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Circadian deep sequencing reveals stress-response
genes that adopt robust rhythmic expression
during aging
Rachael C. Kuintzle1,w, Eileen S. Chow2, Tara N. Westby2, Barbara O. Gvakharia2, Jadwiga M. Giebultowicz2

& David A. Hendrix1,3

Disruption of the circadian clock, which directs rhythmic expression of numerous output

genes, accelerates aging. To enquire how the circadian system protects aging organisms, here

we compare circadian transcriptomes in heads of young and old Drosophila melanogaster. The

core clock and most output genes remained robustly rhythmic in old flies, while others lost

rhythmicity with age, resulting in constitutive over- or under-expression. Unexpectedly, we

identify a subset of genes that adopted increased or de novo rhythmicity during aging,

enriched for stress-response functions. These genes, termed late-life cyclers, were also

rhythmically induced in young flies by constant exposure to exogenous oxidative stress, and

this upregulation is CLOCK-dependent. We also identify age-onset rhythmicity in several

putative primary piRNA transcripts overlapping antisense transposons. Our results suggest

that, as organisms age, the circadian system shifts greater regulatory priority to the mitigation

of accumulating cellular stress.
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T
he circadian system confers integrated temporal control
to organismal processes at the molecular, cellular,
physiological and behavioural levels. Cellular clocks are

based on negative feedback loops driven by core clock genes,
which oscillate with B24 h periodicity and are largely conserved
from flies to mammals1. In Drosophila, two transcription
factors encoded by the genes Clock (Clk) and cycle (cyc) form
the positive arm of the clock. Active CLK-CYC heterodimers
stimulate transcription of target genes including the negative
clock components encoded by period (per) and timeless (tim),
which repress CLK-CYC activity. Entrainment of clock
oscillations to LD cycles involves the photoreceptive protein
CRY, which initiates degradation of TIM (ref. 1). Oscillating
clock components impose rhythmic expression on a diverse
portfolio of target clock-controlled genes (CCGs) that continues
to expand as sensitivity of detection techniques improve2–6.
These CCGs ultimately generate molecular and cellular rhythms,
which profoundly influence metabolism and tissue homoeostasis.
Disruption of the clock is associated with accelerated aging in
mice, manifested in metabolic dysregulation7 and impairments of
learning and memory8. In addition, the core molecular oscillator
plays a conserved role in regulating the response to oxidative
stress9–11, which increases during aging12 and contributes to
age-related pathologies13. Accordingly, clock disruption also leads
to increased oxidative damage and susceptibility to neuro-
degeneration in brains of aging Drosophila14,15 and mice16,17.

Despite substantial evidence that circadian disruption shortens
healthspan, the mechanisms by which the clock protects
aging organisms are not understood. To address this question,
here we conduct an RNA sequencing (RNA-seq) study and
compared diurnal expression of clock genes and CCGs in heads
of young and old female flies. We detect dynamic reprogramming
of the circadian transcriptome with some CCGs showing
dampened or abolished oscillations in old flies. Surprisingly, a
large subset of CCGs showed significantly larger expression
amplitudes or de novo rhythmicity in old flies. Stress-response
genes were enriched among transcripts with age-induced
rhythmicity, hereafter called ‘late-life cyclers’ (LLCs), and
we show that exogenous oxidative stress can induce rhythmic
LLC expression in young flies. Our data suggest that
LLC activation is a strategy by which the clock helps organisms
adapt to their changing cellular environments during aging.

Results
Pervasive alterations in rhythmic gene expression. To identify
age-dependent changes in diurnal gene expression, we performed
RNA-seq with RNA from heads of 5- or 55-day-old w1118

(w) females collected every 4 h for one daily cycle in two
biological replicates in light-dark (LD) 12:12 h. Gene expression,
quantified in units of Fragments Per Kilobase of transcript per
Million mapped reads (FPKM) using the Tuxedo suite18,19

(Supplementary Table 1), showed high correlations between
biological replicates in both young and old flies (Supplementary
Fig. 1; Supplementary Table 2). Using ARSER (ref. 20), we
identified 2,036 genes to be rhythmic in young flies, including
67% of genes previously deemed rhythmic at the messenger
RNA (mRNA) level in heads of male flies3; this overlap is
substantial considering differences in sex and periodicity
detection methods (Methods). ARSER classified 1,887 genes
to be rhythmic in old, including 922 that were also rhythmic
in young (Supplementary Data 1).

