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The prediction of antidepressant response is critical for psychiatrists to select the initial antidepressant drug for patients with major
depressive disorders (MDD). The implicated brain networks supporting emotion regulation (ER) are critical in the pathophysiology
of MDD and the prediction of antidepressant response. Therefore, the primary aim of the current study was to identify the
neuroimaging biomarkers for the prediction of remission in patients with MDD based on the resting-state functional connectivity
(rsFC) of the ER networks. A total of 81 unmedicated adult MDD patients were investigated and they underwent resting-state
functional magnetic resonance imagining (fMRI) scans. The patients were treated with escitalopram for 12 weeks. The 17-item
Hamilton depression rating scale was used for assessing remission. The 36 seed regions from predefined ER networks were selected
and the rsFC matrix was caculated for each participant. The support vector machine algorithm was employed to construct
prediction model, which separated the patients with remission from those with non-remission. And leave-one-out cross-validation
and the area under the curve (AUCQ) of the receiver operating characteristic were used for evaluating the performance of the model.
The accuracy of the prediction model was 82.08% (sensitivity = 71.43%, specificity = 89.74%, AUC = 0.86). The rsFC between the left
medial superior frontal gyrus and the right inferior frontal gyrus as well as the precuneus were the features with the highest
discrimination ability in predicting remission from escitalopram among the MDD patients. Results from our study demonstrated
that rsFC of the ER brain networks are potential predictors for the response of antidepressant drugs. The trial name: appropriate
technology study of MDD diagnosis and treatment based on objective indicators and measurement. URL: http://www.chictr.org.cn/

showproj.aspx?proj=21377. Registration number: ChiCTR-OOC-17012566.

Translational Psychiatry (2022)12:391; https://doi.org/10.1038/541398-022-02152-0

INTRODUCTION

The main characteristics of major depressive disorder (MDD) are
depressed mood and anhedonia [1]. As of 2010, it is the second
leading factor in influencing years lived with disability among various
diseases [2]. Antidepressant medication, such as selective serotonin
reuptake inhibitor (SSRI), is the first-line treatment for MDD patients
[3]. However, antidepressants are not effective for all MDD patients.
In clinical practice, remission is considered the desired outcome,
which indicates patients are symptom-free and recovered for the
moment [4]. The Sequenced Treatment Alternatives to Relieve
Depression (STAR*D) study showed that the overall remission rate
was 28% after the first level of treatment [5]. A naturalistic
prospective study reported that the remission rate was 43.3% after
the acute antidepressant treatment phase, which is usually set to
12 weeks after initiation of treatment [6]. Inadequate antidepressant
treatment might prolong the suffering of the patients, and increase
the waste of medical resources. Prediction of the patient’s response
to drugs based on baseline data might help psychiatrists determine

whether a specific drug is suitable for the patient. With the low
predictive value of clinical and sociodemographic variables, sub-
stantial attention has been directed at identifying neuroimage
biomarkers that predict response of antidepressant drugs in MDD
patients [7-9].

Multiple neuroimage studies have reported that structural and
functional imaging is a potential antidepressant treatment response
predictor [10-22] (Table S1). For example, gray matter volume was
used to predict clinical remission after 8-week treatment of
fluoxetine among 18 MDD patients [11]. The accuracy reported
was 88.9%, and the right rostral anterior cingulate cortex, left
posterior cingulate cortex, left middle frontal gyrus, and right
occipital cortex was identified as predictors of clinical remission.
Another study reported 75% accuracy using diffusion MRI to
identify the neuroimaging biomarkers which might help in
predicting if patients respond to 2 weeks of antidepressant
treatment among 85 MDD patients and found that the most
sensitive biomarkers for identifying SSRI-improvers were the right
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Fig. 1 Thirty-six ROIs in the four ER networks. A Thirty-six ROIs in the four ER networks. The red, orange, green, and blue nodes
corresponded to the first, second, third, and fourth ER network, respectively. B-E The ROIls of ER1-ER4 were separately displayed.

