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Abstract

Oversulfated chondroitin sulfate (OSCS), a non-natural sulfated glycosaminoglycan, recognizes as a significant
containment in the pharmaceutical heparin, and it could trigger adverse reactions. Chromatography-, electrophoresis-,
electrochemistry-, and spectroscopy-related techniques are currently available for accurate and precise analysis of a trace
amount of OSCS in heparin. Recently, emerging studies focus on developing colorimetric and fluorescent probes to
monitor OSCS containments in heparin. Therefore, this current review aims to describe the sensing principle and
procedure of the reported probes that are sensitive and selective toward OSCS in heparin without the interferences of
other sulfated glycosaminoglycans. The reported OSCS-specific probes are comprehensively discussed according to the
recognition elements of OSCS, including coralyne, AG73 peptides, positively charged tetraphenylethene derivatives,
polythiophene polymer, and poly-L-lysine, protamine, superpositively charged green fluorescent proteins, and poly
(diallyldimethylammonium chloride). The sensing of OSCS in heparin is generally achieved using, (i) the specific af-
finity of the recognition element with OSCS and heparin, (ii) heparinase-mediated hydrolysis of heparin, and (iii) OSCS-
induced inhibition of heparinase activity. Additionally, coralyne-based DNA probes can detect OSCS in heparin in the
presence of Ca2þ ions without the assistance of heparinase. This review will pave the way to design another sensing
probe towards other sulfated contaminants, like dermatan sulfate.

Keywords: Colorimetric, Fluorescence, Heparin, Over sulfated chondroitin sulfate, Sensor

1. Introduction

H eparin is biologically recognized as a unique
polysaccharide with a large number of sulfated

groups, and it is broadly recommended as an anti-
coagulant drug. After its discovery in 1916 by a
medical student of Johns Hopkins University, the
structure of heparin was identified to be a building
block based on sugar-containing larger molecules
with different units of combinations such as uronic
acid glucosamine and covalently linked sulfate [1].
These combined units appear to be simple and
make heparin one of the strongest acids of nature.
Heparin is a polydisperse mixture of sulfonated
linear polysaccharides consisting of 75e95% trisul-
fated disaccharide repeating unit with molecular
weight from 5000 to over 40,000 Da [2]. Later in 1935,
a sufficient amount of pure heparin was launched

for clinical testing to investigate its treatment effi-
ciency in preventing postoperative thrombosis.
Inexpensive and well-tolerated heparin-related
therapy efficiently controls thrombosis during sur-
gery and anticoagulant therapy and suppresses the
formation of clotting disorders. From then to now,
numerous investigators have been devoted to
establishing different methods for monitoring
plasma heparin since its overdose could lead to
detrimental effects, for example, thrombocytopenia
and hemorrhaging; the therapeutic levels of heparin
are suggested to be 1.7e10 mM for long-term care
and 17e67 mM for cardiovascular surgery. Classical
approaches for quantifying plasma heparin include
the activated partial thromboplastin time (aPTT) the
prothrombin time test [3]. Unfortunately, the above-
discussed approaches have the limitations of inac-
curate measurements due to poor specificity. A
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series of review articles have introduced alternative
techniques to determine heparin in real-world
samples [4,5]. Examples of these techniques include
reversed-phase high-performance liquid chroma-
tography (HPLC), anion-exchange chromatography,
size-exclusion chromatography (SEC), capillary
electrophoresis (CE), polyacrylamide gel electro-
phoresis (PAGE), nuclear magnetic resonance
(NMR) spectroscopy, and mass spectroscopy.
Although providing accurate and precise quantifi-
cation of heparin, these instrumental methods
require time-consuming operation and skilled
labor. Therefore, developing a portable, sensitive,
selective, and fast-response probe is highly needed
to detect heparin in clinical samples.
In an effort to satisfy this requirement, the in-

