, fiber density etc. MD characterizes the 
diffusion magnitude and is related to the space between axons. The FA 
and MD estimates were calculated for the white matter sub-adjacent to 
each Destrieux ROI (Elman et al., 2017). DTI ROIs were used for the 
analyses presented in this paper because they were directly relatable to 
the cortical thickness and surface area ROIs. For completeness, the 
supplemental material contains analyses that included both DTI tracts 
and Destrieux labeled ROIs of sub-adjacent white matter estimates. 
Subcortical estimates for FA and MD were also calculated but are a 
mixture of both white and gray matter estimates. 

2.5. fMRI paradigms 

fMRI scans were acquired during performance of three behavioral 
tasks and at rest. The tasks are described below. Additional details are 
available in Supplemental Materials and are published elsewhere (Casey 
et al., 2018). 

2.5.1. rsfMRI 
Twenty minutes of resting state activity were collected. Resting state 

ROIs were parcellated using Gordon parcels (Gordon et al., 2016). 
Average time courses were calculated for each ROI. ROIs were grouped 
together according to the Gordon parcellated networks (e.g., 
default-mode network, fronto-parietal). Average pairwise ROI correla
tions were computed within and between each network. There were 91 
cortical (78 inter- and 13 intra-network correlations) and 316 cortical to 
subcortical network correlations. 

2.5.2. MID 
The MID task assesses the BOLD response to anticipating and 

receiving monetary rewards and losses. Children pressed a button based 
on anticipation of either winning or losing two different sums of money. 
There were five anticipation conditions: small win $0.50, large win 
$5.00, small loss $0.50, large loss $5.00, $0-no money (i.e., neutral) at 
stake and 10 outcome conditions (successes and fails on each of the five 
trial types). The following contrasts were analyzed: large reward vs. 
neutral anticipation, large loss vs. neutral anticipation, and positive vs. 
negative feedback for large reward and large loss trials. Additional in
formation about this task can be found in the Supplemental Materials 
(S1.1.1). 

2.5.3. SST 
The SST task assesses inhibitory control. Children were encouraged 

to respond as quickly and accurately as they could to a GO stimulus and 
withhold responses to an infrequent STOP stimulus (presented 16.7 % of 

Fig. 1. Distributions of weight and BMI change. 
A) Weight change distribution in pounds from 
baseline line to year 1. The red bar indicates 
children who lost weight and were excluded. 
The dashed line indicates the mean. The yellow 
dashed line represents one standard deviation 
above the mean, where the yellow box high
lights the number of children who gained more 
than 20 pounds. B) Baseline BMI plotted against 
Y1 BMI coded for all children and by weight 
stable and weight gain children. This figure 
highlights that the weight gain group was 
distributed across all levels of baseline BMI and 
that not all children met the criteria for weight 
stable or weight gainer. C) Examples of two 
participants’. (For interpretation of the refer
ences to colour in this figure legend, the reader 
is referred to the web version of this article).   

Table 4 
Demographic characteristics of children who were included in the weight stable 
(WS) vs. weight gain (WG) logistic elastic net regression analyses. Means (m) 
and standard deviations (SD), or sample size and percent are presented below. 
WS criteria: Healthy weight at baseline and follow up and below the 70th BMI 
percentile, and a change in BMI z-score SD of < 0.2. WG criteria: a change in 
body mass index (BMI) z-score SD > 0.2 + 20 pounds weight gain at follow up. 
BMI z-score and percentiles were calculated using the CDC standards for age-sex- 
weight-height-specific cut offs (Kuczmarski et al., 2000). Y1 = year 1; HS = high 
school; GED = Generalized Education Degree. BA = Bachelor’s degree.   

WS (n = 637) WG (n = 172) p 

Age (in months)    
Baseline (m, SD) 119.4 (7.5) 121.2 (7.0) 0.003 
Y1 131.4 (7.7) 133.8 (7.0) <0.001  

Puberty (m, SD)    
Baseline 1.7 (0.6) 2.1 (0.7) <0.001 
Y1 1.9 (0.7) 2.6 (0.9) <0.001  

BMI (m, SD)    
Baseline BMI 16.3 (1.0) 19.0 (2.2) <0.001 
Y1 BMI 16.7 (1.1) 22.6 (2.8) <0.001  

Baseline weight group (n, %)    
Healthy weight 637 (100.0) 117 (68.0) <0.001 
Obese  10 (5.8)  
Overweight  45 (26.2)   

Y1 weight group (n, %)    
Healthy weight 637 (100.0) 49 (28.3) <0.001 
Obese  50 (28.9)  
Overweight  74 (42.8)   

Sex (n, %)    
Male 293 (46.0) 97 (56.4) 0.020 
Female 344 (54.0) 75 (43.6)   

Race (n, %)    
White 452 (71.0) 94 (54.7) <0.001 
Black 30 (4.7) 21 (12.2)  
Hispanic 81 (12.7) 32 (18.6)  
Asian 19 (3.0) 1 (0.6)  
Other 55 (8.6) 24 (14.0)   

Parent Education (n, %)    
<HS 9 (1.4) 14 (8.1) <0.001 
HS/GED 23 (3.6) 19 (11.0)  
Some college 124 (19.5) 50 (29.1)  
BA degree 183 (28.7) 38 (22.1)  
Postgraduate degree 298 (46.8) 51 (29.7)   
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the time). The following contrasts were analyzed: stop success (e.g., 
successful stop vs. successful go) and stop failure (e.g., unsuccessful stop 
vs. successful go). Additional information about this task can be found in 
the Supplemental Materials (S1.1.2). 