Abbreviations: please see also Table S2.

hippocampus, left amygdala, right parahippocampal gyrus, right
anterior cingulate gyrus, left dorsolateral part of superior frontal
gyrus, and left inferior temporal gyrus [22]. More studies apply
resting-state functional connectivity (rsFC) to predict antidepressant
treatment among MDD patients. An ensemble learning model
based on rsFC was designed to predict response to 2 weeks of
antidepressants in 98 MDD patients [20]. The obtained accuracy
was 80.6% and the bilateral hippocampus, left orbital part superior
frontal gyrus, right posterior cingulate gyrus, right amygdala, and
left paracingulate gyri were identified as important predictors. In a
research study using an index characterizing the reconfiguration of
dynamic brain networks, the anterior cingulate cortex (ACC) was
reported as a predictor to separate responders from non-
responders after antidepressant treatment with escitalopram
(<8 weeks) in a multicenter sample with 106 first-episode MDD
patients [21]. An accuracy of 70-89% was achieved by using fMRI to
predict whether MDD patients were in remission after 12 weeks of
antidepressant treatment [14, 15, 18]. It was found consistently that
the prefrontal cortex and the cingulate cortex were important for
the prediction of antidepressant efficacy. This suggested that
baseline brain image can be used for predicting the response of
patients after taking antidepressants, which is of great value in the
clinical management of patients with depression. However, there
are still some limitations in these studies. First, the follow-up time of
studies with a large sample size is relatively short, usually, 2 weeks
or 8 weeks [16, 21, 22], which is insufficient to determine whether
patients can achieve remission [6]. Second, the sample size of
studies with a long follow-up time (12 weeks) is often small [14, 18],
which is a major defect for the machine learning model [23].
Although the data used in the above-mentioned studies were
obtained from different neuroimaging modalities, it is worthy to
be noted that the brain regions that were reported as the main
contributors to the prediction of treatment response locate in
large-scale brain networks underlying emotion generation,
perception, and regulation, which have been identified in a
meta-analysis of emotion regulation (ER) [24] (Fig. 1 and Table S2).
Based on this meta-analysis, four ER networks were identified,
including two cortical networks mainly responding to ER, one
subcortical network mainly responsible for emotion perception

SPRINGER NATURE

and generation, and one network implicated in both emotion
regulatory processes and emotional reactivity.

Depression has been related to abnormal communication
between large-scale brain networks, which can be expressed by
rsFC [25]. The predictive effect of this abnormal communication
pattern on efficacy prediction has been confirmed by literature
studies [16, 20, 21]. The relevant networks of ER were disturbed in
MDD patients and the rsFC of related regions were correlated with
the severity of depression [26]. Therefore, focusing on the ER
networks will help to determine whether it occupies a core
position in efficacy prediction, not just overlap in different studies.
This can lead to the identification of a unified biomarker for the
diagnosis and prognosis of depression. Meanwhile, focusing on
the rsFC of the ER networks, the features can be limited to a very
small range and thus enable the application of multivariate
methods, such as recursive feature elimination [27] and least
absolute shrinkage and selection operator [28], which can retain
the interaction information of features as much as possible, and
enable better prediction performance compared with the method
of deleting features by univariate statistics [29].

While the majority of previous studies exploring biomarkers for
antidepressant response prediction used a small sample size for
monotherapy [11, 17, 30] or mixed antidepressant treatments
[12, 19, 20], which might affect the performance of the prediction
model, a larger sample size of patients with MDD was recruited in
the present study. All patients were unmedicated before
recruitment and then were treated with escitalopram for 12 weeks.
We postulated that rsFC between ER networks would be useful in
predicting whether a MDD patient will obtain remission after
12 weeks of treatment with antidepressants.