vestigators have been devoted to the synthesis of
colorimetric and fluorescent sensors toward hepa-
rin based on the interplay between the recognition
elements and signal reporters [6]. The reported
recognition elements encompass coralyne [7,8],
surfen [9], AG73 peptides [10], quaternary ammo-
nium moiety-containing molecules [6], protamine
[11], and cationic polymers [12]. Moreover, exam-
ples of the recently published reporters include
chromophores [13], fluorophores [14], polymers
[15], metal nanoparticles [16], metal nanoclusters
[17], semiconductor quantum dots [18], phospho-
rescent molecules [19] and metal-organic frame-
work [20]. Since there have been review articles on
the fabrication of heparin sensors [6,21], the pre-
sent review article will focus on summarizing the
sensors associated with the detection of a heparin-
like glycosaminoglycan, oversulfated chondroitin
sulfate (OSCS). The purity and quality of heparin
drugs related to the presence of OSCS is an
essential issue for the pharmaceutical industry in
order to ensure the safety of the heparin supply.

Contaminated heparin could trigger various un-
desirable side effects that seem to apply to pa-
tients, such as angioedema, bleeding
complications, hypotension, larynx swelling, and
other related symptoms. These symptoms may
often have ended up in death. For example, in
2008, the administration of contaminated heparin
caused 149 mortality and 574 reports of adverse
reactions in diverse countries [22]. This adverse
effect was identified as a result of oversulfated
chondroitin sulfate (OSCS), which could be syn-
thesized by sulfonation of low-cost chondroitin
sulfate [2]. The mechanism associated with the
adverse events of OSCS is mainly involved in the
activation of the contact system, triggering the
liberation of bradykinin following an allergic re-
action [23]. Review articles have extensively
covered the advancement of mass spectroscopy-,
chromatography-, electrophoresis-, and NMR
spectroscopy-related techniques for the determi-
nation of OSCS in heparin drug samples [24,25].
These powerful techniques are capable of detect-
ing heparin with the limits of detection (LODs) of
OSCS in heparin corresponding to 0.1% w/w in
enzyme immunoassay [26], 0.5% w/w in electro-
chemical detection [27], ~1% w/w in near-infrared
(NIR) spectroscopy [28], 0.2% w/w in PAGE [29],
0.1% w/w in CE [30], and 0.03% w/w in HPLC [31].
However, these published review articles rarely
discuss the existing sensors for rapid analysis of
OSCS in heparin drug samples. Therefore, the
present review article will highlight the recent
advances in the fabrication and applications of
colorimetric and fluorescent sensors toward OSCS
in heparin drug samples. Table 1 summarizes the
recently reported probes for detecting OSCS and
compares them in terms of linear quantification
range, LOD, detection mode and response time.

Table 1. The recently reported probes for detecting OSCS in heparin and compares them in terms of linear range, lowest detectable concentration
(LDC), detection mode and analysis time.

Probea Method Hepari-nase Linear range
(% w/w)

LDC
(% w/w)

Detection
mode

Analysis
time

Ref.

TPE-conjugated AG73 peptide FL Yes 1 to 70 1 Turn ON 4 h 33
Coralyne-based MB FL No 0.01 to 20 0.01 Turn ON 5 min 38
MnO2 nanosheets, SYBR Green green,

coraylne-based MB, Ca2þ ions
FL No 10�10 to 10 10�10 Turn ON >60 min 39

Tb3þ,G-rich ssDNA, AG73 Peptide RTP Yes 0.002 to 0.2 0.002 Turn ON 80 min 42
Pyrene-labeled GSRKR FL Yes 0.0001 to 1 0.0001 Ratio 60 min 43
PDDA-TPE as AIE nanoassemblies FL No NA 1 Turn OFF NA 49
P4Me-3TOEIM CA Yes NA 0.003 Spectral shift >30 min 52
P4Me-3TOEIM CA Yes NA 0.01 Spectral shift >30 min 53
ScGFP, graphene oxide FL Yes NA 10e6 Turn ON >4 h 55
fluorophore-modified heparin-capped AuNPs FL Yes NA 10e9 Turn ON 30 min 57
ScGFP, rhodafluor dye-labeled heparin FL Yes NA 0.001 FRET >4 h 58
a TPE, tetraphenylethen; G, guanine; MB, molecular beacons; AIE, aggregation-induced emission; ScGFP, superpositively charged green
fluorescent protein; FL, fluorescence; CA colorimetric assay; RTP, room temperature phosphorescence; NA, not available.
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2. Challenges for the sensing of OSCS in
heparin