2.5.4. EN-back 
The EN-back task assesses working memory and emotional process

ing. Children were shown a sequence of pictures (e.g., faces and places) 
and asked to determine if the current picture was the same (e.g., match, 
no match) as a target picture shown at the beginning of the block (0- 
back) or the same as the picture shown two pictures back in the sequence 
(2-back). The faces consisted of happy, angry and neutral faces. The 
following contrasts were analyzed: 2back vs. fixation, 0back vs. fixation 
and 2back vs. 0back. Additional information about this task can be 
found in the Supplemental Materials (S1.1.3). 

2.6. Analytic approach 

2.6.1. Elastic-net regression 
The entire sample was initially randomly partitioned into an 80 % 

training dataset for model building and 20 % testing dataset for model 
validation. Using the MATLAB package GLMnet (Qian et al., 2013), a 
five-fold, cross-validated elastic-net regression with a nested 20-fold 
cross-validation framework for hyperparameter tuning for alpha (α) 
and lamda (γ), was applied to the training set for feature selection. 
Generalizability was measured by applying the best fit model from the 
training set to the testing set. To assess the relationship between BMI at 
baseline and the brain, linear elastic-net regressions were conducted. 
Analyses used a raw BMI score, as the CDC BMI percentiles (Kuczmarski 
et al., 2000) were not adequately adjusting for age and sex in the ABCD 
Study® sample (Adise et al., 2020, Under Review). A logistic elastic-net 
regression was used to predict, with baseline MRI data, WS vs. WG at 
Y1. R2 values are reported for the linear regressions and area under the 
curve (AUC) and p-values for the Y1 logistic prediction. Of note, ABCD 
Study® enrolled multiple sibling pairs including twins (Garavan et al., 
2018). To ensure the independence of the test set from the training set, 
the best model fit was assessed on both the full test set and on the test set 
once all siblings were removed. 

2.6.2. Modality inclusion criteria 
Because covariates could potentially mask brain correlates of inter

est, a “brain-only” model was first developed for each modality of in
terest (i.e., separate elastic net regressions were run for structural data 
[DTI and FreeSurfer measures], rsfMRI, and each task fMRI dataset 
[nelastic net models = 5]) to determine which modalities were related to 
BMI. In the brain-only analysis, for each modality, the variance 
explained on the test set was required to be at least 1% for that modality 
to be included in subsequent covariate analyses. For modalities that 
passed this threshold, their models were rerun with all the brain features 
from the significant modalities along with covariates of interest to 
quantify brain effects that persist in the presence of sociodemographic 
predictors. The covariates of interest (i.e., additional sociodemographic 
variables) included in the feature sets for the elastic net regressions were 
age, sex, puberty, race/ethnicity, parental highest education, handed
ness, and fMRI scanner ID. All of these covariates were available for 
feature selection, but the model included (selected) any covariates that 
improved the model performance (i.e., help explain variance). If the 
brain-only analysis produced a variance explained in the test set of >1%, 
the elastic net regression was rerun with all features and covariates. Of 
note, prior to running the elastic net regression, dummy variables were 
created for all categorical variables. 

2.6.3. Modality summary scores 
In models that combined multiple MRI modalities or contrasts, beta 

weights from the elastic-net were converted to absolute values and 
summed to obtain an overall score per measurement type (e.g., FA, 

cortical thickness, task activation). This was used for visualization 
purposes to determine which modality contributed most to the final 
elastic-net model. 

2.6.4. Case matching, weight gain confirmatory analysis 
Because the WS and WG groups differed in BMI at baseline, addi

tional analyses were conducted to ensure that any successful model was 
predicting weight gain, and not discriminating the two groups based on 
their baseline weight differences. First, we relaxed the weight criterion 
for the WS group by including children who were over the 70th 
percentile at Y1. However, the WS group was still required to have a BMI 
SD change score between -0.2 and 0.2. Next, to identify WG and WS 
groups matched on baseline weight, a one-to-one matching for BMI at 
baseline was conducted using R’s MatchIt package (Ho, 2011) with the 
nearest neighbor method. This resulted in a new group of matched WS 
children (WSmatched(m), n = 172) to be compared against the WG group 
(n = 172). We tested if the model from the WG prediction (unmatched 
for baseline BMI) correctly identified children in the WSm group. If the 
original model was discriminating the groups on their current weight, 
rather than their weight gain, then we would expect it to erroneously 
identify WSm children as weight gainers. However, if the model correctly 
identified children in the WSm group as weight stable, this suggests the 
model is identifying brain regions associated with weight gain. For this 
analysis, the accuracy (percentage of WSm children incorrectly identi
fied as WG) is reported. 

