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SUMMARY

Doubly robust estimators are widely used to draw inference about the average effect of a
treatment. Such estimators are consistent for the effect of interest if either one of two nuisance
parameters is consistently estimated. However, if flexible, data-adaptive estimators of these nui-
sance parameters are used, double robustness does not readily extend to inference. We present
a general theoretical study of the behaviour of doubly robust estimators of an average treatment
effect when one of the nuisance parameters is inconsistently estimated. We contrast different
methods for constructing such estimators and investigate the extent to which they may be mod-
ified to also allow doubly robust inference. We find that while targeted minimum loss-based
estimation can be used to solve this problem very naturally, common alternative frameworks
appear to be inappropriate for this purpose. We provide a theoretical study and a numerical eval-
uation of the alternatives considered. Our simulations highlight the need for and usefulness of
these approaches in practice, while our theoretical developments have broad implications for the
construction of estimators that permit doubly robust inference in other problems.

Some key words: Adaptive estimation; Doubly robust estimation; Efficient influence function; Targeted minimum
loss-based estimation.
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1. INTRODUCTION

In recent years, doubly robust estimators have gained immense popularity in many fields,
including causal inference. An estimator is said to be doubly robust if it is consistent for the
target parameter of interest when any one of two nuisance parameters is consistently estimated.
This property gives doubly robust estimators a natural appeal: any possible inconsistency in
the estimation of one nuisance parameter may be mitigated by the consistent estimation of the
other. In many problems, doubly robust estimators arise naturally in the pursuit of asymptotic
efficiency. Locally efficient estimators often exhibit double robustness due to the form of the
efficient influence function of the estimated parameter in the statistical model considered. For
many parameters that arise in causal inference, the efficient influence function assumes a doubly
robust form, which may explain why doubly robust estimators arise so frequently in that area. For
example, under common causal identification assumptions, the statistical parameter identifying
the mean counterfactual response under a point treatment yields a doubly robust efficient influence
function in a nonparametric model (Robins et al., 1994). Thus, locally efficient estimators of this
statistical target parameter are naturally doubly robust. General frameworks for constructing
locally efficient estimators can therefore be utilized to generate estimators that are doubly robust.

While the conceptual appeal of doubly robust estimators is clear, questions remain about how
they should be constructed in practice. It has long been noted that finite-dimensional models
are generally too restrictive to permit consistent estimation of nuisance parameters (Bang &
Robins, 2005), but much current work on double robustness involves parametric working models
and maximum likelihood estimation. Kang & Schafer (2007) showed that doubly robust estima-
tors can be poorly behaved if both nuisance parameters are inconsistently estimated, leading to
recent proposals for estimators that minimize bias resulting from misspecification (Vermeulen &
Vansteelandt, 2014, 2016). While providing an improvement over conventional techniques, these
estimators rely upon consistent estimation of at least one nuisance parameter using a parametric
model. An alternative approach is to employ flexible, data-adaptive estimation techniques for
both nuisance parameters to reduce the risk of inconsistency (van der Laan & Rose, 2011).

A general study of the behaviour of doubly robust estimators under inconsistent estimation
of a nuisance parameter is needed in order to understand how to perform robust inference. This
topic has not received much attention, perhaps because the problems arising from misspecifica-
tion are well understood when parametric models are used. For example, if nuisance parameters
are estimated using maximum likelihood, the resulting estimator of the parameter of interest
is asymptotically linear even if one of the nuisance parameter models has been misspecified.
Although in this scenario the asymptotic variance of the estimator may not be easy to calculate
explicitly, resampling techniques may be employed for inference. When the estimator is the solu-
tion of an estimating equation, robust sandwich-type variance estimators may also be available.
In contrast, when nuisance parameters are estimated using data-adaptive approaches, the impli-
cations of inconsistently estimating one nuisance parameter are much more serious. Generally,
the resulting estimator is irregular, exhibits large bias and has a convergence rate slower than
root-n. As we show below, the implications for inference are dire: regardless of nominal level,
the coverage of naïve two-sided confidence intervals tends to zero and the Type I error rate of
two-sided hypothesis tests tends to unity as the sample size increases. This phenomenon cannot
simply be avoided by better variance estimation, and it occurs even when the true variance of the
estimator is known exactly. Neither is the nonparametric bootstrap a remedy, as, due to the use
of data-adaptive procedures, it is not generally valid for inference.

In view of these challenges, investigators may believe it simpler to use to parametric models.
However, this is unappealing since both nuisance parameters, and hence also the parameter of
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interest, are then likely to be inconsistently estimated. The use of flexible data-adaptive tech-
niques, such as ensemble machine learning, appears necessary if one is to have any reasonable
expectation of consistency for any of the nuisance parameter estimators (van der Laan & Polley,
2007). However, because such methods are highly adaptive, research is needed into developing
appropriate methods for doubly robust inference that use such tools.

A first theoretical study of the problem of doubly robust nonparametric inference is the work
of van der Laan (2014), who focused on the counterfactual mean under a single time-point
intervention and considered targeted minimum loss-based estimation. As the average treatment
effect is the difference between two counterfactual means under different treatments, it too was
directly addressed. The estimators proposed therein were shown to be doubly robust with respect
to not only consistency but also asymptotic linearity. Furthermore, under regularity conditions,
the analytic form of the influence function in van der Laan (2014) is known, paving the way for
the construction of doubly robust confidence intervals and p-values. The proposed procedure is
quite complex and has never been implemented. We are therefore motivated to study theoretically
and numerically the following three questions about doubly robust nonparametric inference on
an average treatment effect or, equivalently, on a counterfactual mean:

1. How badly does inconsistent nuisance parameter estimation affect inference using data-
adaptive estimators, and how do estimators that allow doubly robust inference perform?

2. Can existing targeted minimum loss-based estimators be improved by new versions that
require estimation of lower-dimensional nuisance parameters?

3. Can simpler alternatives to targeted minimum loss-based estimation be used to construct
estimators that are doubly robust for inference and also easier to implement?

As we shall demonstrate in § 5, the answer to question 1 is that naïvely constructed confidence
intervals can have very poor coverage, whereas intervals constructed based on appropriate correc-
tion procedures have coverage near their nominal level. This suggests that the methods discussed
in the present paper are truly needed and may be quite useful. For question 2, we show that it is
possible to reduce the dimension of the nuisance parameters introduced in the quest for doubly
robust inference, which can provide finite-sample benefits relative to van der Laan (2014). More
importantly, this methodological advance is likely to be critical to any extension of the meth-
ods discussed here to the setting of treatments defined by multiple time-point interventions. For
question 3, we show that the most popular alternative framework to targeted minimum loss-based
estimation, the so-called one-step approach, may not be used to theoretically guarantee doubly
robust inference unless one knows which nuisance parameter is consistently estimated.