Based on the experience from the design of hep-
arin sensors, the recognition elements used for
heparin are still implemented to integrate with the
signal reporter for the sensing of OSCS in heparin.
The fabrication of OSCS sensors mainly involves: (1)
The electrostatic, hydrogen bonding, and hydro-
phobic interactions between OSCS and the recog-
nition element; (2) the modification of the
recognition unit on the signal reporter or the com-
plex formation of the recognition unit with the
signal reporter; (3) OSCS-stimulated response of the
fabricated sensors. The primary key to sensing
OSCS lies in the selectivity of the recognition
element toward OSCS in the presence of heparin.
However, OSCS has a very similar chemical struc-
ture and molecular weight with heparin (Fig. 1) [30];
the difference between OSCS and heparin is the
degree of sulfonation. In other words, the recogni-
tion element is incapable of discriminating between
OSCS and heparin without any further assistance.
To overcome this challenge, the investigators have
proposed two strategies to identify OSCS in the
presence of heparin (Fig. 2). One efficient way to
sense OSCS is to combine heparinase digestion with
the proposed sensing system. Without the addition
of OSCS, heparinase can digest heparin into short-
fragment glycosaminoglycan. By contrast, the pres-
ence of OSCS efficiently inhibits the enzymatic ac-
tivity of heparinase [32], preserving the structure of
heparin. Since the digested heparin exhibits weaker
interaction with the recognition element than the

undigested heparin, the detection of OSCS could be
successfully achieved using a heparin-related
sensor. The limitations of this strategy include the
cost of heparinase and the reaction time between
heparinase and heparin. The other strategy is to
incorporate Ca2þ ions into the sensing system.
Earlier published results have shown that Ca2þ ions
can specifically bind to the carboxylate end of the
iduronate unit as well as the N-sulfamido and 6-
sulfate moieties of the glucosamine unit in heparin
[33,34]. This finding suggests that the site-specific
interaction takes place between Ca2þ ions and
heparin in an aqueous solution. Additionally, in
contrast to heparin, OSCS possesses relatively
numerous sulfate moieties. As a result, the proposed
sensing system can exhibit excellent selectivity to-
ward OSCS in heparin drug samples with the
assistance of Ca2þ ions.

3. Recognition elements

The core success of the sensor is mainly deter-
mined by selecting suitable recognition elements.
The recognition elements used for heparin are
similar to those applied for OSCS. The published
recognition units that identify OSCS are coralyne,
AG73 peptides, positively charged tetraphenyle-
thene (TPE) derivatives, polythiophene polymer,
poly-L-lysine, protamine, superpositively charged
green fluorescent proteins, and poly (dia-
llyldimethylammonium chloride). The features of
these recognition units are suggested to have a
positively charged structure and a low signal
response for chondroitin sulfate (Chs), hyaluronic

Fig. 1. The structures of major and minor disaccharide repeating units in heparin and OSCS (X ¼ H or SO3
�, Y]COCH3, SO3

�, or H). Reproduced
with permission from Ref. [30].
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acid (HA), and dextran sulfate (DS). In comparison
to other recognition elements, the selectivity of
peptide-based system can be tuned by altering the
peptide sequence. On the other hand, the selection
of the signal reporter could dominate the sensitivity
of the sensing system toward OSCS in heparin.
Since a non-natural OSCS is a principal contami-
nant in heparin drug samples, the fluorescent re-
porters could be well-suited to detect trace OSCS in
heparin. We provided a detailed overview of recent
literature associated with OSCS sensors based on
recognizing recognition units.

3.1. Coralyne

Coralyne possesses a planar structure (Fig. 3A)
and specifically binds to polydeoxyadenosine [poly
(dA)] through the coordination of four adenine
bases with one coralyne. The association constant of
coralyne and poly (dA) was reported to be
1.8 � 106 M�1 [35]. Additionally, coralyne exhibits
strong electrostatic attraction with negatively
charged sulfate glycosaminoglycan, for example,
dextran sulfate and chondroitin-6-sulfate [36]. The
above-discussed features enable the fabrication of

Fig. 2. Strategies for the determination of OSCS in heparin. (A) Integration of heparinase-mediated digestion of heparin and OSCS-induced inhibition
of heparinase activity into the sensing system. (B) The addition of Ca2þ ions into the sensing system.