METHODS

Participants

A total of 81 MDD patients were recruited from the Outpatient Department of
Beijing Anding Hospital, Capital Medical University, between June 2018 and
December 2019. A part of the data (n =40) were used previously and thus
clinical assessments, inclusion/exclusion criteria, and diagnostic procedures
are provided in the previous study [31]. In short, the patients were diagnosed
by experienced psychiatrists with the Mini International Neurological Interview
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(MINI) 5.0 based on the DSM-IV criteria [32]. All patients were at the time
experiencing an episode of depression and were drug free or had taken
antidepressants for less than seven days in the last two weeks, and they
prepared to use escitalopram. The inclusion criteria also included total score of
the 16-Item Quick Inventory of Depressive Symptomatology and Self-Report
(QIDS-SR16) = 11 and a score > 14 on the 17-item Hamilton Depression Rating
Scale (HAMD-17). Exclusion criteria included any history of bipolar disorder,
schizophrenia, schizoaffective disorder, drug and alcohol dependence or
acute intoxication or other psychotic disorders; pregnancy or lactation;
significant risk of suicidal behavior and HAMD-17 Item 3 (suicide) score > 3;
previously intolerance or lack of response to escitalopram and any MRI
contraindications; and current clinically significant disease. The study was
approved by the Human Research and Ethics Committee of Beijing Anding
Hospital, Capital Medical University. Signed informed consent was acquired
from all patients.

Treatment and clinical measurements

Previous studies demonstrated that the remission rate could be observed
at 8 weeks or 12 weeks. However, compared with 12 weeks of treatment,
shorter (<8 weeks) treatment might be related to a higher risk of
developing relapse [33]. Meanwhile, the remission rate increased during
12 weeks of treatment [34]. Therefore, all enrolled patients received a 12-
week escitalopram treatment, with the dose increasing from 5 mg/day to
10-20 mg/day according to the condition of each patient. The use of other
drugs was not allowed unless the patients experienced insomnia, where
they were allowed to use estazolam, lorazepam, or oxazepan. The severity
of depression symptoms was evaluated using HAMD-17 in the baseline
and 12 weeks. Remission was defined as the HAMD-17 scores < 7 after 12-
week treatment [35]. Amongst the MDD patients, 9 patients dropped out
during the follow-up period. A total of 72 patients completed the clinical
assessment and 12 weeks treatment with antidepressants.

Data acquisition

Resting-state fMRI scanning was performed using a Siemens Prisma 3.0 T
MRI scanner. The structural images were acquired using the T1-weighted
magnetization-prepared rapidly acquired gradient-echo (MPRAGE)
sequence with the following parameters: TR=2530ms; FA=15°%
TE=1.85ms; matrix = 256 X 256; FOV =256 X 256 mm? number of
slices = 192; slice thickness = 1 mm; voxel size = 1x1x1 mm?>. The
resting-state fMRI images were acquired using a gradient-recall echo-
planar imaging (GRE-EPI) pulse sequence with the following parameters:
TR=2000 ms; TE=30ms; FA=90°% matrix = 64 x64; FOV =200 x 200
mm?; number of slices = 33; slice thickness = 3.5 mm; gap = 0.7 mm; voxel
size = 3.13x3.13x42mm>; phase encoding direction = anterior to
posterior; 200 volumes. Patients were instructed to keep their eyes closed,
and relax their minds, but not fall asleep during resting-state fMRI
scanning. All the patients underwent resting-state fMRI scanning at
baseline.