2. DOUBLY ROBUST ESTIMATION

2·1. Notation and background

Suppose that the observed data unit is O = (W , A, Y ) ∼ P0, where W is a vector of baseline
covariates, A ∈ {0, 1} is a binary treatment, Y is an outcome, and P0 is the true data-generating
distribution, known only to lie in some model M. We take M = M0, where M0 is a nonpara-
metric model, although arbitrary restrictions on the distribution of A given W are allowed without
affecting our derivations. We focus on the parameter � : M0 → R defined as

�(P) =
∫

Q̄(w) dQW (w), P ∈ M0,

where Q̄(w)= Q̄P(w)= EP(Y | A = 1, W = w) is the so-called outcome regression and QW (w) =
QW ,P(w) = prP(W � w) is the distribution function of the covariate vector. The parameter value
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�(P) represents the treatment-specific, covariate-adjusted mean outcome implied by P ∈ M0.
Under additional causal assumptions, it can be interpreted as the mean counterfactual outcome
under the treatment corresponding to A = 1 (Rubin, 1974). Because all developments below
immediately apply to the A = 0 case, and therefore to the average treatment effect, without loss
of generality we explicitly examine only the case where A = 1.

As the parameter of interest depends on P only through Q = Q(P) = (Q̄, QW ), we will at
times write �(Q) in place of �(P). We will denote Q(P0) by Q0 = (Q̄0, QW ,0) for short, where
Q̄0 is the true outcome regression and QW ,0 the true distribution of W . The propensity score,
defined as g(w) = gP(w) = pr(A = 1 | W = w), plays an important role, and throughout this
paper the true propensity score g0 is assumed to satisfy g0(w) > δ for some δ > 0 and all w
in the support of QW ,0. Below, we make use of empirical process notation, letting Pf denote∫

f (o) dP(o) for each P ∈ M0 and P-integrable function f . We also denote by Pn the empirical
distribution function based on O1, . . . , On, so Pnf is the average n−1 ∑n

i=1 f (Oi).
Recall that a regular estimator ψn of ψ0 = �(Q0) is asymptotically linear if and only if it

can be written as ψn = ψ0 + PnD(P0) + op(n−1/2), where D(P0) ∈ L0
2(P0) is a gradient of �

at P0 relative to model M. Here, for each P ∈ M, we denote by L0
2(P) the Hilbert space of all

real-valued functions with zero mean and finite variance defined on the support of P endowed
with the covariance inner product. The function D(P) ∈ L0

2(P) is said to be a gradient of � at P
relative to M if

d

dε
�(Pε)

∣∣∣∣
ε=0

=
∫

D(P)(o)s(o) dP(o)

for any regular one-dimensional parametric submodel {Pε} ⊆ M with score s for ε at ε = 0
and such that Pε=0 = P. In the nonparametric case, where M = M0, an example of such a
submodel is given by dPε(o) = expit{2εs(o)} dP(o)/cs(ε), where cs(ε) is a normalizing constant
and expit(u) = exp(u)/{1 + exp(u)} for any u ∈ R. Under sampling from P0, a regular and
asymptotically linear estimator is efficient if and only if its influence function is the efficient
influence function D∗(P0). The efficient influence function is the unique gradient that lies in the
tangent space TM(P0) ⊆ L0

2(P0) of M at P0, and it is a crucial ingredient in the construction of
asymptotically efficient estimators. For an overview of efficiency theory, see Bickel et al. (1997).

The efficient influence function of � at P relative to M0 is

D∗(P)(o) = D∗(Q, g)(o) = a

g(w)

{
y − Q̄(w)

} + Q̄(w)−�(Q),

with o = (w, a, y) denoting a realized value of O (van der Laan & Robins, 2003).

2·2. Doubly robust consistency

Suppose that Q̄n and gn are estimators of Q̄0 and g0, respectively, and denote by Q̄ and g
their respective in-probability limits. We write Qn = (Q̄n, QW ,n), where QW ,n is the empirical
distribution based on observations W1, . . . , Wn.A linearization of the parameter allows us to write

�(Qn)−�(Q0) = −P0D∗(Qn, gn)+ R(Qn, Q0, gn, g0)

= (Pn − P0)D
∗(Qn, gn)− PnD∗(Qn, gn)+ R(Qn, Q0, gn, g0)

= (Pn − P0)D
∗(Q, g)− PnD∗(Qn, gn)+ R(Qn, Q0, gn, g0)

+ (Pn − P0){D∗(Qn, gn)− D∗(Q, g)},
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where R(Qn, Q0, gn, g0) = P0{(gn−g0)(Q̄n−Q̄0)/gn}. The first equality is expected because� is
strongly differentiable in the sense of Pfanzagl (1982). As shorthand, we will write Bn(Qn, gn) =
PnD∗(Qn, gn) and Mn(Qn, Q, gn, g) = (Pn − P0){D∗(Qn, gn) − D∗(Q, g)}. Using this notation,
we can express �(Qn)−�(Q0) as

(Pn − P0)D
∗(Q, g)− Bn(Qn, gn)+ Mn(Qn, Q, gn, g)+ R(Qn, Q0, gn, g0). (1)

This representation reduces the analysis of the plug-in estimator �(Qn) to the consideration
of four terms. The first term, (Pn − P0)D∗(Q, g), is the average of n independent draws of the
random variable D∗(Q, g)(O)− P0D∗(Q, g), which has mean zero if either Q = Q0 or g = g0.
This observation is a simple but fundamental fact underlying doubly robust estimation. Since
QW ,n is known to converge to QW ,0, the statement Q = Q0 is equivalent to Q̄ = Q̄0. The second
term, Bn(Qn, gn), is a first-order bias term that must be accounted for to allow�(Qn) to be asymp-
totically linear. The third term is an empirical process term that is often asymptotically negligible,
that is, Mn = Mn(Qn, Q, gn, g) = op(n−1/2). This is true, for example, if D∗(Qn, gn) falls in a
P0-Donsker class with probability tending to 1 and P0{D∗(Qn, gn) − D∗(Q, g)}2 converges to
zero in probability. For a comprehensive reference on empirical processes, we refer readers to
van der Vaart & Wellner (1996). Finally, the fourth term, Rn = R(Qn, Q0, gn, g0), is the remainder
from the linearization. By inspection, this term tends to zero at a rate determined by how fast the
nuisance functions Q̄0 and g0 are estimated.