Fig. 3. Schematic illustration of coralyne-based sensors for detecting heparin and OSCS. (A) Chemical structure of coralyne. (B) The A20ecoralyne
complex for fluorescence turn-off detection of heparin through the competitive binding between A20 and heparin for coralyne. Reproduced with
permission from Ref. [7]. (C) The coralyne-based MB as a fluorescent turn-on sensor for heparin through the removal of coralyne from the A20 stem.
Reproduced with permission from Ref. [8]. (D) The coralyne-based MB for sensing OCSCS in heparin based on the use of Ca2þ ions as a masking
agent for heparin. Reproduced with permission from Ref. [37].
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the coralyne-polyadenosine (polyA) complex-based
sensors to detect heparin via the interplay of cor-
alyne, polyA, and heparin. For example, Hung et al.
proposed the fluorescent probe based on the direct
mixing of 20-repeat adenosine (A20) and coralyne as
a complex (Fig. 3B) [7]. The complexed coralyne
emitted strong blue fluorescence due to the restric-
tion of its rotation. The presence of heparin was
capable of triggering the removal of coralyne from
the A20-coralyne complexes. As a result, the fluo-
rescence of coralyne was gradually quenched with
increasing the concentration of heparin. Guided by
the same concept, Ku et al. designed an adenosine-
based molecular beacon (MB) with a pair of 12-mer
adenosine bases in the stem (Fig. 3C) [8]. The MB
was labeled with a quencher at the 30-end and a
fluorescent reporter at the 50-end. Upon the addition
of coralyne interacting with 12-mer adenosine
bases, the structural conformation of the MB was
converted from a random coil to a hairpin. The
conformation change of the MB brought the close-
ness of a quencher to a fluorophore. By learning
from previous experience in the design of coralyne-
based sensors toward heparin, Lee et al. found that
the presence of Ca2þ ions allowed an adenosine-
based MB to probe 0.01% w/w OSCS in the phar-
maceutical heparin within 5 min (Fig. 3D) [37]. The
proposed MB still kept excellent selectivity toward
OSCS when substituting CaCl2 with CaCO3 or
Ca(NO3)2, providing clear evidence associated with
the interaction between Ca2þ ions with heparin.
Similarly, Tian et al. reported the combination of (i)
a hybridization chain reaction of two MBs, (ii) a
coralyne-containing MB that is responsive to hepa-
rin and OSCS, (iii) SYBR Green I-adsorbed MnO2

nanosheets, (iv) double stranded-mediated fluores-
cence enhancement of SYBR Green I, and (v) the use
of Ca2þ ions as an additive for the construction of
the sensing system for OSCS. The proposed sensing
system can detect 10�8% w/w OSCS in the presence
of heparin [38].

3.2. Peptide

A previous study reported a specific interaction
between an AG73 peptide and heparin with a
dissociation constant of 6.4 mM [39]. The amino acid
sequence of an AG73 peptide has been determined
to be RKRLQVQLSIRT with an isoelectric point of
12.4. Such kind of peptide owns the pKa values of
12.4 and 10.5 for guanidyl group in an arginine
residue and NH3

þ group in a lysine residue,
respectively. These positively charged groups
enable an AG73 peptide to have a specific interac-
tion with glycosaminoglycan-expressed cells. Thus,