2.6.5. Comparing brain regions that classify current BMI and those that 
predict WS vs. WG 

To investigate whether brain regions that classified baseline BMI 
were distinct from the brain regions associated with WS vs. WG at Y1, a 
logistic elastic-net regression was conducted predicting the Y1 WS vs. 
WG outcome but using only the brain features associated with BMI at 
baseline. Similarly, to quantify if the brain regions identified in the one- 
year prediction model also classified baseline BMI, the brain regions 
identified in the one-year prediction model were provided to a linear 
ridge regression explaining baseline weight. The ridge regression was 
forced to use the variables specified by each model but the beta weights 
were allowed to change. 

3. Results 

3.1. Brain modalities associated with BMI at baseline 

As a first pass analysis to determine which modalities were associ
ated with BMI, brain only models were run for each modality (e.g., 
structure, rsfMRI, and each of the three fMRI tasks). Brain structure, 
rsfMRI, and EN-back each explained more than 1% of the variance in 
BMI in the test set, while the MID and SST did not (see Table 5). 

Table 5 
The R2 values (i.e., variance explained) for the training and test datasets for each 
brain modality. No covariates were added to the model to quantify the variance 
explained by the brain alone. The R2 as well as the number of children in the 
analysis and features included are displayed per modality. MID = Monetary 
Incentive Delay Task; SST = Stop Signal Task; rsfMRI = resting state functional 
magnetic resonance imaging.   

Training dataset Testing dataset  

Modality R2 n R2 n # of brain features 

Structure 0.27 5532 0.20 1319 396 
rsfMRI 0.08 2739 0.05 653 166 
MID 0.002 3787 0.0009 920 4 
SST 0.03 3556 0.002 869 76 
EN-back 0.04 3557 0.03 896 127  
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3.1.1. sMRI 
To test whether BMI was related to brain structure, an elastic-net 

regression that included regional cortical thickness and surface area 
measures, subcortical volumes, DTI-based regional FA and MD, and 
sociodemographic variables was computed. The best model identified 
313 structural ROIs, as well as sex, puberty, some races, education, 
handedness, and some scanners as features associated with BMI (see 
Fig. 2; for beta weights see Table S5 in the Supplemental Materials). 
Structural features consisted of 94 cortical thickness ROIs, 78 surface 
area ROIs, and the volumes of five subcortical ROIs. The best model also 
contained many sub-adjacent white matter measures that included FA 
from 58 cortical and seven subcortical ROIs, and MD from 66 cortical 
and five subcortical ROIs. In the training dataset, this explained 35 % of 
the variance in BMI, which generalized well to the test set (28 %; see 
Table 6). Removal of siblings from the test set produced similar results 
(27 %). Of note, intracranial volume (ICV) was a feature made available 
to the model but it was not selected. Moreover, as BMI was unrelated to 
total ICV, no additional corrections for ICV were conducted. 

To understand the direction of the associations between the brain 
features and BMI, partial correlations, adjusted for the covariates of 
interest (e.g., sex, age, pubertal status, race, and education), showed that 
64 % of the cortical thickness, surface area, FA and MD measures were 
negatively correlated with BMI. However, there were only positive 
partial correlations between BMI and subcortical gray matter volumes. 
These results indicate a widespread pattern of structural measures 
associated with BMI in 9-to-10-years-old. 

3.1.2. rsfMRI 
To test the relationship between BMI and rsfMRI, an elastic-net 

regression, including both Gordon parcellated network correlations 
and sociodemographic variables, was conducted. The best model iden
tified 36 inter- and five intra-cortical network correlations, 107 cortical 
to subcortical inter-network correlations, as well as age, sex, puberty, 
some races, handedness, parental education and some scanners as fea
tures associated with BMI (for beta weights see Table S6 in the Sup
plemental Materials). The five intra-network correlations were from 
the default mode, frontoparietal, somatosensory hand, salience, and 
cingulo-opercular networks (see Fig. 3). Of note, the best model con
tained 45 % of all the cortical-to-cortical connections and 43 % of all the 
cortical-to-subcortical connections made available to the model These 
rsfMRI features explained 21 % of the variance in BMI within the 
training set, but less variance explained in the test set (13 %) (see 
Table 6). Removal of siblings from the test set did not affect the variance 

explained (13 %). Partial correlations adjusted for the covariates of in
terest showed that 70 % of the rsfMRI measures had negative associa
tions with BMI. 

3.1.3. EN-back 
To test the relationship between BMI and working memory, an 

elastic-net regression was conducted that included beta weight estimates 
per ROI for the 2-back, 0-back, and 2- vs 0-back contrasts from the EN- 
back task. The best model identified 13 EN-Back ROIs and several de
mographic variables including sex, puberty, some races, parent highest 
education, handedness, and some scanners as features associated with 
BMI. The model identified five ROIs from the 0-back task, seven ROIs 
from the 2-back task, and one ROI from the 2-back vs. 0-back contrast 
(see Fig. 4, see Table 7 for a list of ROIs). In the training set, these fea
tures explained 20.2 % of the variance in BMI and 15.7 % of the variance 
in BMI in the test set (see Table 6). Removal of siblings from the test set 
had a minor impact (16.4 %). Partial correlations adjusted for the 
covariates of interest showed BMI was associated with decreased ac
tivity in 62 % of the ROIs. However, there were no association between 
task performance (D’ on either the 0-back, 2-back tasks, or the out of 
scanner memory recall test) and BMI. 