Data preprocessing

Imaging data were processed using Data Processing & Analysis for
(Resting-State) Brain Imaging [36] (DPABI v4.3, http://rfmri.org/DPABI). The
processing steps included deletion of the first five volumes, slice timing
correction, realignment, segmentation of the T1 images, nuisance variable
regression including linear and quadratic trends, the first five principal
components of the individually segmented white matter and cerebrospinal
fluid, and Friston’s 24 motion parameters, containing six head motion
parameters, six head motion parameters one-time point before, and 12
corresponding squared items [37], normalization to the Montreal
Neurological Institute (MNI) template, resampling of each voxel to
2x2x2mm? spatial smoothing using a 4 mm full-width half-maximum
Gaussian kernel and band-pass temporal filtering (0.01-0.1 Hz) [38]. To
quantify the impact of head motion, head motion regression with
scrubbing was conducted in the preprocessing steps, in which “bad” time
points were identified using a threshold of volume-based framewise
displacement (FD) (FD > 0.5 mm) [39], as well as one back and two forward
neighbors [40]. Subjects who had less than 100 “good” volumes were
excluded. Furthermore, the subjects were excluded if the head motion was
more than 2.5 mm maximum translation in any direction of x, y, or z or 2.5°
of maximum rotation or if their mean FD exceeded three standard
deviations of the mean value [31, 41]. Finally, five subjects were removed
due to severe motion and a total of 67 MDD patients were included which
included 28 remission and 39 non-remission patients.
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Functional connectivity analysis

Inter-regional rsFC analysis was performed using the DPABI software.
According to meta-analysis research, 36 regions of interest (ROI) consisted
of four ER networks [24]. Each ROl in the ER networks is shown in Fig. 1 (for
more details, please see also Table S2 in the supplementary materials). The
ER network 1 and ER network 2 contained 10 and 9 ROls, respectively,
responding to ER; the ER network 3 consisted of 8 ROIs, mainly responsible
for emotion perception and generation; the ER network 4 included 9 ROIs,
mainly involved in emotion stimulation perception in the process of
emotion generation and regulation. The ROIs were generated with 5 mm
radius spheres based on the peak coordinates of each of the 36 clusters.
The time series of voxels of each ROl was extracted and averaged. The rsFC
for any pair of two ROIs was calculated by Pearson correlation and then
Fisher r-to-Z transformation was conducted. There were (36 x 35)/2 = 630
edges in the low-triangle of the rsFC matrix, which were used as the
features for the prediction model.

Prediction model construction

The construction of prediction model includes two parts: feature selection
and model training. A Support Vector Machine based on Recursive Feature
Elimination and Cross Validation (SVM-RFECV) algorithm was employed to
select the rsFC features [27]. The steps for the feature selection were as
follows: (1) the SVM was trained on the training set; (2) ranking criteria
were calculated based on the SVM weights and the classification
performance through cross-validation; (3) rsFC features were eliminated
with the smallest ranking criterion and the classification performance was
calculated through cross-validation; (4) steps 3 were repeated until the
number of remaining features is equal to the minimum number of features
we set. To choose the most discriminative features and obtain stable
features, we tested the 100 combinations of the hyperparameter C ranging
from [0.1, 0.2, 0.3, ..., 1] and the minimum number of features n ranging
from [10, 20, 30, ...100] during SVM-RFECV feature selection. The selected
features were then used to train the linear SVM model, and the
hyperparameter C' of this model was adjusted by grid search in a 10-
fold cross-validation process. A total of 30 values were extracted
equidistantly from the range of 0.01 to 10.

Finally, to improve the accuracy and robustness of the feature selection,
Leave-One-Out Cross-Validation (LOOCV) and the area under the curve (AUC)
of the Receiver Operating Characteristic (ROC), accuracy, sensitivity, and
specificity were used to evaluate the performance of the prediction model. In
each LOOCV loop, one subject was set aside to be used as the test set, and
the remaining subjects were used as the training set. After 67 loops, each
subject had been used as the test set. Moreover, to confirm the important
rsFC features in the prediction model, the frequency of each feature was
calculated across all the loops, with high frequency indicating higher
importance in the ability of remission prediction. The labels corresponding
to each patient were randomly disrupted and permutation tests were
implemented 1000 times to test the generalization ability of the model. Since
the sample size of the non-remission group was larger than that of remission
group, this may cause the model prefer to predict patients as non-remission.
Therefore, we conducted a bootstrap (randomly selected 20 samples from
each of the two groups) 1000 times to test whether the accuracy, sensitivity,
and specificity remain stable in a balanced sample set. We also analyzed
whether the accuracy of the model could be improved after considering the
baseline HAMD-17 item scores. All machine learning analyses were performed
using Python and Scikit-learn [42].