the probe consisting of an AG73 peptide and a re-
ported element is commonly designed to detect
heparin without the interferences of other sulfated
glycosaminoglycans. As an example, You and Tseng
found that an AG73 peptide was capable of trig-
gering the aggregation of glutathione-capped gold
nanoclusters, switching on their luminescence
(Fig. 4A) [10]. The appearance of heparin quenched
the luminescence of the above-discussed aggregates
through the specific interaction between heparin
and AG73 peptides. The LOD of heparin, detected
by this strategy, was determined to be 3 nM. Cheng
et al. prepared iron-porphyrin derivative-related
metal-organic framework (MOF) nanosheets as a
peroxidase-like nanoenzyme and modified them
with AG73 peptides through physical adsorption
[40]. The resultant AG73-modified MOF nanosheets
exhibited low catalytic activity for H2O2-mediated
oxidation of Ampliflu Red since AG73 peptides
blocked the active sites. The presence of heparin
restored the catalytic activity of AG73 peptide-
modified MOF nanosheets via the liberation of
AG73 peptides from the MOF nanosheet surface.
The above-discussed probe provided the LOD of
heparin corresponding to 15 ng/mL with a low
response to Chs and HA. Considering that the
chemical properties of OSCS resemble those of
heparin, the investigators have proposed that an
AG73 peptide also has the similar interaction with
OSCS. Ding et al. developed the AG73 peptide-
conjugated tetraphenylethene probe and showed a
similar fluorescence turn-on response to heparin
and OSCS [32] (Fig. 4B). The introduction of heparin
and OSCS both triggered the aggregation of the
positively charged probe, lighting up the fluores-
cence of tetraphenylethene resides. This phenome-
non is identified as aggregation-induced emission
(AIE). Once present in the sensing system, hep-
arinase induced the cleavage of heparin. As a result,
the hydrolyzed heparin rarely promoted the aggre-
gation of the AG73 peptide-conjugated probe
without the enhanced fluorescence of tetrapheny-
lethene resides. Given that OSCS can inhibit the
enzymatic activity of heparinase, a mixture of OSCS
and heparin still switched on the fluorescence of the
AG73 peptide-conjugated probe in the presence of
heparinase. Thus, the system mentioned above
could sense a trace amount of OSCS in heparin with
the LOD of 0.001% w/w. Hu et al. reported a time-
resolved luminescence (TRL) system for sensitive
and selective detection of OSCS in heparin with the
assistant of heparinase (Fig. 4C) [41]. The sensing
procedure can be divided into four steps: (i) gua-
nine-rich single-stranded DNA (ssDNA) molecules
complex with AG73 peptides through electrostatic
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attraction; (ii) Tb3þ ions are introduced into the
formed complexes; (iii) the presence of heparin or
OSCS triggers the release of AG73 peptides from
the complexes, allowing Tb3þ ions to interact with
guanine-rich ssDNA molecules; (iv) the formed
luminescence complexes exhibit strong green
emission since guanine bases behave as an effective
antenna ligand. After heparinase catalyzed the
cleavage of the heparin's saccharide bonds, the hy-
drolyzed heparin was incapable of activating the
release of AG73 peptides from the complexes. In
other words, the TRL system was insensitive to
heparin in the presence of heparinase. By contrast,
heparinase exhibited low catalytic activity toward
OSCS. Thus, upon the addition of heparinase, the
TRL system was still highly responsive to OSCS,
allowing the detectable concentration as low as
0.002% w/w of OSCS in heparin. In addition to

AG73 peptides, Mehta et al. designed a heparin-
responsive peptide (amino acid sequence of
GSRKR) and modified its tail group with a pyrene
(Fig. 4D) [42]. The arginine units of the proposed
pyrene-modified peptide were recognized as a
binding site for heparin. Under an excitation
wavelength of 342 nm, the pyrene fluorophore
emitted fluorescence at 396 nm and 480 nm in the
monomer and excimer states. As heparin and OSCS
were added, the as-made peptides were assembled
onto their backbone via electrostatic attraction.
Consequently, the aggregated peptides facilitated
the conjugated pyrene fluorophores to approach
each other, leading to a redshift in their maximum
emission wavelength from 396 to 480 nm. These
features allowed the proposed pyrene-modified
peptide to sense heparin and OSCS in an aqueous
solution ratiometrically. The above-discussed probe