To correct for the first-order bias term Bn(Qn, gn), two general strategies may be used: the one-
step Newton–Raphson approach and targeted minimum loss-based estimation. The first, hereafter
called the one-step approach, suggests performing an additive correction for the first-order bias,
leading to the estimator

ψ+
n = �(Qn)+ Bn(Qn, gn).

This approach appeared in Ibragimov & Has’minskii (1981) and Pfanzagl (1982), and is the
infinite-dimensional extension of the one-step Newton–Raphson technique for efficient estima-
tion in parametric models. In this paper, the efficient influence function is a linear function of
the parameter of interest. As such, the one-step estimator equals the solution of the optimal esti-
mating equation for this parameter and is therefore equivalent to the so-called augmented inverse
probability of treatment estimator (Robins et al., 1994; van der Laan & Robins, 2003). Owing to
their simple construction, one-step estimators are generally computationally convenient, though
this convenience comes at a cost, as the one-step correction may produce estimates outside the
parameter space, such as probability estimates either below zero or above one. Targeted minimum
loss-based estimation, formally developed in van der Laan & Rubin (2006) and comprehensively
discussed in van der Laan & Rose (2011), provides an algorithm to convert Qn into a targeted
estimator Q∗

n of Q0 such that Bn(Q∗
n , gn) = 0, which may then be used to define the targeted

plug-in estimator ψ∗
n = �(Q∗

n). The first update of Qn in this recursive scheme consists of the
minimizer of an empirical risk over a least favourable submodel through Qn. The process is
iterated using updated versions of Qn until convergence to yield Q∗

n . In the problem considered
here, convergence occurs in a single step. By virtue of being a plug-in estimator, ψ∗

n may exhibit
improved finite-sample behaviour relative to its one-step counterpart (Porter et al., 2011).

The large-sample properties of both ψ+
n and ψ∗

n can be studied through (1). As above, sup-
pose that the empirical process term Mn is asymptotically negligible. If both Q0 and g0 are
estimated consistently, so that Q = Q0 and g = g0, and if estimation of these nuisance functions
is fast enough to ensure that the remainder term Rn is asymptotically negligible, then ψ+

n is
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asymptotically linear with influence function equal to D∗(Q0, g0), and thus it is asymptotically
efficient. The same can be said of ψ∗

n if the same conditions on Mn and Rn hold with Qn replaced
by Q∗

n . If only one of Q = Q0 or g = g0 holds, it is impossible to guarantee the asymptotic
negligibility of the remainder term, even if both Q and g lie in parametric models. Nevertheless,
provided Q = Q0 or g = g0, under very mild conditions, the remainder term Rn based on either
Qn or Q∗

n tends to zero in probability, and the empirical process term Mn remains asymptotically
negligible. Since D∗(Q, g)(O) has mean zero if either Q = Q0 or g = g0 and has finite variance,
the central limit theorem implies that (Pn − P0)D∗(Q, g) is Op(n−1/2), so both ψ+

n and ψ∗
n are

consistent estimators of ψ0. This is so-called double robustness: consistent estimation of ψ0 if
either of the nuisance functions Q0 or g0 is consistently estimated.

2·3. Doubly robust asymptotic linearity

Doubly robust asymptotic linearity is a more stringent requirement than doubly robust con-
sistency. It is also arguably more important, since without it the construction of valid confidence
intervals and tests may be very difficult, if not impossible. A careful study of Rn is required to
determine how doubly robust inference may be obtained.

When both the outcome regression and the propensity score are consistently estimated, Rn is
a second-order term consisting of the product of two differences, both tending to zero. Hence,
provided Q̄0 and g0 are estimated sufficiently fast, Rn = op(n−1/2). This holds, for example, if
both Q̄n − Q̄0 and gn − g0 are op(n−1/4) with respect to the L2(P0)-norm. If only one of the
outcome regression or propensity score is consistently estimated, one of the differences in Rn
does not tend to zero. Consequently, Rn is either of the same order as or tends to zero more
slowly than (Pn − P0)D∗(Q, g). As such, Rn at least contributes to the first-order behaviour of
the estimator and may determine it entirely. If a correctly specified parametric model is used to
estimate either Q̄0 or g0, the delta method generally implies that Rn is asymptotically linear. In
this case, both ψ+

n and ψ∗
n are also asymptotically linear, though their influence function is the

sum of two terms: D∗(Q, g) − P0D∗(Q, g) and the influence function of Rn as an estimator of
zero. Correctly specifying a parametric model is seldom feasible in realistic settings, however,
so it may be preferable to use adaptive estimators of the nuisance functions. In such a situation,
whenever one nuisance parameter is inconsistently estimated, the remainder term Rn tends to
zero slowly and thus dominates the first-order behaviour of the estimator ofψ0. Therefore, in this
case the one-step and targeted minimum loss-based estimators are doubly robust with respect to
consistency but not with respect to asymptotic linearity.

To illustrate the deleterious effect of the remainder on inference in these situations, suppose that
we construct an asymptotic level-(1 − α) two-sided Wald-type confidence interval for ψ0 based
on a consistent estimator ψn, say with true standard error sn. Suppose further that |ψn − ψ0|/sn
tends to +∞ in probability, which often occurs when the bias of ψn tends to zero more slowly
than its standard error. Denoting by zβ the β quantile of the standard normal distribution, the
coverage of the oracle Wald-type interval ψn ± z1−α/2sn is such that

prP0
(ψn − z1−α/2sn < ψ0 < ψn + z1−α/2sn) = prP0

(∣∣∣∣ψn − ψ0

sn

∣∣∣∣ < z1−α/2
)

→ 0

as n → ∞. This remains true if we replace sn by any random sequence that converges to zero
at the same rate or faster. If asymptotic linearity were preserved under inconsistent estimation of
one of the nuisance parameters, (ψn − ψ0)/sn would instead tend to a standard normal variate.
The oracle Wald-type intervals, and in fact any Wald-type interval using a consistent standard
error estimator, would have correct asymptotic coverage. This argument therefore stresses the
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benefit of constructing estimators that are doubly robust with respect to asymptotic linearity for
the sake of obtaining confidence intervals and tests whose validity is doubly robust.