Statistical analysis

We conducted statistical analyses in Statistical Product Service Solutions
(SPSS) version 23.0. First, one-sample Kolmogorov-Smirnova test was
conducted to estimate the normal distribution of the continuous variables.
Two sample t-test or Mann-Whitney U test each was used for analyzing
the difference between the remission group and non-remission group for
demographic and clinical variables conforming to normal distribution or
not. Categorical variables were compared using Chi-square tests. A p-value
of less than 0.05 was considered to be statistically significant. All tests were
two-tailed.

RESULTS

Demographic and clinical scales

Table 1 presented the demographic and clinical characteristics of
the MDD patients with remission and non-remission, and the
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Table 1. Demographic and clinical characteristics of MDD patients.
Remission
n=28

Age (years) 27.34+5.23

Education (years) 15.78 +2.65

Gender (male/female) 10/18

Baseline HAMD-17 score 20.78 £3.42

12-week HAMD-17 score 4.53+2.08

%HAMD-17 0.77 £0.11

MDD duration (years) 247 +3.62

Frequency of onset (times) 1.11+1.52

Escitalopram (dosage) 6.25+2.20

Differences between groups are calculated by Mann-Whitney U test, two-sample t-test, or Chi-square test, each was represented by a, b and c.
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Fig.2 The performance of the prediction model. A The confusion matrix of the prediction model. The horizontal ordinate is the predicted
value, and the longitudinal ordinate is the actual value. 20 remission group members were correctly predicted as remission, and 35 non-
remission group members were correctly predicted as non-remission. B The ROC of the prediction model. The AUC is 0.86, accuracy is 82.08%

sensitivity is 71.43%, and specificity is 89.74%.

remission rate was 41% (28 in remission of 67 patients). Univariate
analyses showed that there were no significant differences in age,
education level, gender composition, baseline HAMD-17 score,
onset frequency of depression, and dosage of escitalopram
between the remission patients and the non-remission patients
(all p > 0.05). Compared with non-remission patients, the remission
patients had significantly lower 12-week HAMD-17 scores and a
higher percentage of HAMD-17 score reduction (%HAMD-
17 =(HAMD-17 scores at baseline - HAMD-17 score at
12 weeks)/HAMD-17 scores at baseline) (all p < 0.05). The results
of the normality test are demonstrated in Table S3.

Prediction model

The hyperparameter C = 0.1 and the minimum number of features
n = 40 were selected in the SVM-RFECV. In every loop of LOOCV, a
C" was chosen for the best performance of the model, with the
average value being 1.3. The prediction accuracy and performance
of SVM are presented in Fig. 2. The AUC of the prediction model
was 0.86 (sensitivity = 71.43%, specificity = 89.74%). The accuracy
of the prediction model was 82.08% (p<0.001 based on
permutation tests). Bootstrap results demonstrated that in
balanced small samples, the performance of the model was stable
and the mean and standard deviation of accuracy, sensitivity, and
specificity were 0.69+0.05, 0.66+0.08, and 0.71+0.07. The
addition of the HAMD-17 item scores into the original feature
set did not contribute to the improvement of the prediction

SPRINGER NATURE

performance as none of the clinical items was selected for the
feature subset.