Fig. 4. Schematic illustration of peptide-related sensors for detecting OSCS and heparin. (A) The nanocomposites of AG73 peptides and glutathione-
capped gold nanoclusters as a fluorescent turn-off probe for heparin via the specific interaction of heparin and AG73 peptides. Reproduced with
permission from Ref. [10]. (B) Fluorescent sensing of OSCS in heparin based on the combination of heparin- and OSCS-induced AIE of AG73
peptide-modified tetraphenylethene and heparinase-mediated hydrolysis of heparin. Reproduced with permission from Ref. [32]. (C) Fabrication of
the sensing system toward OSCS by the complexation of ssDNA and Tb3þ, electrostatic attraction of ssDNA with AG73 peptides, specific interaction
of AG73 peptides with OSCS and heparin, and heparinase-mediated digestion of heparin. Reproduced with permission from Ref. [41]. (D) Design of a
fluorescent probe for the detection of OSCS in heparin by heparin-triggered AIE of GSRKR-conjugated pyrene and OSCS-mediated inhibition of
heparinase activity. Reproduced with permission from Ref. [42].
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integrated with heparinase-mediated hydrolysis of
heparin was powerful to detect 0.0001% w/w OSCS
in heparin.

3.3. Poly(diallyldimethylammonium) chloride
(PDDA)

A cationic PDDA is well-known to apply various
areas, such as an additive in capillary electropho-
resis [43], a polycation in a layer-by-layer technique
[44], and an exfoliating agent in the preparation of
monolayer two-dimensional nanomaterials [45].
Moreover, PDDA can serve as a platform for elec-
trostatic attraction and p�p interactions with
negatively charged polyelectrolyte and nano-
materials [46]. In light of these features, Yang et al.
disclosed that PDDA induced the assembly of
negatively charged benzoperylene derivatives (BPD)
through multiple interactions, leading to the con-
version of BPD from monomers to excimers [12].
Due to the apparent difference in maximum emis-
sion wavelength of BPD between monomers and
excimers, the complexes of PDDA and BPD exci-
mers were implemented for ratiometric sensing of
heparin through the heparin-mediated liberation of
PDDA from the complexes. The as-made complexes
provided accurate and precise quantification of
0.4e3.5 mM heparin with the LOD of 50 nM. How-
ever, 5 mM Chs could have a higher ratiometric
response than 1 mM heparin. Likewise, Qiao et al.
exploited PDDA to activate the aggregation of sul-
fonate-ended pyrene, converting their monomers to
excimers [47]. The formed complexes of PDDA and
pyrene derivative excimers were shown to serve as a
fluorescent ratiometric probe for quantifying
0.1e2.3 mM heparin through the restoration of
excimers to monomers. The PDDA-pyrene deriva-
tive complexes were highly sensitive to heparin
without the interferences of Chs and HA. Since
complexing with heparin, PDDA polymers are ex-
pected to have the same interaction strength with
OSCS. By assembling a PDDA polymer with
carboxyl group-terminated tetraphenylethene (TPE)
molecules, Yang et al. fabricated an AIE-based
sensor to detect heparin and OSCS [48]. The ag-
gregation degree of TPE molecules complexed with
a PDDA polymer can be tuned by simply adjusting
the mixed ratio of TPE to PDDA. The TPE-PDDA
assemblies emitted strong fluorescence at 466 nm,
whereas the added heparin promoted their fluo-
rescence quenching due to the formation of the
PDDA-heparin complexes. A similar result was
observed as OSCS was used in place of heparin. The
sensitivity of the AIE sensor toward heparin and
OSCS was highly connected with the aggregation

degree of TPE molecules in the assemblies. The
TPE-PDDA assemblies were substantiated to be
useful in detecting a trace amount of OSCS
contamination in heparin.