3. DOUBLY ROBUST INFERENCE VIA TARGETED MINIMUM LOSS-BASED ESTIMATION

3·1. Existing construction

van der Laan (2014) proposed a targeted minimum loss-based estimator of ψ0 that is not
only locally efficient and doubly robust for consistency but also doubly robust for asymptotic
linearity. To do so he showed that, with some additional bias correction, Rn may be rendered
asymptotically linear with a well-described influence function. This requires approximating the
first-order behaviour of Rn using additional nuisance parameters, which consist of a bivariate and
a univariate regression, defined respectively as

g0,r(Q̄, g)(w) = EP0{A | Q̄(W ) = Q̄(w), g(W ) = g(w)}, (2)

Q̄0,r(Q̄, g)(w) = EP0{Y − Q̄(W ) | A = 1, g(W ) = g(w)}. (3)

Expression (2) is the bivariate regression of the true propensity of treatment on an outcome
regression and a propensity score, whereas (3) is the univariate regression of the residual from
an outcome regression on a propensity score in the treated subgroup. The subscript r emphasizes
that these nuisance parameters are of reduced dimension relative to g0 and Q̄0. This dimension
reduction is critical since it essentially guarantees that consistent estimators of these parameters
can be constructed in practice. For example, we may be unable to consistently estimate g0, which
is a function of the entire vector of potential confounders; however, we can guarantee consistent
estimation of g0,r , which involves only a bivariate summary of W .

Key to the study of how these additional nuisance parameters may be used to approximate the
first-order behaviour of the remainder term Rn are the functions

DA(Q̄0,r , g)(o) = Q̄0,r(w)

g(w)
{a − g(w)},

DY (Q̄, g0,r , g)(o) = a

g0,r(w)

{
g0,r(w)− g(w)

g(w)

}
{y − Q̄(w)}.

In Appendix A, we show that the remainder term R(Qn, Q, gn, g) can be represented as

R∗
n − I (g = g0)

{
(Pn − P0)DA(Q̄0,r , g)− BA,n(Q̄n,r , gn)− Rg,n

}
− I (Q̄ = Q̄0)

{
(Pn − P0)DY (Q̄, g0,r , g)− BY ,n(Q̄n, gn,r , gn)− RQ,n

}
,

(4)

where BA,n(Q̄n,r , gn) = PnDA(Q̄n,r , gn) and BY ,n(Q̄n, gn,r , gn) = PnDY (Q̄n, gn,r , gn) are bias
terms, and R∗

n, Rg,n and RQ,n are second-order terms. The specific form of these terms is provided
in Appendix A, where we also discuss sufficient conditions for ensuring their asymptotic negli-
gibility. Just as the bias term in (1) had to be accounted for to achieve doubly robust consistency,
so too must the bias terms in (4) to achieve doubly robust asymptotic linearity.

The iterative targeted minimum loss-based estimation algorithm proposed in Theorem 3 of
van der Laan (2014) produces estimators Q̄∗

n , g∗
n , Q̄∗

n,r and g∗
n,r from initial estimators Qn and gn

in such a manner as to ensure that

Bn(Q
∗
n , g∗

n ) = BA,n(Q̄
∗
n,r , g∗

n ) = BY ,n(Q̄
∗
n , g∗

n,r , g∗
n ) = op(n

−1/2).
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In view of (1) and (4), ψ∗
n = �(Q∗

n) is asymptotically linear with influence function

D∗,#(Q, g) = D∗(Q, g)− P0D∗(Q, g)− I (g = g0)DA(Q̄0,r , g)− I (Q̄ = Q̄0)DY (Q̄, g0,r , g),

provided either Q̄0 or g0 is estimated consistently. If Q̄0 and g0 are estimated consistently, then
Q̄0,r = 0 and g0,r = g0. In this case, DA(Q̄0,r , g) and DY (Q̄, g0,r , g) are identically zero, which
establishes local efficiency of ψ∗

n .

3·2. Novel reduced-dimension construction

We now show how to theoretically improve upon the proposal of van der Laan (2014) through an
alternative formulation of a targeted minimum loss-based estimator. We derive an approximation
of the remainder that relies on alternative nuisance parameters of lower dimension than those
presented in § 3·1. This makes the estimation problem involved more feasible and may also pave
the way to a generalization of this work to settings with longitudinal treatments.

In Appendix B, we argue that the remainder term in (4) can be represented using Q̄0,r as
previously defined and the additional nuisance parameters

g1,0,r(Q̄)(w) = EP0{A | Q̄(W ) = Q̄(w)},

g2,0,r(Q̄, g)(w) = EP0

{
A − g(W )

g(W )

∣∣∣∣ Q̄(W ) = Q̄(w)

}
.

These are univariate regressions, in contrast to the bivariate regression g0,r(Q̄, g) described in § 3·1
and used in van der Laan (2014). Nonparametric estimators of these univariate parameters often
achieve better rates than those proposed therein. Use of this alternative representation yields esti-
mators guaranteed to be asymptotically linear under weaker conditions than previously required.

Here, we state the main result describing the behaviour of the estimator implied by this param-
eterization of the remainder term; we also discuss an iterative implementation of the estimator.
Redefining

DY (Q̄, g1,0,r , g2,0,r)(o) = a

g1,0,r(w)
g2,0,r(w){y − Q̄(w)},

we have the following result.

THEOREM 1. Suppose that either Q̄ = Q̄0 or g = g0. Provided that the nuisance estimators
(Q̄∗

n , Q̄∗
n,r , g∗

n , g∗
1,n,r , g∗

2,n,r) satisfy

Bn(Q
∗
n , g∗

n ) = BA,n(Q̄
∗
n,r , g∗

n ) = BY ,n(Q̄
∗
n , g∗

1,n,r , g∗
2,n,r) = op(n

−1/2) (5)

and that the second-order terms RQ,n and Rg,n described in Appendix B are op(n−1/2), the plug-in
estimator ψ∗,c

n = �(Q∗
n) is asymptotically linear with influence function D∗,#(Q, g). Further-

more, n1/2(ψ
∗,c
n − ψ0) converges in law to a zero-mean normal random variable with variance

estimated consistently by

σ 2
n = Pn

{
D∗(Q∗

n , g∗
n )− PnD∗(Q∗

n , g∗
n )− DA(Q̄

∗
n,r , g∗

n )− DY (Q̄
∗
n , g∗

1,n,r , g∗
2,n,r)

}2.

An algorithm to construct nuisance estimators that satisfy (5) can be devised based on targeted
minimum loss-based estimation. Without loss of generality, suppose 0 � Y � 1. Defining
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H1(g)(a, w) = a/g(w), H2(g1, g2)(a, w) = ag2(w)/g1(w) and H3(Q̄, g)(w) = Q̄(w)/g(w), we
implement the following recursive procedure.

Step 1. Construct initial estimates Q̄0
n and g0

n of Q̄0 and g0, and set k = 0.