Although many CCGs maintained similar rhythmicity patterns
throughout aging, a substantial number of genes showed marked
changes in phase, amplitude or statistical rhythmic status.
For example, 297 genes rhythmic in both young and old

flies exhibited a Z2 h shift in their time of peak expression
(Supplementary Fig. 2). Further, 48 genes were highly rhythmic in
young flies but arrhythmic in old, while 38 genes were highly
rhythmic in old and arrhythmic in young flies (Fig. 1a, Methods).
Examples of other age-related expression changes are shown
in Fig. 1b–e. RNA-seq expression plots for all FlyBase genes
and isoforms are available at: http://hendrixlab.cgrb.oregonsta-
te.edu/youngAndOldExpression.html.

In accordance with the diversity of alterations in
CCG expression, expression of some core clock genes also
showed significant changes. Although tim expression remained
highly rhythmic throughout aging, it showed a decline in peak
expression, in agreement with previous qRT-PCR studies in
heads of male and female flies21,22. Clk levels were highly
rhythmic and not significantly reduced by day 55 (Fig. 2a);
however, qRT-PCR with RNA from 75-day-old flies corroborated
prior reports of a decline in Clk levels in very old age21 (Fig. 2b).
In contrast with prior qPCR data21,22, RNA-seq revealed per peak
expression to increase with age, and this was confirmed by
qPCR (Fig. 2b). However, PER protein levels decreased
significantly by day 55 (Fig. 2c,d; Supplementary Fig. 3),
consistent with previous reports21,22. Thus, the opposite
age-dependent changes in per and tim RNA levels suggest that
the core circadian mechanism known in young flies may be
altered during aging.

Late-life cyclers. The most unexpected outcome of our
analysis was the identification of a number of genes that adopted
de novo rhythmic expression or robustly increased amplitudes in
old flies. We named this gene subset ‘late-life cyclers’ or LLCs.
To computationally identify LLCs, we developed a scoring metric
called the differential rhythmicity score (SDR). The SDR accounts
equally for both the difference in the rhythmicity score, defined as
the negative log of the ARSER P values for the respective age
groups, and the differential robustness, or the log fold change in
the max–min expression (see Methods). We identified genes
with significant SDR values at an FDR of 0.05 (Fig. 3a, Suppleme-
ntary Fig. 4a, Supplementary Table 3)23. This method successfully
identified genes with strong loss or gain in expression rhythmicity
with age; however, some LLC-like genes of potential interest that
do not make the cutoff are shown in Supplementary Fig. 4b.
Another set of genes with rhythms abolished during aging are
listed in Supplementary Fig. 4c. A complete list of genes ranked
by SDR can be found in Supplementary Data 2.

Supplementary Table 4 summarizes properties of the top
25 LLCs. 21 have predicted orthologs in humans according to the
DRSC Integrative Ortholog Prediction Tool (DIOPT (ref. 24)).
Functional analysis using DAVID v6.7 (ref. 25) revealed the
terms ‘heat shock’ and ‘stress response’ to be enriched among
the top LLCs (FDR 0.05). Published microarray data sets
reported 16 of the 25 LLCs to be upregulated under oxidative
stress (OS) when tested at one unspecified time of day26–29

(Supplementary Table 4). Figure 3b shows superimposed
RNA-seq expression plots for LLCs that were upregulated by
OS in at least two previous single-time-point studies. Strikingly,
all of these genes peaked within two hours of night onset,
suggesting that they may be governed by common regulatory
mechanisms. The strong enrichment of LLCs peaking in the
late day/early night starkly contrasts with the global phases of
genes rhythmic in young or old flies, which peaked
predominantly in the early day/late night (Fig. 3c).

We focused on the five LLCs with the most dramatic gains
of rhythmicity for further investigations: small heat shock
protein Hsp22; fibroblast growth factor ortholog bnl; lactate
dehydrogenase (ImpL3); Hsp40-like CG7130; and CG15784,
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which bears homology to the mammalian histidine-rich glyco-
protein (HRG) according to DIOPT. Independent qPCR experi-
ments in flies aged to 5, 35, 55 and 75 days confirmed increased
expression of these genes in 55-day old and showed even further
increase in heads of very old (75 days) females (Fig. 3d). Middle-
aged females already showed mild increase in the expression of
these genes (Supplementary Fig. 5). Altogether, these data reveal
LLC mRNA levels exhibit strong age-dependence. These effects
are not sex dependent as LLCs showed similar expression changes
in heads of 5-day versus 55-day males (Fig. 3e).