3.4. Cationic polythiophene derivatives

Leclerc's group pioneered the synthesis of poly (1-
methyl-3-[2-[(4-methyl-3-thienyl)oxy]ethyl]-1H-imi-
dazolium) [P4Me-3TOEIM] based on the oxidative
polymerization [49]. The chemical structures of
P4Me-3TOEIM consisting of 4-methyl residue on
each thiophene unit. In the absence of negatively
charged oligomers and polymers, P4Me-3TOEIM
adopts a random coil structure in an aqueous solu-
tion, forcing its conjugated backbone to twist in an
aqueous solution and to reduce the effective
conjugation length. By contrast, the introduction of
negatively charged oligomers and polymers can
cause the conformation change of P4Me-3TOEIM
from a random coil structure to a double helix-like
strand. As an outcome, the extended conjugation
length of P4Me-3TOEIM causes a red-shift in its
absorption band. The characteristics mentioned
above inspired the investigators to propose the uti-
lization of P4Me-3TOEIM for the sensing of heparin
through electrostatic attraction. Zhan et al.
employed P4Me-3TOEIM as a colorimetric sensor
for the naked-eye detection of heparin in bovine
serum [50]. The presence of heparin induced the
conformation alternation of P4Me-3TOEIM, and as
a consequence, its maximum absorption wavelength
shifted to a higher value. In other words, the ab-
sorption intensity of P4Me-3TOEIM at 500 nm was
gradually enhanced with increasing the heparin
concentration. The LODs of heparin in water and
bovine serum obtained from P4Me-3TOEIM were
reported to be 0.01 and 0.15 U/mL, respectively.
Sommers and Keire took the advantages of P4Me-
3TOEIM to design a convenient probe for the
naked-eye sensing of OSCS in heparin based on (i)
OSCS-mediated inhibition of heparinase I and II
activity and (ii) the digested heparin-induced color
change of P4Me-3TOEIM [51]. It was found that
P4Me-3TOEIM exhibited a higher colorimetric
response to dermatan sulfate and Chs (partially
sulfated form) than OSCS and heparin (oversulfated
form). Accordingly, the selectivity of P4Me-3TOEIM
could be dominated by the tertiary structure of
sulfated glycosaminoglycans rather than their sul-
fation degree. As OSCS inhibited heparinase activ-
ity, the undigested heparin only caused a slight
color change of P4Me-3TOEIM. The P4Me-3TOEIM
probe successfully detected 0.003% w/w in heparin
sodium active pharmaceutical ingredient and 0.1%

JOURNAL OF FOOD AND DRUG ANALYSIS 2021;29:533e543 539

R
E
V
IE
W

A
R
T
IC

L
E



w/w in the crude heparin samples. The same group
disclosed that the absorption band of P4Me-
3TOEIM is susceptible to the molecular weight of
heparin [52]. The P4Me-3TOEIM probe, relying on
the same sensing mechanism, was employed to
identify 0.01% w/w OSCS in commercially available
low-molecular-weight heparin (M.W. ca.
4000e6000), such as enoxaparin, dalteparin, and
tinzaparin. Dermatan sulfate and Chs have been
recognized as contaminants in heparin drug sam-
ples. Toby et al. integrated the P4Me-3TOEIM probe
with chondroitinase digestion and centrifugal
filtration to analyze dermatan sulfate and Chs in
heparin [53]. The role of chondroitinase is to cleav-
age chondroitins, while the functionality of centrif-
ugal filtration is to separate a mixture of digested
chondroitins and heparin. This sensing system was
feasible for monitoring 0.5% w/w dermatan sulfate
and 1.0% w/w Chis in heparin.

3.5. Fluorescent proteins

Superpositively charged green fluorescent
proteins (ScGFPs) were introduced for the
sensing of heparin due to their distinct

advantages of satisfactory biocompatibility, good
water solubility, and numerous positively
charged groups (a net charge of þ36). It is ex-
pected that ScGFPs could strongly bind to hep-
arin via electrostatic attraction and hydrophobic
interaction. According to these features, Wang
et al. developed a fluorescence turn-on probe for
selective detection of OSCS in heparinase-
treated heparin [54]. The sensing mechanism
mainly involved the following concepts (Fig. 5A):
(i) superpostively charged ScGFPs were electro-
statically assembled on the surface of graphene
oxide, quenching their fluorescence based on
energy or charge transfer; (ii) superpostively
charged ScGFPs electrostatically interact with
heparin without the interference of their fluo-
rescence; (iii) the complexes of ScGFPs and
heparin were rarely adsorbed on the surface of
graphene oxide due to electrostatic repulsion
between them; (iv) OSCS inhibited the digestion
of heparin by heparinase. By the interplay
among of ScGFPs, graphene oxides, and hep-
arinase, the sensing system was capable of
quantifying 3.3e66.7 nM heparin in 10% human
plasma and 10�9 to 10% w/w OSCS in heparin.