Step 2. Define H1n,k = H1(gk
n )(A, W ) and L1n,k = logit Q̄k

n(W ); fit a logistic regression with
outcome Y , covariate H1n,k and offset L1n,k using only data points with A = 1; set ε1n,k as the
estimated coefficient of H1n,k ; and define

Q̄k ,◦
n (w) = expit

{
logit Q̄k

n(w)+ ε1n,kH1
(
gk

n

)
(1, w)

}
.

Step 3. Construct estimates gk
1,n,r and gk

2,n,r of g1,0,r and g2,0,r based on gk
n and Q̄k ,◦

n .

Step 4. Define H2n,k = H2(gk
1,n,r , gk

2,n,r)(A, W ) and L2n,k = logit Q̄k ,◦
n (W ); fit a logistic regres-

sion with outcome Y , covariate H2n,k and offset L2n,k using only data points with A = 1; set ε2n,k
as the estimated coefficient of H2n,k ; and define

Q̄k+1
n (w) = expit

{
logit Q̄k ,◦

n (w)+ ε2n,kH2
(
gk

1,n,r , gk
2,n,r

)
(1, w)

}
.

Step 5. Construct estimates Q̄k
n,r of Q̄0,r based on gk

n and Q̄k+1
n .

Step 6. Define H3n,k = H3(Q̄k
n,r , gk

n )(W ) and L3n,k = logit gk
n (W ); fit a logistic regression

with outcome A, covariate H3n,k and offset L3n,k ; set ε3n,k as the estimated coefficient of H3n,k ;
and define

gk+1
n (w) = expit

{
logit gk

n (w)+ ε3n,kH3
(
Q̄k

n,r , gk
n

)
(w)

}
.

Step 7. Set k = k + 1 and iterate Steps 1–6 until K is large enough that PnD∗(QK
n , gK

n ) ≈
PnDA(Q̄K

n,r , gK
n ) ≈ PnDY (Q̄K

n , gK
1,n,r , gK

2,n,r) ≈ 0.

Step 8. Set Q̄∗
n,r = Q̄K

n,r , g∗
n = gK

n , Q̄∗
n,r = Q̄K

n,r , g∗
1,n,r = gK

1,n,r and g∗
2,n,r = gK

2,n,r .

Theorem 1 implies that doubly robust confidence intervals and tests can readily be crafted.
For example, the Wald construction ψ∗,c

n ± z1−α/2σnn−1/2 is a doubly robust 100 × (1 − α)%
asymptotic confidence interval for ψ0, and prescribing rejection of the null hypothesis ψ0 = ψ◦
versus the alternative ψ0 |= ψ◦ only when |n1/2(ψ

∗,c
n − ψ◦)/σn| > z1−α/2 constitutes a doubly

robust hypothesis test with asymptotic level α. Thus, valid statistical inference is preserved when
one nuisance parameter is inconsistently estimated, in contrast to conventional doubly robust
estimation, wherein only consistency is preserved.

4. DOUBLY ROBUST INFERENCE VIA ONE-STEP ESTIMATION

In § 2 we discussed the construction of doubly robust, locally efficient estimators of ψ0 and
argued that both the one-step approach and targeted minimum loss-based estimation can be
used for bias correction. For the sake of constructing asymptotically efficient estimators, these
two strategies are generally considered to be alternatives, with targeted minimum loss-based
estimation possibly delivering better finite-sample behaviour but the one-step approach often
simpler to implement. In § 3, we outlined how the bias-correction feature of the targeted minimum
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loss-based estimation framework could be leveraged to achieve doubly robust asymptotic linearity
and thus perform doubly robust inference. Since targeted minimum loss-based estimation can be
more complicated to implement than the one-step correction procedure, it is natural to wonder
whether a one-step approach could also account for the additional bias terms that result from the
inconsistent estimation of either Q̄0 or g0. If so, the resulting one-step estimator could provide a
computationally convenient alternative to the algorithm described in § 3·2.

We recall that the doubly robust, locally efficient one-step estimator ψ+
n was constructed by

adding the bias term B∗
n(Qn, gn) to the initial plug-in estimator �(Qn). By extension, it seems

sensible to investigate whether the estimator

ψ+,c
n = ψ+

n − BA,n(Q̄n,r , gn)− BY ,n(Q̄n, g1,n,r , g2,n,r) (6)

is doubly robust with respect to asymptotic linearity. By (1) and (4), the estimator

ψ◦
n = ψ+

n − I (g = g0)BA,n(Q̄n,r , gn)− I (Q̄ = Q̄0)BY ,n(Q̄n, g1,n,r , g2,n,r)

is asymptotically linear with influence function D#(Q, g), just as the targeted minimum loss-
based estimators in the previous section. Therefore, ψ◦

n is locally efficient and doubly robust
with respect to asymptotic linearity. Nevertheless, to compute ψ◦

n , the analyst must know which
nuisance parameter, if any, is inconsistently estimated. Such information will generally not be
available, except in the case of a randomized trial, where g0 may be known to the experimenter.
To study the properties of ψ+,c

n , we note that

ψ◦
n − ψ+,c

n = I (g |= g0)BA,n(Q̄n,r , gn)+ I (Q̄ |= Q̄0)BY ,n(Q̄n, g1,n,r , g2,n,r). (7)

The one-step estimator ψ+,c
n corrects for both inconsistent estimation of Q̄0 and inconsistent

estimation of g0. However, for consistent estimation of ψ0, no more than one of these two
nuisance parameters can in reality be inconsistently estimated. In this case there is necessarily
overcorrection in ψ+,c

n , and it is not a priori obvious whether this may be detrimental to the
behaviour of the estimator. Elucidating this issue requires a careful study of each of the two bias-
correction terms in settings where they are not in fact needed. For example, the term BA,n(Q̄n,r , gn),
used to correct for bias resulting from inconsistent estimation of Q̄0, must be analysed in the
scenario where it is actually g0 that has been inconsistently estimated.

In Appendix C, we show that under reasonable conditions, we can represent the first summand
on the right-hand side of (7) as

BA,n(Q̄n,r , gn) = P0

{(
g0 − g

g

)
Q̄n,r

}
+ op(n

−1/2)

when g |= g0, and we can represent the second summand as

BY ,n(Q̄n, g1,n,r , g2,n,r) = P0

{
A

g1,n,r

(
Q̄0 − Q̄

)
g2,n,r

}
+ op(n

−1/2)

when Q̄ |= Q̄0. This implies that the first-order behaviour of ψ+,c
n is driven by these terms. In

particular, the rate of convergence of ψ+,c
n is determined by that of the estimators Q̄n,r , g1,n,r

and g2,n,r of the reduced-dimension nuisance parameters. In practice, these terms are unlikely
to be estimable at the parametric rate, since this would require the correct specification of a
parametric model for a complex object, and adaptive techniques are likely to be used. Because
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the rates achieved by these techniques are generally slower than n−1/2, the estimator ψ+,c
n fails

to be root-n consistent and hence doubly robust with respect to asymptotic linearity. Using an
argument identical to that in § 2·3, we can show that Wald-type confidence intervals forψ+,c

n have
similarly poor asymptotic coverage. Therefore, at least theoretically, the one-step construction
does not appear helpful.