Oxidative stress induces LLC rhythms in young flies. We
hypothesized that oxidative stress (OS), which increases during

aging14,30, might play a role in the rhythmic activation of LLCs in
old flies. To test this, we exposed young w flies to continuous
hyperoxia (HO; 100% O2). As the maximum lifespan under these
conditions was 5–6 days, we collected flies at 4 h intervals on
the fourth day after HO onset (Methods, Fig. 4a). Remarkably,
HO induced robust rhythmic expression of the tested LLCs in
these young flies (Fig. 4b), similar to those seen in old flies
(Fig. 3d). Furthermore, HO reproduced in young flies the
opposing changes in per and tim expression observed during
aging (Fig. 2b, Supplementary Fig. 6a). These results suggest
that oxidative stress contributes to rhythmic LLC upregulation in
aging flies.

Because constant hyperoxia induced rhythmic rather
than constitutive LLC transcription, we tested whether CLK is
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involved in LLC regulation by measuring their expression in
young Clkout mutants collected on the 4th day in HO.
Remarkably, this exogenous OS failed to significantly upregulate
ImpL3, bnl and CG15784 in Clkout flies relative to w controls in
normoxia (Fig. 4c). Even for heat-shock LLCs Hsp22 and CG7130,
the upregulation in HO-treated Clkout flies was less significant
than in HO-treated w flies. These results support an essential role
for CLK in promoting rhythmic LLC upregulation during OS.

Interestingly, although tim expression in Clkout mutants was
arrhythmic as expected, per expression in these HO-treated
mutants remained weakly rhythmic, similar to several LLCs
(Supplementary Fig. 6b). This suggests that CLK-independent
mechanisms also contribute to rhythmic upregulation of per and
some LLCs during OS.

Age-induced expression of putative primary piRNAs. We
performed de novo transcript assembly using StringTie31 and
Cuffmerge19 and found 154 unannotated genes with multi-exonic

transcripts (Supplementary Data 3). Twenty two of these
were rhythmic in old flies (Supplementary Table 4), and
five exhibited LLC-like behaviour (Fig. 5a). Among these
five, only one (hereafter ‘crescendo’) is conserved across several
insects according to the 27 insect alignment and associated
phastCons analysis from UCSC Genome Bioinformatics32

(Fig. 5b). While crescendo partially overlapped both a TE and
a piRNA cluster annotation in the sense strand, the other four
fully overlapped transposable elements (TEs) in antisense
and mature Piwi-interacting RNAs (piRNAs) in the sense
strand33, implicating these four as primary piRNA transcripts34

(Supplementary Fig. 7).
We measured crescendo expression by qPCR in heads of

5-, 55- and 75-day old females, and observed an exponential
increase with age, with the greatest increase occurring between
days 55 and 75 (Fig. 5c). As it oscillated in the same phase as
other tested LLCs, we measured crescendo levels in HO-exposed
flies; however, it was not significantly upregulated (Suppleme-
ntary Fig. 8), suggesting that crescendo is not induced directly by
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HO but may be stimulated in response to other age-associated
changes.

Differential gene expression independent of time-of-day. Our
round-the-clock data afforded a high-confidence measure of
age-dependent changes in average expression level for all genes,
by treating individual samples from different time points as
replicates. Among genes with an FPKM41 in young or old flies,
we found 1,504 genes to be significantly downregulated by the age
effect (FDR 0.01) and 1,307 genes to be upregulated (Fig. 6a;
Supplementary Data 4). Of these, the 583 genes upregulated and
the 676 genes downregulated by 450% during aging are shown
in Fig. 6b. We found the ‘housekeeping gene’ Act5C (actin) in
the strongly upregulated subset (Supplementary Fig. 9), indicating
that it is a poor endogenous control for age-dependent
qPCR experiments in Drosophila. Notably, 33.5% of differentially
expressed genes (FDR 0.01, fold-change Z1.5) were robustly
rhythmic in young flies, old flies, or both.