3.1.4. MID 
There was no association between BMI and the MID task ROIs. 

3.1.5. SST 
There was no association between BMI and the SST task ROIs. 

3.2. Brain differences related to weight gain over a one-year period 

3.2.1. Brain modalities that predictive disproportionate weight gain one 
year later 

To determine which modalities were associated with predicting 
disproportionate weight gain one year later, brain only models were run 
for each modality (e.g., structure, rsfMRI, MID, SST, EN-back). Only 
baseline structural data predicted weight gain (AUCtraining = 0.71, p <
0.001; AUCtest = 0.61, p = 0.02, features selected = 209; see Table 8). 

3.2.2. sMRI 
A logistic regression evaluated if sMRI at baseline predicted WS vs. 

WG one year later. The best model included 18 sMRI ROIs (see Table 9) 
as well as puberty at both baseline and Y1, parental highest education, 
four scanners, and intracranial volume (AUCtrain = 0.82, p = 6.1e-08; 

Fig. 2. Beta weights from the elastic net 
regression for each ROI and modality associ
ated with BMI at baseline. A) Cortical ROIs; B) 
Subcortical ROIs. The signs of the beta weights 
are in reference to each other and do not 
necessarily represent thickening or thinning. 
However, 64 % of the structural ROIs identified 
were negatively correlated with BMI indicating 
that BMI was associated with smaller cortical 
thickness, surface area, and lower FA and MD 
(data not shown). Subcortically, BMI was posi
tively correlated with gray matter volumes and 
most subcortical FA and MD white matter es
timates (data not shown). C) Absolute beta 
weights sorted by each ROI and modality from 
the baseline elastic net model. D) Summed 
average absolute beta weights from the elastic 
net regression indicate magnitude of each 
contributing structural modality. CT = cortical 
thickness; DTI = Diffusion tensor imaging; FA 
= fractional anisotropy; MD = mean diffusivity; 
vol = volume; Subcort = subcortical; Edu =
parent reported highest education.   
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AUCtest = 0.78, p=1.2e-07). The structural ROIs consisted of five cortical 
thickness ROIs, and five surface area ROIs. The model contained sub- 
adjacent white matter measures that included FA from three cortical 
ROIs, and MD from four cortical and one subcortical ROI. Of note, 
removal of siblings had little impact on the results (AUC = 0.77 p = 9.1e- 
07, see Table 10; Fig. 5). In contrast to the baseline results, partial 
correlations adjusted for our covariates of interest showed that surface 
area, cortical thickness, and subcortical volume (in the pallidum) were 
positively associated with WG, while FA and MD estimates were nega
tively associated with WG. 

3.2.3. Baseline BMI matching, weight gain confirmatory analysis 
As previously noted, the WG and WS groups differed in baseline BMI. 

Therefore, we assessed if the prediction model was discriminating the 
children on their current weight difference. When applied to a sample of 
WS children (WSm) who were matched to the WG group on baseline 
weight, only 3% were incorrectly identified as weight gainers. Because 
few children in the WSm were misclassified as weight gainers, this sug
gests that the original model was not capitalizing on a difference in 
baseline BMI but identifying neural correlates of weight gain. 

3.2.4. rsfMRI 
rsfMRI at baseline did not predict WS vs. WG between baseline and 

Table 6 
The R2 values (i.e., variance explained) for the training and test datasets for each brain modality. The R2 as well as the number of children in the analysis and features 
included are displayed per modality; rsfMRI = resting state functional magnetic resonance. Covariate features for race, handedness and MRI scanner serial number 
were dummy coded.   

Training dataset Testing dataset Removal of Siblings   

Modality R2 n R2 n R2 n # of brain features # of covariate features 

Structure 0.35 5532 0.27 1320 0.26 1089 365 32 
rsfMRI 0.21 3918 0.13 938 0.13 938 148 16 
EN-back 0.20 3557 0.16 896 0.16 775 29 27  

Fig. 3. Connectivity networks that are associ
ated with BMI. The colour bar indicates beta 
weighting from the elastic net regression A) 
Cortical to cortical network correlations; B) 
Cortical to subcortical network correlations. 
Cingulooperc = cingulo-operculum; dorsalattn 
= dorsal attention; smmouth = somatosensory 
mouth; smhand = somatosensory hand; ven
tralattn = ventral attention; Rh = right hemi
sphere; Lh = left hemisphere; None = the none 
network are regions that did not fit into a clas
sified network.   

Fig. 4. Beta weights from the elastic net 
regression for each ROI for the EN-back pre
dicting BMI at baseline. A) Cortical ROIs; B) 
Subcortical ROIs. The magnitudes of the beta 
weights are in reference to each other and do 
not necessarily represent increased or decreased 
activation, for example. C) Absolute beta 
weights sorted by each ROI and contrast from 
the baseline elastic net model. D) Summed 
average absolute beta weights from the elastic 
net regression to indicate magnitude of each 
contributing contrast. Edu = parent reported 
highest education.   
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Y1. 

3.2.5. MID 
MID activation at baseline did not predict WS vs. WG between 

baseline and Y1. 

3.2.6. SST 
SST activation at baseline did not predict WS vs. WG between 

baseline and Y1. 

3.2.7. EN-back 
EN-back at baseline did not predict WS vs. WG between baseline and 

Y1. 