This warrants further discussion. The above theory shows that the targeted minimum loss-
based estimation framework is able to simultaneously account for inconsistent estimation of
either the outcome regression or the propensity score without the need to know which is required.
In contrast, the one-step approach requires knowledge of which nuisance parameter is possibly
inconsistently estimated to achieve doubly robust asymptotic linearity. Without this knowledge,
asymptotic linearity cannot be guaranteed in a doubly robust fashion. This is relevant for future
work to derive procedures for doubly robust inference on other parameters admitting doubly or
multiply robust estimators.

5. SIMULATION STUDY

5·1. Data-generating mechanism and crossvalidation set-up

In each of the simulations below, the baseline covariate vector W = (W1, W2) had independent
components with W1 distributed according to a uniform distribution over the interval (−2, +2)
and W2 distributed as a binary random variable with success probability 1/2. The conditional
probability of A = 1 given W = (w1, w2) was g0(w1, w2) = expit(−w1 + 2w1w2). The outcome
Y was a binary random variable whose conditional probability of occurrence given A = a is
Q̄0(a, w) = expit(0·2a − w1 + 2w1w2).

We implemented and compared the performance of the following six estimators:

(i) the standard, uncorrected targeted minimum loss-based estimator;
(ii) the corrected targeted minimum loss-based estimator using bivariate nuisance regression,

as proposed by van der Laan (2014);
(iii) the corrected targeted minimum loss-based estimator using univariate nuisance regressions,

as introduced in Theorem 1;
(iv) the standard, uncorrected one-step estimator, commonly referred to as the augmented

inverse probability weighted estimator;
(v) the corrected one-step estimator using bivariate nuisance regression;

(vi) the corrected one-step estimator using univariate nuisance regressions, as given in (6).

We evaluated these estimators in the following three scenarios.

I. Only the outcome regression is consistently estimated.
II. Only the propensity score is consistently estimated.

III. Both the outcome regression and the propensity score are consistently estimated.

The consistently estimated nuisance parameter, either the outcome regression or the propensity
score, was estimated using a bivariate Nadaraya–Watson estimator with bandwidth selected by
crossvalidation, while the inconsistently estimated nuisance parameter was estimated using a
logistic regression model with main terms only, thus ignoring the interaction between W1 and
W2. The reduced-dimension nuisance parameters required for the additional correction procedure
involved in computing estimators (ii), (iii), (v) and (vi) were estimated using the Nadaraya–
Watson estimator with bandwidth selected by leave-one-out crossvalidation (Racine & Li, 2004).
For scenarios I and II, we considered sample sizes n = 250, 500, 1000, 3000, 5000, 9000. For
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scenario III, theory dictates that all estimators considered should be asymptotically equiva-
lent, so we used only the sample sizes n = 100, 250, 500, 750, 1000. For each n we generated
5000 datasets. We summarized estimator performance in terms of bias, bias times

√
n, cov-

erage of 95% confidence intervals, and accuracy of the standard error estimator, which we
assessed by comparing the Monte Carlo variance of the estimator and the average esti-
mated variance across simulations. We examined the following hypotheses based on our
theoretical work.

(A) In scenarios I and II, the bias of estimators (i), (iv), (v) and (vi) tends to zero more slowly
than n−1/2, whereas that of estimators (ii) and (iii) does so faster than n−1/2.

(B) In scenarios I and II, the slow convergence of the bias for estimators (i), (iv), (v) and (vi)
adversely affects the nominal confidence interval coverage, whereas the corrected targeted
minimum loss-based estimators (ii) and (iii) have asymptotically nominal coverage.

(C) In scenarios I and II, influence function-based variance estimators are accurate for the
corrected estimators (ii), (iii), (v) and (vi), but not for the uncorrected estimators (i)
and (iv).

(D) In scenario III, all estimators exhibit approximately the same behaviour.

5·2. Results

We first focus on the results for scenario I, in which only the outcome regression is consistently
estimated. In Fig. 1(a), the bias of each estimator tends to zero, illustrating the conventional
double robustness of these estimators. However, Fig. 1(b) supports hypothesis (A), as the bias of
the uncorrected estimators tends to zero at a slower rate than n−1/2, while the bias of the corrected
targeted minimum loss-based estimators tends to zero faster. The bias of the corrected one-step
estimators is reduced relative to the uncorrected estimators, and for the sample sizes considered
we do not yet see the expected divergence in the bias when inflated by n1/2. Figure 1(c) indicates
strong support for hypothesis (B): the coverage of intervals based on the uncorrected estimators
is not only far from the nominal level but also U-shaped, suggesting worsening coverage in larger
samples, as is expected based on our arguments in § 2·3. Intervals based on the corrected estimators
have approximately nominal coverage in moderate and large samples. Figure 1(d) indicates that
the variance estimators for the uncorrected estimators are liberal, which contributes to the poor
coverage of intervals. The variance estimators for the corrected estimators are approximately
accurate in larger samples, thus supporting hypothesis (C).

Figure 2 summarizes the results for scenario II. In Fig. 2(b) we again see that the bias of the
uncorrected estimators tends to zero more slowly than n−1/2; this is also true of the corrected
one-step estimators. In contrast, the bias of the corrected targeted minimum loss-based estimators
appears to converge to zero faster than n−1/2. Figure 2(c) partially supports hypothesis (B):
intervals based on the uncorrected estimators achieve near-nominal coverage for moderate and
large sample sizes in spite of the large bias. However, we again find the expected U-shape,
with an eventual downturn in coverage as the sample size increases further. Intervals based on
the corrected targeted minimum loss-based estimators using bivariate nuisance regression have
improved coverage throughout, and intervals based on either corrected targeted minimum loss-
based estimator have nearly nominal coverage in larger samples. Intervals based on the corrected
one-step estimator with the univariate correction achieve approximately nominal coverage, while
those based on the one-step estimator with bivariate correction do not, probably due to larger
bias. Figure 2(d) shows that the variance estimator for the uncorrected one-step estimator is
conservative, whereas that based on the uncorrected targeted minimum loss-based estimator is
approximately accurate. The variance estimators based on the corrected one-step or targeted
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Fig. 1. Simulation results when only the outcome regression is consistently estimated, with the following perfor-
mance measures plotted against the sample size n: (a) bias; (b)