Functional analysis with DAVID revealed several enriched
annotation clusters for differentially expressed genes.
Gene ontology terms related to immune response, glutathione
metabolism and response to cellular and genotoxic stress were
enriched among upregulated genes; terms associated with neural

function, locomotory behaviour, ion homoeostasis and response
to entrainment cues were enriched among downregulated genes
(Fig. 6; Supplementary Data 5).

Discussion
This genome-wide study uncovers the diverse changes in daily
RNA expression patterns that occur in heads of aging flies and
provides new insights into mechanisms linking clock function
and protection from oxidative damage. We show that during
aging, several LLCs adopt de novo transcriptional rhythms that
can also be induced in young flies by exogenous oxidative stress.
Because OS directly promotes neurodegeneration in flies26 and
mice16, LLCs may be a missing link underlying observations that
age-related increases in OS are exacerbated by disruption
of circadian clocks8,14, and that clock mutations accelerate
OS-induced neurodegeneration in aging flies15 and mice16.
Interestingly, a recent postmortem study of gene expression in
the human brain reported some daily transcript levels to show
significantly better correlations with sinusoidal curves in the
Z60-yr-old group than in the o40-yr-old group35, suggesting
potential conservation of the LLC phenomenon.

In addition to identifying numerous annotated genes with
de novo rhythmicity in old flies, we also identified LLC-like
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putative primary piRNAs overlapping transposons in antisense.
Because transposon mobilization increases during aging and may
contribute to age-related neuronal decline in Drosophila36, we
propose that late-life activation of circadian piRNA expression is
a novel strategy by which the molecular oscillator preserves
genomic integrity during aging.

Our study provides first insights into the mechanism of
LLC regulation, which involves CLK, the rate-limiting master
regulator of circadian transcription in Drosophila37. Our
data support a model in which the circadian system enlists
LLCs late in life to mitigate damage resulting from potentially
diverse sources of cellular and genotoxic stress that accumulate
during aging.

Methods
Fly rearing and hyperoxia treatment. Drosophila melanogaster were raised
on a standard yeast (35 g l� 1), cornmeal (50 g l� 1) and molasses (5%) diet at
25±1 �C, under a light-dark (LD) 12:12h regimen. Mated flies were kept in groups
of 50 males or 50 females in 300 ml round bottom polypropylene ventilated bottles
(Genesee Scientific, San Diego, CA). Diet was changed three times a week without
anaesthesia. The following genotypes were used in this study: w1118 (control) and
Clkout (ref. 38). To induce oxidative stress by hyperoxia (HO), 5-day-old flies of
each genotype were placed in clear, airtight chambers with 100% O2 flow-through
at atmospheric pressure, starting at ZT0. Control flies remained in normoxia (NO)
next to the chambers. Two biological replicates of 25–50 flies each in HO or NO
were collected simultaneously every 4 h for one 24 h cycle starting at 72 h after HO
onset in LD or DD as shown in Fig. 4a.

RNA extraction and qRT- PCR. One biological replicate of 50 flies was collected
every 4 h for two 24 h cycles starting at ZT0 (lights on) for qRT-PCR. Each sample
of 25–50 fly heads was homogenized in TRIzol Reagent (Thermo Fisher, Waltham,
MA) using a Kontes handheld motor and pestle, and RNA was extracted according
to the manufacturer’s instructions. Samples were treated with rDNase I
(Takara, Japan), followed by a phenol/chloforom extraction and ethanol/sodium
acetate precipitation. Complementary DNA (cDNA) was synthesized from 1 mg of
RNA using the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA), or the Maxima
First Strand cDNA Synthesis Kit for RT-qPCR (Thermo Fisher, Waltham, MA).
Real-time PCR was performed with Power SYBR Green PCR Master Mix
(Thermo Fisher, Waltham, MA) on a StepOne Plus Real-Time machine
(Applied Biosystems, Foster City, California). Primers were obtained from Inte-
grated DNA Technology (Coralville, Iowa), and all primer sets were verified to
have 490% efficiency. Primer sequences are given in Supplementary Table 6. Data
were analysed using the 2�DDCT method, using Decapping protein 2 (DCP2) as the
endogenous control for normalization. DCP2 was selected based on its low variance
between time points and ages according to RNA-seq and qPCR (Supplementary
Fig. 9). Data for ZT 24 of cycle 1 at day 5 is repeated for ZT 0 of cycle 2 at day 5 for
the experiment in females aged to 5, 55 and 75 days.