3.3. Investigating the relationship between brain regions that classify 
current BMI vs. hose that predict WS vs. WG 

3.3.1. Overlapping regions associated with BMI at baseline and WG at Y1 
Ten out of the 19 structural brain regions that predicted WG by the 

one year follow up were also regions associated with baseline BMI. This 
included all five of the regions in which cortical thickness predicted WG 
(see Table 9). However, the direction of the effects differed for cortical 
thickness between the baseline BMI and WG analysis. For example, 
greater BMI at baseline was associated with thinner cortical thickness, 
whereas children in the WG group had thicker cortices at baseline 
regardless of their baseline BMI. Regarding the DTI data, only one out of 
three ROIs showing FA effects and two out of four ROIs showing MD 
effects were associated with both baseline BMI and weight gain. In 
addition, two out of the five surface area ROIs were associated with both 
baseline BMI and WG. The directionality of effects was the same as 
baseline for the DTI and surface area ROIs. 

3.3.2. Baseline, Y1 model comparisons 
When applying the prediction ROIs to the baseline sample, the fea

tures that predicted WG explained merely 9% of the variance in baseline 
BMI (compared to the 27 % explained by the baseline model).When 

Table 7 
The features selected by the elastic net regression for the EN-back. Region of 
interest (ROI) labels are in accordance with the Destrieux atlas labels. G = gyrus; 
S = sulcus; L = left; R = right.  

ROI Hemisphere Beta 

0-back   
G cingulate posterior ventral L − 0.017 
G insular short L − 0.028 
S circular insula inferior R − 0.019 
S subparietal R 0.081 
S temporal inferior L − 0.045  

2-back   
Amygdala L − 0.039 
G cingulate posterior ventral L − 0.16 
G precuneus R 0.028 
G subcallosal R 0.073 
G temporal middle L − 0.019 
S orbital medial olfactory R 0.019 
S subparietal R 0.0042  

2-back vs.− 0back   
G occipital temporal medial parahippocampal R 0.0012  

Covariate features   
Female  0.21 
Scanner 1  0.044 
Highest Parent Education  − 0.63 
R handed  − 0.016 
White  − 0.23 
Black  0.12 
Hispanic  0.07 
Scanner 14  − 0.0016 
Scanner 16  0.16 
Scanner 2  − 0.059 
Scanner 20  0.1 
Scanner 24  0.069 
Scanner 26  0.0062 
Scanner 3  − 0.22 
Scanner 6  − 0.051  

Table 8 
The area under the curve (AUC) for the training and test datasets for each brain 
modality from the logistic elastic net. No covariates were added to the model to 
quantify the probability of the AUC by the brain alone. The AUC and p values as 
well as the number of children in the analysis and features included are dis
played per modality. WG = weight gain group; MID = Monetary Incentive Delay 
Task; SST = Stop Signal Task; rsfMRI = resting state functional magnetic reso
nance imaging.   

Training dataset Testing 
dataset   

Modality AUC (p) nTotal 

(nWG) 
AUC (p) nTotal 

(nWG) 
# of 
features 

Structure 0.71 
(0.0004) 

652 
(136) 

0.61 (0.02) 157 (36) 209 

rsfMRI 0.06 (0.06) 333 (70) 0.45 (0.25) 87 (13) 7 
MID 0.5 (0.5) 430 (85) 0.5 (0.5) 115 (26) 2 
SST 0.5 (0.5) 413 (80) 0.5 (0.5) 115 (27) 2 
EN-back 0.5 (0.5) 410 (81) 0.5 (0.5) 111 (24) –  

Table 9 
The features selected by the logistic elastic net regression that predicted children 
who gained more than 20 pounds within a year. Region of interest (ROI) labels 
are in accordance with the Destrieux atlas labels. G = gyrus; S = sulcus; L = left; 
R = right; *ROIs that were also associated with baseline BMI, although the 
directionality differed.  

ROI Hemisphere Beta 

Cortical thickness   
G rectus* L − 0.006 
S collateral transverse posterior* L 0.029 
S intermedius primus (of Jensen)* L 0.0057 
S pericallosal* L 0.0071 
G and S fronto-marginal gyrus (of Wenicke)* R − 0.071  

Surface Area   
G occipital temporal medial parahippocampus L 0.02 
G temporal superior transverse* L 0.00083 
G parietal inferior angular R 0.0013 
S circular insula inferior* R 0.071 
S occipital anterior R − 0.13  

DTI FA   
G and S paracentral L − 0.049 
S orbital lateral* L 0.074 
S intraparietial and P transervse R − 0.022  

DTI MD   
G insula large and S central insula L − 0.04 
G and S cingulate anterior* R − 0.047 
G parietal superior* R 0.054 
G orbital medial olfactory R − 0.017  

DTI MD Subcortical   
Palladium R − 0.038 
Intercranial Volume  0.05  

Covariate features (non-brain)   
Baseline puberty  0.18 
Year 1 puberty  0.44 
Highest parental education  − 0.3 
Scanner 2  − 0.11 
Scanner 5  0.00056 
Scanner 16  0.14 
Scanner 22  0.12  
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applying the baseline model to the WS vs WG sample, the model still 
identified children with WG, but the AUC in the test set (0.74) was lower 
than that observed with the best prediction model (0.79). This difference 
in AUC was not significant. 