√
n × bias; (c) coverage of 95% confidence intervals;

(d) accuracy of the standard error estimator. Squares represent estimators that do not account for inconsistent nuisance
parameter estimation, circles represent estimators using the bivariate correction of van der Laan (2014), and triangles

represent estimators using the proposed univariate corrections.
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estimators that do not account for inconsistent nuisance parameter estimation, circles represent estimators using the
bivariate correction of van der Laan (2014), and triangles represent estimators using the proposed univariate corrections.
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plotted against n. Squares represent estimators that do not account for inconsistent nuisance parameter estimation,
circles represent estimators using the bivariate correction of van der Laan (2014), and triangles represent estimators

using the proposed univariate corrections.

minimum loss-based estimators appear to be valid throughout, although that based on the latter
using univariate nuisance regressions appears to be liberal in smaller samples.

Finally, Fig. 3 supports hypothesis (D): when both the propensity score and the outcome
regression are consistently estimated, all of the estimators perform approximately equally well,
even in smaller samples. This suggests that implementing the correction procedures needed to
achieve doubly robust asymptotic linearity and inference does not come at the cost of estimator
performance in situations where the additional corrections are not needed.

The run-times for the targeted minimum loss-based estimators (ii) and (iii) are on average two to
three times as long as those of their one-step counterparts. The run-time required for the bivariate
correction of estimators (ii) and (v) is on average one and a half times as long as the univariate
correction for estimators (iii) and (iv). Two additional simulation studies in the Supplementary
Material compare the proposed estimators with existing doubly robust estimators. The results
demonstrate the advantage of estimators that allow for flexible nuisance parameter estimation
in complex data-generating mechanisms. Results from a simulation study including a greater
number of covariates, reported in the Supplementary Material, suggest a potential reduction in
finite-sample bias for the proposed univariate-corrected targeted minimum loss-based estimator
relative to the bivariate-corrected estimator of van der Laan (2014).

6. CONCLUDING REMARKS

An interesting finding of this work is that it is possible to theoretically guarantee doubly
robust inference under mild conditions using targeted minimum loss-based estimation, though
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not with the one-step approach. While we have found the corrected one-step estimators to per-
form relatively well in simulations, we cannot expect this in all scenarios, since theory suggests
otherwise. Therefore, the preferred approach to providing doubly robust inference, in spite of
its computational complexity, may be targeted minimum loss-based estimation. These methods
are implemented in the R (R Development Core Team, 2017) package drtmle, available from the
Comprehensive R Archive Network (Benkeser, 2017).

It may be fruitful to incorporate universally least favourable parametric submodels (van der
Laan, 2016) into the targeted minimum loss-based estimation algorithms used here. Such sub-
models facilitate the construction of estimators using minimal data-fitting in the bias-reduction
step of the algorithm. Rather than requiring iterations to perform bias reduction, use of these
submodels would yield algorithms that converge in only a single step. This could yield improved
performance in finite samples, particularly in extensions of this work to more complex parameters,
such as average treatment effects defined by longitudinal interventions.
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APPENDIX A

First-order expansion of the remainder

We derive equation (4) and sufficient conditions under which it holds. Note that

R(Q̄n, Q̄0, gn, g0) = P0

{
(Q̄n − Q̄0)

(
gn − g0

gn

)}
= P0

{
(Q̄n − Q̄0)

(
gn − g0

g

)}
+ R1n,

where we define the second-order remainder term by R1,n = P0{(Q̄n −Q̄0)(gn −g0)(g −gn)/(gng)}. Adding
and subtracting Q̄ and g and simplifying, we find that

P0

{
(Q̄n − Q̄0)

(
gn − g0

g

)}
= P0

{
(Q̄n − Q̄)

(
g − g0

g

)}
+ P0

{
(Q̄ − Q̄0)

(
gn − g

g

)}
+ R2n,

where the second-order remainder term is R2,n = P0{(Q̄n − Q̄)(gn − g)/g}. Assuming that either Q̄ = Q̄0

or g = g0, we can write

P0

{
(Q̄ − Q̄0)

(
gn − g

g

)}
= I (g = g0)P0

{
(Q̄ − Q̄0)

(
gn − g0

g

)}
, (A1)

P0

{
(Q̄n − Q̄)

(
g − g0

g

)}
= I (Q̄ = Q̄0)P0

{
(Q̄n − Q̄0)

(
g − g0

g

)}
. (A2)
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Examining (A1), and with some abuse of notation, we observe that

P0

{
(Q̄ − Q̄0)

(
gn − g0

g

)}
= −P0

{
A

g2
0

(
Y − Q̄

)
(gn − g0)

}
= −P0

{
Q̄0n,r

g0
(gn − g0)

}
,

where we have set Q̄0n,r(w) = EP0{Y − Q̄(W ) | gn(W ) = gn(w), g0(W ) = g0(w)}. Then we may write

−P0

{
Q̄0n,r

g0
(gn − g0)

}
= −(Pn − P0)

{
Q̄n,r

g0
(A − gn)

}
+ BA,n(Q̄n,r , gn)+ R3n + R4n + M1n,

where we define

R3n = P0

{(
Q̄0n,r − Q̄0,r

g0

)
(g0 − gn)

}
, R4n = P0

{(
Q̄0,r

g0
− Q̄n,r

gn

)
(g0 − gn)

}
,

M1n = (Pn − P0)
{
DA(Q̄n,r , gn)− DA(Q̄0,r , g0)

}
.

If, for example, each of Q̄0n,r − Q̄n,r , Q̄n,r − Q̄0,r and gn − g0 is op(n−1/4) in the L2(P0)-norm, then R3n and
R4n are op(n−1/2). Furthermore, if DA(Q̄n,r , gn) falls in a P0-Donsker class with probability tending to one
and P0{DA(Q̄n,r , gn)− DA(Q̄0,r , g0)}2 = op(1), then M1n = op(n−1/2).