Western blotting. Heads of 5 and 55 day-old females (three biorepeats of 20 heads
per timepoint for each age) were homogenized in Laemmli buffer, sonicated, boiled
at 100 �C for 5 min and centrifuged at 12,000g at 4 �C. A constant ratio of the buffer
(7ml per head) was used to ensure equal protein loading and separation on
NuPAGE 4–12% gradient acrylamide gel (Life Technologies). Proteins were
transferred to the 0.45 mm polyvinylidene fluoride (PVDF) Immobilon-FL
membrane (Millipore Billerica, MA) and stained for 5 min with REVERT
Total Protein Stain Kit (Li-Cor Biosciences). After staining, membranes were
scanned in the 800 channel on the Odyssey Infrared Imaging system to quantify
the total protein. The staining was reversed using the same kit, and the membranes
were incubated in 1� TBST (10 mM Tris, 0.15 M NaCL, 0.1% Tween-20,
pH 7.5)þ 5% dry milk for 2 h, then overnight at 4 �C with 1:15,000 anti-PER
(gift from Dr J. Price)39 in blocking buffer. Membranes were treated for 2 h with
1:20,000 goat anti-rabbit IRDye800 (catalogue # 926–32211, LI-COR Biosciences,
Lincoln, NE) diluted in Odyssey Blocking Buffer. After washes, PER signal was
quantified relative to total protein using the LI-COR Odyssey Infrared Image
Studio software according to the manufacturer’s instructions. Uncropped version
of the PER western blot is present in Supplementary Fig. 3.

Fragment library preparation and RNA sequencing. Following poly(A) selection
of RNA samples purified as above, strand-specific cDNA libraries were prepared
using Illumina’s TruSeq stranded mRNA kit (100 bp paired-end) following the
manufacturer’s directions, then sequenced on Illumina HiSeq 2000 with parallel
samples from young and old heads multiplexed in the same lane.

Read alignment and quantification of transcript abundance. Raw RNA-seq
reads were filtered to exclude reads with mean quality scores o30 and to trim

30 ends with mean quality o30, using the program skewer40. Filtered reads were
aligned to the Drosophila melanogaster genome (BDGP release 6.06/dm6) using
TopHat version 2.0.14 with a max intron length of 10,000. Aligned reads from
individual time points were submitted to StringTie v1.2.0 for novel transcript
assembly, with minimum junction coverage of 2; release 6.06 of the FlyBase
genome annotation was used to guide the assembly process. The resulting list
of novel transcripts was refined with Cuffmerge from the Cufflinks package
(v2.2.1). Cuffdiff was used to compute abundance of genes and transcripts in units
of Fragments Per Kilobase of transcript per Million mapped reads (FPKM) for
novel genes and isoforms, separately from those annotated in the FlyBase genome
annotation. We note that expression of some de novo assembled transcripts,
including the four LLC-like putative primary piRNA transcripts (Fig. 5), could not
be reliably quantified because most of their reads aligned with high per cent
identity to multiple genomic loci according to Bowtie 2 (ref. 41). However, each
of these four assembled transcripts aligned only once with 100% identity according
to the UCSC Genome Bioinformatics BLAT tool.

Because of their short length resulting in unstable FPKM calculations,
pre-microRNA hairpins were excluded from all subsequent analyses.

All genome browser tracks showing RNA-seq reads were generated in the
Integrative Genomics Viewer (IGV)42.

Gene expression rhythmicity detection. Rhythmic transcripts with 24-h
periodicity were identified using ARSER (ref. 20), JTK_CYCLE43 and empirical
JTK_CYCLE44 (Supplementary Table 1; Supplementary Fig. 2a). For all three
programs, input data was formatted as a series of two daily cycles. The P value used
as a significance threshold for empirical JTK_CYCLE was the empirical P value.
Genes reported as rhythmic have a median expression Z1 FPKM, a max/min
fold-change Z1.5 and a P valuer0.05 in accordance with published thresholds for
rhythmicity detection5,45. Although all three methods showed substantial
agreement (Supplementary Fig. 10), ARSER showed the strongest proportional
overlap between genes rhythmic in old versus young flies (Supplementary Table 7).
Thus, to be conservative when identifying age-dependent changes in rhythmicity,
we used ARSER output for subsequent analyses. For basic comparisons, we define
‘highly rhythmic’ as P valuer0.01, and arrhythmic as P40.5. For comparison of
overlap between our set of genes rhythmic in young females and genes reported by
others as rhythmic in heads of young males3, we evaluated the per cent overlap
with genes that mapped to IDs in Flybase release 6.06.