4. Discussion 

Using a large and racially diverse group of 9-to-10-year-old children 
enrolled in the ABCD Study®, we shed light on the brain modalities 
associated with current BMI and those that predict weight gain one year 
later. Across several modalities, current BMI was associated with brain 
structure (i.e., regional measures of cortical thickness, surface area, 
subcortical volume, and FA and MD diffusion measures), functional 
rsfMRI connectivity and EN-back activations in select regions associated 
with working memory. Task-based functional activation on the MID (i. 
e., reward anticipation and outcome), and SST (i.e., motor response 
inhibition) did not show associations with BMI at ages 9-to-10-years-old. 
In addition, brain structure was predictive of children who would gain 
more than 20 pounds one year later. However, rsfMRI and task-based 
fMRI across the MID, SST, and EN-back were not. 

Traditionally, brain-BMI associations have been investigated within 
a single modality. Yet, few studies have converged on a consistent set of 
findings. Obesity in children has been related to the cortical thinness of 
the frontal cortex (Alosco et al., 2014; Ronan et al., 2019; Carbine et al., 
2019) and/or greater subcortical volumes of specific appetitive regions 
like the hippocampus (Mestre et al., 2017), pallidum (de Groot et al., 
2017), amygdala and/or accumbens (Perlaki et al., 2018; Rapuano et al., 
2017). In our study, BMI showed global (i.e., widespread) associations 
within multiple modalities (e.g., cortical thickness, surface area). BMI at 
9-to-10-years-old was associated with thinner cortices (as previously 
reported (Laurent et al., 2019)), but also to reduced surface area, larger 
subcortical volumes and smaller FA and MD estimates. Together, 
cortical thickness, surface area, subcortical volume, and DTI estimates of 
white matter, explained between 27 % of the variance in current BMI 

within the test set. Our findings differ slightly from the literature but no 
studies (besides ours) have collected multiple modalities and related 
them to BMI within the same subject. Evaluating multiple within subject 
measures allows for a comprehensive picture, as it captures the variance 
explained by each modality and their relative value in respect to each 
other. In addition, the large sample size of the ABCD Study® allowed us 
to capture the variance explained in BMI above and beyond the contri
bution of sociodemographic factors, which may have confounded results 
from smaller studies (Garavan et al., 2018). 

From a disease perspective, the association between BMI and dif
ferences in gray and white matter may be indicative of neuro
inflammation (Ho et al., 2010), an early consequence of obesity (Mendes 
et al., 2018; Guillemot-Legris and Muccioli, 2017). Neuroinflammation 
is thought to occur in response to repeated intake of high fat foods, as the 
hypothalamus triggers inflammatory responses in reaction to intake of 
free fatty acids found in fatty foods; overconsumption of high fat foods is 
a risk factor for childhood obesity (Arango-Angarita et al., 2018). 
Through this proposed mechanism, overexpression of pro-inflammatory 
markers impairs synaptic plasticity, neurogenesis and neuromodulation 
(Mendes et al., 2018). Although hypothalamic volume was not selected 
as an association of BMI, our analysis does not rule out that over
expression of pro-inflammatory and appetitive hormones in this region 
may relate to structural differences observed elsewhere in the brain. 
Thus, neuroinflammation may explain why brain structure (e.g., gray 
and white matter) was related to BMI in children, specifically at base
line. It is important to note, that although our data align with the theory 
of neuroinflammation, our analyses cannot determine causal mecha
nisms. So, although obesity is associated with neuroinflammation 
(Mendes et al., 2018; Guillemot-Legris and Muccioli, 2017), it is not 
known if structural variation existed prior to obesity onset and causes 
overeating (i.e., biological cause) or if gray and white matter alterations 
are solely consequences of overeating/obesity onset. However, the 
relative strength of association between each modality and BMI (i.e., the 
comparison of the summed absolute beta weights for each modality; 

Table 10 
The AUC and p value for the training and test dataset for the WG prediction analysis. The AUC as well as the number of children in the analysis and features included are 
displayed for the training and testing dataset for children included in the Y1 structural prediction analysis. Of note, covariates were dummy coded for race, sex, 
handedness, and MRI scanner serial number. The brain features included cortical thickness, surface area, diffusion tensor imaging (DTI) estimates of fractional 
anisotrophy (FA) and mean diffusivity (MD), and subcortical volume regions. The beta weight for each brain feature is listed in Table 9. WG = weight gain; WS =
weight stable; AUC = area under the curve.   

Training dataset Testing dataset Removal of Siblings   

Structure AUC (p) nTotal (nWG) AUC (p) n AUC(p) nTotal (nWG) # of brain features # of covariate features 

WS vs. WG 0.82 (<0.0001) 652 (136) 0.78 (<0.0001) 157 (36) 0.77(<0.0001) 148 (34) 19 7  

Fig. 5. Beta weights from the logistic elastic 
net regression for each ROI and structural mo
dality predicting weight gain at the one year 
follow up. A) Cortical ROIs; B) Subcortical 
ROIs. The magnitudes of the beta weights are in 
reference to each other and do not necessarily 
represent thickening or thinning, for example. 
C) Absolute beta weights sorted by each ROI 
and modality from the weight gain at year 1 
prediction elastic net model. D) Summed 
average absolute beta weights from the elastic 
net regression to indicate magnitude of each 
contributing structural modality. CT = cortical 
thickness; SA = Surface area; DTI = Diffusion 
tensor imaging; FA = Fractional anisotropy; MD 
= Mean diffusivity; vol = Volume. Edu =
Parent highest reported edcatuon.   
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Fig. 2) showed that gray matter features (e.g., cortical thickness) 
contributed more to the model, than white matter features (e.g., DTI FA 
and MD). One reason for this may be that white matter may restructure 
in response to gray matter alterations (Radetz et al., 2020). Because 
these children were relatively young (9-to-10-years-old), future research 
will provide insights into how gray and white matter change in response 
to weight gain over time during a critical developmental period. 