Examining (A2) and again allowing some abuse of notation, we find that

P0

{
(Q̄n − Q̄0)

(
g − g0

g

)}
= −P0

{
(Q̄n − Q̄0)

(
A − g

g

)}
= P0

{
A

g0n,r

g0n,r − g

g

(
Y − Q̄n

)}
,

where the additional nuisance parameter is defined as g0n,r(Q̄n, Q̄0, g) = EP0{A | Q̄n, Q̄0, g}. Some
algebraic manipulation allows us to write

P0

{
A

g0n,r

g0n,r − g

g
(Y − Q̄n)

}

= −(Pn − P0)DY (Q̄0, g0,r)+ BY ,n(Q̄n, gn,r)+ R5,n + R6,n + R7,n + M2,n,

where we define

R5n = −P0

{
g0n,r − g0,r

g
(Q̄n − Q̄0)

}
, R6n = −P0

{
gn,r − g0,r

gn,r
(Q̄n − Q̄0)

}
,

R7n = −P0

{
g0,r

gng
(gn − g)(Q̄n − Q̄0)

}
, M2n = (Pn − P0)

{
DY (Q̄n, gn,r)− DY (Q̄0, g0,r)

}
.

If, for example, each of Q̄n − Q̄0, g0n,r − g0,r and gn,r − g0,r is op(n−1/4) in the L2(P0)-norm, then R5n, R6n

and R7n are op(n−1/2). Furthermore, if DY (Q̄n, gn,r) falls in a P0-Donsker class with probability tending to
one and P0{DY (Q̄n, gn,r) − DY (Q̄0, g0,r)}2 = op(1), then M2n = op(n−1/2). Thus, we have shown that (4)
holds with R∗

n = R1n + R2n, RQ,n = R3n + R4n + M1n and Rg,n = R5n + R6n + R7n + M2n.

APPENDIX B

Derivation of the reduced-dimension remainder representation

We proceed similarly to the derivations above, but now, with regard to (A2) and with some abuse of
notation, we have

P0

{
(Q̄n − Q̄0)

(
g − g0

g

)}
= −P0

{
(Q̄n − Q̄0)

(
A − g

g

)}

= −P0

{
g2,0n,r(Q̄n − Q̄0)

} = P0

{
A

g1,0n,r
g2,0n,r

(
Y − Q̄n

)}
,
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where we define the nuisance terms g1,0n,r(Q̄n, Q̄0)(w) = EP0{A | Q̄n(W ) = Q̄n(w), Q̄0(W ) = Q̄0(w)} and
g2,0n,r(Q̄n, Q̄0, g)(w) = EP0 [{A − g(W )}/g(W ) | Q̄n(W ) = Q̄n(w), Q̄0(W ) = Q̄0(w)]. We can then write

P0

{
A

g1,0n,r
g2,0n,r

(
Y − Q̄n

)}

= −(Pn − P0)DY (Q̄0, g1,0,r , g2,0,r)+ BY ,n(Q̄n, g1,n,r , g2,n,r)+ R̃5n + R̃6n + M̃2n,

where

R̃5n = P0

{(
A

g1,0n,r
g2,0n,r − A

g1,0,r
g2,0,r

)
(Q̄0 − Q̄n)

}
,

R̃6n = P0

{(
A

g1,0,r
g2,0,r − A

g1,n,r
g2,n,r

)
(Q̄0 − Q̄n)

}
,

M̃2n = (Pn − P0)
{
DY (Q̄n, g1,n,r , g2,n,r)− DY (Q̄0, g1,0,r , g2,0,r)

}
.

If, for example, each of Q̄n − Q̄0, g2,0n,r − g2,0,r and g2,n,r − g2,0,r is op(n−1/4) in the L2(P0)-norm, it
generally follows that R̃5n and R̃6n are op(n−1/2). Furthermore, if DY (Q̄n, g1,n,r , g2,n,r) falls in a P0-Donsker
class with probability tending to one and P0{DY (Q̄n, g1,n,r , g2,n,r) − DY (Q̄0, g1,0,r , g2,0,r)}2 = op(1), it also
follows that M̃2n = op(n−1/2). This implies that (4) holds with R∗

n = R1,n + R2,n, RQ,n = R3n + R4n + M1n

and Rg,n = R̃5n + R̃6n + M̃2n when the alternative reduced-dimension parameterization of the remainder
is used.

APPENDIX C

Behaviour of unnecessary correction terms

We first examine the behaviour of BA,n(Q̄n,r , gn) when Q̄ = Q̄0. We note that BA,n(Q̄n,r , gn) =
PnDA(Q̄n,r , gn) = P0DA(Q̄n,r , gn) + MA,n, where we define the empirical process term MA,n = (Pn −
P0){DA(Q̄n,r , gn)−DA(Q̄0,r , g)}, which can reasonably be assumed to be op(n−1/2). The second equality is a
consequence of the fact that DA(Q̄0,r , g) = 0 for all g, because Q̄0,r = 0.With some abuse of notation, we can
write

P0DA(Q̄n,r , gn) = P0

{
Q̄n,r

gn
(A − gn)

}
= P0

{
Q̄n,r

gn
(g0 − gn)

}
= P0

{
Q̄n,r

g
(g0 − g)

}
+ RA,n,

where

RA,n = P0

{
Q̄n,r

(
g − gn

gng

)
(g0 − gn)

}
+ P0

{
Q̄n,r

g
(g − gn)

}
,

which is op(n−1/2) under the rate conditions outlined in Appendices A and B.
We next examine the behaviour of BY ,n(Q̄n, g1,n,r , g2,n,r) when g = g0. We have

BY ,n(Q̄n, g1,n,r , g2,n,r) = PnDY (Q̄n, g1,n,r , g2,n,r) = P0DY (Q̄n, g1,n,r , g2,n,r)+ MY ,n,

where we define the empirical process term MY ,n = (Pn − P0){DY (Q̄n, g1,n,r , g2,n,r) − DY (Q̄, g1,0,r , g2,0,r)},
which can reasonably be assumed to be op(n−1/2). As above, the second equality is a consequence of the
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fact that DY (Q̄, g1,0,r , g2,0,r) = 0 for all Q̄, because g2,0,r = 0 when g = g0. With some abuse of notation
we can write

P0DY (Q̄n, g1,n,r , g2,n,r) = P0

{
A

g1,n,r
g2,n,r

(
Y − Q̄n

)} = P0

{
A

g1,n,r
g2,n,r(Q̄0 − Q̄n)

}

= P0

{
A

g1,0,r
(Q̄0 − Q̄)g2,n,r

}
+ RY ,n,

where

RY ,n = P0

{
A

(
g1,0,r − g1,n,r

g1,0,rg1,n,r

)
g2,n,r(Q̄0 − Q̄n)

}
+ P0

{
A

g1,0,r
g2,n,r(Q̄ − Q̄n)

}
,

which is op(n−1/2) under the rate conditions above.
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