Differential rhythmicity analysis. We assigned an SDR to each gene having an
ARSER P valueo1 and median expression Z1 FPKM in young or old flies, and
nonzero expression in at least one time point in young and old flies. We then
assigned P values to these normally distributed SDR values and subsequently
computed their false discovery rates (FDRs) using the BH procedure to adjust for
multiple hypothesis testing (Supplementary Fig. 4a and b)23. Among the resulting
set of significantly (FDR 0.05) differentially rhythmic genes, we defined our top
LLCs as those rhythmic in old flies (max/min fold-changeZ1.5 and ARSER
P valuer0.05) with at least one isoform satisfying the rhythmicity criteria imposed
at the gene level in old flies (Fig. 3a).

When identifying genes with the strongest improvements in rhythmicity with
age, we found that many genes either showed trivial expression levels and low
peak/trough fold change in young but robust amplitudes in old, or showed
enhanced precision in the periodicity of their expression with age. A few, including
ImpL3, fell into both of these categories. We sought to define a metric that would
incorporate these two patterns of differential rhythmicity, and to this end we
developed a differential rhythmicity score calculated as follows:

SDR¼
ZPþZRffiffiffi

2
p

SDR is the sum of two Z-scores divided by
ffiffiffi
2
p

; the factor of
ffiffiffi
2
p

in the denominator
ensures that it obeys a standard normal distribution. The first term, ZP, is a Z-score
computed for the age-dependent change in periodicity, DP¼log pyoung

� �
� log poldð Þ,

using the P values from ARSER in young and old. The second term ZR, is a Z-score
for the differential robustness DR, the log fold change in the effective amplitude,
given by

DR¼log2

~Aold

~Ayoung

 !

where ~A is the effective amplitude, max FPKM–min FPKM. Each of these Z-scores
showed a normal distribution, as did the combined score SDR (Supplementary
Fig. 4a). A P value was computed for each SDR using a Gaussian distribution based
on the fit to the empirical distribution of SDR values, and the BH procedure was
used to compute FDRs.

The custom Perl scripts that we used to implement this analysis can be found at
http://hendrixlab.cgrb.oregonstate.edu/LLCs.html

For the bar plots in Fig. 3c, phases from ARSER were rounded to the nearest
integer and mapped to bins of size (4n� 2, 4nþ 2) for n¼ 0, 1, ..., 5, where each
integer 4n is a time point sampled for RNA-seq.
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Differential expression analysis. To identify age-induced differential
expression independent of time of day, aligned reads for each individual data point
(single fly cohort at single-time-point) were treated as replicates segregated by age
into either the day 5 or day 55 group. Cuffdiff was run to compute average
expression over samples for a given age, and to identify significantly differentially
expressed genes. Using all the samples for a given age in a batch analysis using
Cuffdiff properly identifies genes that are consistently differentially expressed
due to age, regardless of time of day. The DAVID Functional Annotation Tool
(https://david.ncifcrf.gov/summary.jsp) was used to identify enriched functional
annotations among significantly upregulated or downregulated genes having a
minimum FPKM of 1 in young or old and a fold change Z1.5. In addition, 525 out
of the 582 upregulated genes and 572 of the 676 downregulated genes mapped to
DAVID IDs. For annotation we included biological process and molecular
function gene ontology (GO) terms, as well as KEGG pathways. For functional
annotation clustering we used default classification stringency (Medium). The
top 10 annotation clusters are summarized next to the heat map in Fig. 6a. Because
DAVID does not provide names for the annotation clusters, we assigned names
that globally represented the terms present in each cluster. Complete results
of GO analyses are presented in Supplementary Data 5.

Data availability. Data for RNA-seq and processed files have been deposited to
NCBI Gene Expression Omnibus (GEO) under the accession number GSE81100.
RNA-seq expression plots for all FlyBase genes and isoforms are available at:
http://hendrixlab.cgrb.oregonstate.edu/youngAndOldExpression.html.

All other data supporting the findings of this study are included in the
manuscript and its supplementary files or are available from the corresponding
authors on request.
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