Consensus features

A total of 176 rsFC features were selected at least once in 67 loops.
Among them, the rsFC between the left medial superior frontal
gyrus (mSFG, BA8) and the right inferior frontal gyrus (IFG, BA47)
and the rsFC between the left mSFG (BA8) and the right precuneus
(BA19) were selected in every loop. A total of 21 edges were
selected in at least 90% of the cycles (frequency = 61), indicating
these features have a high prediction ability of the treatment
response (Fig. 3). The majority of the edges were the rsFC between
different ER networks and mainly belonged to the rsFC between
ER network 1 and other ER networks, especially with the
subcortical ER network (i.e., ER network 3) and the intermediatory
network (i.e., ER network 4) (Table 2).

DISCUSSION

The predictive potential of rsFC in ER networks at baseline was
investigated in patients after a 12-week escitalopram treatment in
this study. The accuracy of the prediction model was 82.08%,
which points that rsFC may be a clinically applicable predictor, for
individual discrimination between patients likely to remit from
depressive episodic and patients who are not, after a 12-week
escitalopram treatment regime. Specifically, results showed that

Translational Psychiatry (2022)12:391
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Fig. 3 Important features in the prediction model. There were 21 edges, which were selected in at least 90% of the loops (frequency > 61).
The red, orange, green, and blue nodes corresponded to the first, second, third, and fourth ER network, respectively. A The consensus features
were showed in chord picture. B The consensus features were showed in brain map. Abbreviations: please see also Table 2.

the rsFC in brain networks supporting ER predicts clinical
remission following antidepressant treatment. Additionally, the
rsFC between the left mSFG and the right inferior frontal gyrus as
well as the precuneus were the features with the highest
discriminative ability in predicting remission from escitalopram
among MDD patients.

The current study focused on the rsFC in the ER networks, which is
different from previous studies exploring biomarkers for antidepres-
sant effect prediction. The majority of previous studies [16, 17, 19, 43]
focused on feature investigation at a whole brain level based on
univariate statistics, which may be affected by the noise signals and
ignore the features that may not be statistically significant but may
contain important information when interacting with other features
[44, 45]. In addition, by focusing on specific networks, the features to
be filtered were limited to a very small range, thus RFECV could be
used for filtering, which can keep the interaction information of
features as much as possible compared with the method of deleting
features by univariate statistics [29]. The prediction performance of
the proposed model (AUC = 0.86, sensitivity = 71.43%, specificity =
89.74%) obtained in the current study was higher compared with
other literature studies [17, 18, 21, 30]. At the same time, another
group explored the relationship between the dynamic functional
connectivity (dFC) based on the ER networks and the efficacy of
antidepressants. They demonstrated that the predicted reduction
rate of HAMD scores based on the strength of baseline dFC was
significantly correlated with the actual reduction rate of HAMD
scores. This finding also illustrated the role of ER networks in
predicting the efficacy of antidepressants [46]. The above finding and
our study suggest a direction in which future studies could focus,
namely on the features with potential prediction efficacy found by
previous studies, rather than screening features in the whole brain
range by univariate statistics.

Out of the total 630 features that were investigated, only 21
were selected as the most predictive and stable features, which
further supports the assumption of Yamashita [47] that mental
iliness is due to the dysfunction of a part of the rsFC of the brain,
rather than the whole brain. The most important features reported
in this study were the rsFC between the ER network 1 and other ER
networks, especially with the subcortical ER network (ER network
3) and the intermediatory network (ER network 4). ER network 1 is
responsible for voluntary emotion regulation, ER network 3 is
associated with emotion perception and generation, and ER
network 4 plays an intermediary role in re-appraisal and integrates
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information from the prefrontal networks (ER network 1 and 2) as
well as the subcortical network (ER network 3) to generate
emotional responses and regulate these response processes as
well as emotional reactivity [24]. Our finding suggests that
functional interaction between the regions responsible for a
higher level of ER and the regions involved in the lower levels of
regulation is vital for the prediction of treatment outcomes in
MDD. The rsFC between the left mSFG and the right IFG and
between the left mSFG and the precuneus were considered as the
features with the highest discrimination ability in this model
because they were selected in every loop of LOOCV. The left
mSFG, a part of in dorsomedial prefrontal cortex (dmPFC), is
involved in voluntary emotion regulation with other regions in ER
network 1 [24]. In previous studies, a region near the left mSFG in
our study, which is often called ACC, was also suggested to be
critical in the prediction of treatment efficacy [21, 48, 49].