The prefrontal cortex, which is associated with inhibitory control 
(Aron et al., 2014) (e.g., dorsolateral prefrontal cortex) and reward 
processing (e.g., ventromedial and medial prefrontal cortex) emerged as 
an area with substantial structural associations with BMI. The literature 
suggests that altered structure and processing in regions associated with 
inhibitory control and reward processing may drive overeating 
(Kroemer and Small, 2016) due to an imbalance in function between 
these regions. For example, the theory proposes that altered response to 
food in regions associated with reward coupled with an altered response 
in regions associated with inhibitory control (i.e., inability to stop 
behavior) leads to food intake. Our sMRI findings are consistent with 
this theory as BMI was negatively correlated with brain structure in both 
regions associated with reward and inhibitory control. These regions 
have been proposed to be direct drivers of food intake due to their 
involvement in liking (e.g., the hedonics associated with pleasure of a 
reward) and wanting (e.g., the motivational drive to obtain a reward) 
mechanisms (Berridge et al., 2010). Additionally, studies have shown 
that greater BOLD response to food compared to money rewards in these 
regions was related to overeating in two different laboratory test meals 
(Adise et al., 2018). Thus, one interpretation of our results is that larger 
subcortical volumes in regions associated with regulating food intake 
and reward may contribute to overactive appetitive drives (i.e., over
eating), and hence, weight gain. However, because ABCD did not collect 
objective measures of food intake, this should be further investigated in 
future studies. 

The structural findings indicated that several regions involved in 
reward processing and inhibitory control were related to current BMI 
and WG at Y1 but task-based fMRI reward and inhibitory control pro
cesses (as assessed by the MID and SST) were not. This was striking 
because many studies show associations between fMRI in key regions 
associated with reward and inhibitory control in adults and children 
(Yokum et al., 2014a; Bohon, 2017; Batterink et al., 2010; Bruce et al., 
2010; Davids et al., 2010; Bruce et al., 2013; Van et al., 2016; Boutelle 
et al., 2015; Rolls, 2011; Frank et al., 2013; Avery et al., 2017). Of 
relevance, our study used active, cognitively demanding 
decision-making tasks in the absence of food rewards, which is in 
contrast to those that used food-based passive viewing tasks. Food-based 
passive viewing tasks provide limited insight into actual psychological 
mechanisms because they lack cognitive demands and may be ineffec
tive for assessing neural processing deficits in children. In addition, the 
MID and SST assess specific types of reward (e.g., anticipation and 
feedback of monetary rewards) and inhibitory control (e.g., prepotent 
motor inhibition) processes, which may not be optimal for exposing 
deficits in the context of food decision-making and obesity. However, it 
is also plausible that task-fMRI (whether it is passive-viewing tasks or 
active-tasks) may be better for understanding the neurological mecha
nisms associated with the behavioral phenotype of overeating (a risk 
factor for obesity) rather than classifying actual BMI (a consequence of 
overeating). Lastly, because reward and inhibitory control processes are 
undergoing maturation during adolescence (Shulman et al., 2016), 
functional relationships with BMI may be observed later in develop
ment. As these children continue to age, ABCD Study® will provide 
insight into how structural and functional relate to BMI over time. 

The only fMRI task associated with BMI was the EN-back working 
memory task. When specifically looking at the working memory contrast 
(e.g., 2- vs. 0-back), activation in the parahippocampal gyrus was the 
only region associated with BMI. This result converges with previous 
findings in a similar cohort of children with higher BMI showing that 
thinner cortices in this region relate to performance on executive 

functioning assessment such as card and list sorting and matrix rea
sonsing (Laurent et al., 2019), which are assessements of working 
memory. Additionally, structural variation in this region was associated 
with higher BMI and weight gain prediction at Y1. The literature 
investigating appetitive hormones and brain function are relevant for 
understanding possible links between obesity and structural changes in 
regions associated with working memory. Appetitive hormones (e.g., 
ghrelin, insulin) activate hippocampal regions (Miller et al., 2014) and 
in both animal and human studies, dysregulation of these hormones 
(due to overeating) have been associated with memory impairment. This 
suggests that structural differences in working memory regions may 
occur due to overexpression of hunger regulatory and/or 
pro-inflammatory hormones that are more pronounced with obesity. 
However, because ABCD did not collect measurements of appetitive 
hormones, future studies are needed to explore this relationship further. 
Of note, although the EN-back task assesses working memory, it also 
contained an emotional component. Emotion reactivity can interfere 
with working memory processes, which makes it difficult to generalize 
these findings to working memory a part from the emotional compo
nent. Therefore, future studies should investigate the correlations be
tween BMI and activation on working memory tasks without an 
emotional component 