Fig. 5. (A) Fluorescent sensing of OSCS in heparin based on graphene oxide-induced fluorescence quenching of ScGFP, heparin-promoted removal of
ScGFP from graphene oxide, and OSCS-mediated suppression of heparinase activity. Reproduced with permission from Ref. [54] (B) Modification of
heparin with thiol groups and fluorophores, followed by the conjugation to the surface of citrate-capped AuNPs. Reproduced with permission from
Ref. [56].
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3.6. Organic dye-labeled heparin

It is well-documented that heparinase specifically
cleaves heparin, and its activity is inhibited by
OSCS [32,55]. According to this information, Kalita
et al. modified heparin with thiol groups and HiLyte
Fluor 594 fluorophores, resulting in thiol- and
HiLyte Fluor production 594-conjugated heparin
[56]. Subsequently, the thiol- and HiLyte Fluor 594-
conjugated heparin was directly attached to the
surface of citrate-capped gold nanoparticles
(AuNPs) through the formation of AueS bonds
(Fig. 5B). The fluorescence of the conjugated HiLyte
Fluor 594 in heparin was efficiently quenched by the
AuNPs as a result of nanometal surface energy
transfer. The presence of heparinase digested the
adsorbed heparin, leading to the release of HiLyte
Fluor 594 from the nanoparticle surface. By contrast,
the added OSCS blocked heparinase activity, sup-
pressing the liberation of HiLyte Fluor 594. Taken
together, the fluorescence of the conjugated HiLyte
Fluor 594 was progressively reduced with increasing
the concentration of OSCS in heparin. This sensing
platform identified 10�9% w/w OSCS in heparin
within 30 min. Additionally, Ding et al. fabricated
the complexes of ScGFPs and rhodafluor dye-
labeled heparin [57]. The fluorescence resonance
energy transfer (FRET) occurred from ScGFPs to
rhodafluor dye-labeled heparin in the formed
complexes due to the spectral overlap between the
emission of ScGFPs and the absorption of rhoda-
fluor dye. Heparinase was introduced to cleavage
rhodafluor dye-labeled heparin in the formed
complexes, producing free rhodafluor dye-labeled
heparin fragments without complexing with
ScGFPs. In other words, a FRET efficiency between
ScGFPs and rhodafluor dye-labeled heparin was
inversely dependent on the level of heparinase;
however, OSCS blocked the phenomenon
mentioned above. The combination of heparinase
and the as-made complexes was well-suited for
ratiometric sensing of 0.001% w/w OSCS in heparin.

4. Conclusion and future trends

Most of the probes mentioned above are highly
involved in heparinase treatment owing to the high
specificity of heparinase toward heparin and OSCS-
induced inhibition of its activity. However, this
strategy could have some limitations: (i) heparinase
activity is sensitive to environmental variations,
such as pH and temperature; (ii) heparinase takes a
long time to digest heparin (>1 h); (iii) expensive
heparinase requires temperature and humidity
controls; (iv) the prolong incubation of OSCS with

heparinase is needed to block its activity. Hence, we
recommend that the challenge in this field will be to
develop the probe for rapid sensing of OSCS in the
absence of heparinase. On the other hand, the most
common contaminant in heparin is known as der-
matan sulfate. The level of dermatan sulfate is
determined to be 1e7% in heparin. Since dermatan
sulfate rarely affects the anticoagulation outcome of
heparin, the investigator barely focuses on devel-
oping the sensor toward dermatan sulfate. Howev-
er, the United States Pharmacopoeia (USP)
recommended that the level of dermatan sulfate
impurities should be lower than 1% in heparin. The
building blocks of dermatan sulfate comprise four
possible hexosamines and three possible uronic
acids. Dermatan sulfate contains specific iduronic
acid, which is effective in distinguishing it from
heparan sulfate and heparin. However, unlike
OSCS and heparin, dermatan sulfate holds a rela-
tively low negative charge. Accordingly, it is another
challenge to rationally design a suitable probe for
dermatan sulfate without heparin interference.
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