This study also has some limitations. First, despite the high
accuracy achieved in the current study, whether the model can
still achieve high accuracy on a dataset with a larger sample size
or from multiple sites remains to be verified. However, combined
with previous studies, we have reason to believe that this large-
scale brain network contains rich efficacy prediction information
[46]. Second, the patients in this study used only escitalopram as
antidepressants, which ensure the homogeneity of our sample,
but in the real world, the patients used far more kinds of drugs,
which makes it more difficult for the model to accurately predict.
Third, the current study only focused on the functional profile of
the ER networks (i.e., rsFC). Previous studies have suggested that
structural features of brain regions in the ER networks also possess
the predictive ability of treatment responses. Structural and
functional features can be integrated with future studies to assess
whether a better prediction performance can be achieved. Fourth,
the spheres drawn by the peak coordinates as ROl were chosen
but not the clusters, which may lead to loss of information in the
brain regions. Finally, behavior measurements on ER are lacking in
this study. The dysfunction of emotion processing and regulation
is one of the prominent features in the pathophysiology of MDD
[26, 50]. Thus, it is unknown whether the addition of these
behavior measurements into the original feature set can further
improve prediction performance. However, the addition of HAMD-
17 item scores into the original feature set, which may reflect
problems in ER, did not improve the prediction performance, as
none of the clinical items were selected in the feature subset.

SPRINGER NATURE
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Table 2. Consensus features in the prediction model.

Brain region ER BA
Left medial superior frontal gyrus 1 8
Right inferior parietal lobule 1 40
Left inferior parietal lobule 1 40
Left middle frontal gyrus 1 6
Right middle frontal gyrus 1 11
Right insula 1 13
Right precuneus 1 7
Left inferior frontal gyrus 2 47
Left middle frontal gyrus 2

Left superior frontal gyrus 2

Left caudate 2 *
Right amygdala 3 *
Right thalamus 3 *
Bilateral medial prefrontal cortex 3 10
Left insula 4 13

Brain region ER BA f

Right inferior frontal gyrus 2 47 67
Right precuneus 4 19 67
Left superior parietal lobule 4 7 66
Right posterior cingulate 4 30 64
Right postcentral gyrus 4 2 64
Right insula 1 13 64
Right amygdala 3 * 62
Left inferior occipital gyrus 3 19 62
Right posterior cingulate 4 30 61
Right amygdala 3 * 61
Bilateral medial prefrontal cortex 3 10 61
Bilateral medial prefrontal cortex 3 10 61
Right posterior cingulate 4 30 66
Bilateral medial prefrontal cortex 3 10 66
Left parahippocampal gyrus 3 27 66
Left cuneus 4 18 66
Right thalamus 3 * 66
Left superior parietal lobule 4 7 65
Left insula 4 13 65
Right posterior cingulate 4 30 65
Right thalamus 4 * 64

The ER and BA each represent the ER network or Brodmann area to which the ROI belongs; f denotes the frequency of the edge selected as important features

in total of 67 loops; * indicates the regions out of Brodmann areas.

CONCLUSIONS

In conclusion, by focusing on the rsFC in the emotion regulation
networks, we demonstrated that using features from this rsFC can
predict the performance of remission in patients with MDD. These
findings suggested that the rsFC of emotion regulation networks
has the potential to be used as a biomarker for predicting the
treatment response of MDD patients to escitalopram. Future
studies can test the generalization ability of this prediction model
using larger sample sizes and/or in multi-center datasets and
explore whether the relevant rsFC will be changed with the
progress of treatment.

CODE AVAILABILITY
The code that support the findings of this study are available from the corresponding
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