In line with structural findings, rsfMRI revealed widespread func
tional connectivity associations with BMI. The relatively few rsfMRI 
studies conducted in children and adolescents showed that BMI was 
associated with greater connectivity between frontal regions, such as the 
left middle frontal gyrus and the left ventromedial prefrontal cortex and 
left lateral orbitofrontal cortex (Black et al., 2014). Although one study 
showed connectivity between the insula and anterior cingulate cortex (i. 
e., cingulo-parietal network) (Moreno-Lopez et al., 2016) was related to 
childhood obesity in children, the directional effect (i.e., decreased 
connectivity) was opposite to our findings (i.e., increased connectivity). 
Thus, one interpretation could be that altered connectivity between 
cognitive control and reward regions may be one reason for overeating. 
This theory is deeply rooted in that of the Reflective-Impulsive Dual 
Mechanisms model (Hofmann, 2008), which proposes that behavioral 
responses to rewarding stimuli are driven by the balance between 
reward and inhibitory control processes. This theory proposes that when 
overeating occurs when inhibitory control processes are not able to 
suppress behavioral responses to rewarding stimuli. However, because 
ABCD did not collect measures of food intake, this hypothesis needs to 
be evaluated with future studies. Further, as baseline BMI was related to 
connectivity of dorsal and ventral attention, default mode, auditory, 
visual and somatosensory networks, the relationship between obesity 
and resting state activity appears more widespread and complex. Future 
studies should investigate how these networks relate to objective 
overeating. 

sMRI measures, including surface area, cortical thickness, and sub- 
adjacent DTI estimates of FA and MD, and subcortical estimates of MD 
were the only brain modalities associated with WG. Although there was 
some overlap with the regions that classified baseline BMI, distinct re
gions within surface area (e.g., parahippocampal gyrus, inferior parietal 
gyrus, anterior occipital sulcus), and sub-adjacent white matter FA (e.g., 
paracentral gyrus, intraparietal sulcus) and MD measures (e.g., insula, 
orbital medial olfactory gyrus) predicted WG at Y1. These findings 
suggest the brain may show structural variation prior to WG particularly 
in regions known to be associated with food intake, like the para
hippocampal gyrus (Brooks et al., 2013) and insula (Rolls, 2015). One 
interpretation of these results is that altered white matter architecture 
and smaller surface areas in regions associated with food intake, may be 
related to phenotypic overeating and suggest a potential mechanism 
leading to rapid weight gain. 

Children who were in the Y1 WG group varied in weight status at 
baseline (i.e., healthy weight, overweight or obese (Kuczmarski et al., 
2000)). This is important because as these results could potentially 
identify children who are more likely to transition from healthy weight 
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into overweight/obese, meaning that children who are not WS could be 
readily identified. Rapid weight gain is a concern because it increases 
the risk for cardiovascular disease later in life (Attard et al., 2013), and 
subclinical cardiovascular risks can be apparent as early as young 
adulthood (Hao et al., 2018). As there are significant health conse
quences of WG, particularly in children (Attard et al., 2013), under
standing the neurological associations that are predictive of WS vs. WG 
may provide valuable insight for understanding and improving the 
health outcomes for these children. However, future research is needed 
to examine how these brain regions relate to objective overeating and 
how they change in response to weight gain over time. 

4.1. Strengths and limitations 

The data presented in this paper contribute to the literature by 
identifying generalizable structural and functional brain measures 
related to current BMI and future weight gain in the largest-to-date, 
racially and culturally diverse group of children age 9-to-10-years-old. 
We highlight the potential utility of MRI to identify children who are 
at higher risk for obesity. Because childhood obesity is associated with 
various early-onset medical consequences (Reilly et al., 2003) as well as 
fiscal implications (Finkelstein et al., 2009), improved risk assessment 
has potential benefits for child health and public policy. 

We note several limitations. The ABCD Study®did not collect as
sessments of objectively measured food intake. Therefore, these findings 
do not offer insight into whether differences in brain structure are 
related to disordered eating. The ABCD Study® did not collect parent 
height and weight, which limits our ability to explore hereditary in
fluences related to weight gain. Although heritability can be studied via 
twin designs, this information would only provide heritability estimates 
for sibling pairs and not to singletons within the study. However, a 
future direction is to investigate the role of heritability and extreme 
weight gain. Similarly, the ABCD Study® did not collect inflammatory 
biomarkers at baseline which limits an examination of how neuro
inflammation relates to brain structure and function in children. The 
neuroimaging data were cross-sectional, which provides limited insight 
into temporal changes in the brain associated with WG. However, future 
releases of the ABCD Study®, which will include longitudinal within- 
subject neuroimaging data will address this limitation. 

5. Conclusion 

Obesity rates are increasing with sparse understanding of the 
neurological basis driving weight gain. Using a large sample and cross- 
validated analytic approach we identified reliable associations of cur
rent BMI in a large and racially diverse group of 9-to-10-year-old chil
dren. BMI was associated with widespread structural differences, altered 
rsfMRI, and working memory during the EN-back task. Of most interest, 
our findings identified specific brain regions predictive of rapid weight 
gain one year later. Rapid weight gain poses detrimental health conse
quences, and may be a sign of disordered eating. Thus, these results have 
direct implications for intervention programs. 
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