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Abstract

Purpose Evaluation of translocator protein (TSPO) overex-
pression is considered an attractive research tool for monitor-
ing neuroinflammation in several neurological and psychiatric
disorders. [''CJPK 11195 PET imaging has been widely used
for this purpose. However, it has a low sensitivity and a poor
signal-to-noise ratio. For these reasons, [''C]CB184 was eval-
uated as a potentially more sensitive PET tracer.

Methods A model of herpes simplex encephalitis (HSE) was
induced in male Wistar rats. On day 6 or 7 after virus inocu-
lation, [''C]JCB184 PET scans were acquired followed by
ex vivo evaluation of biodistribution. In addition,
[''C]CB184 and [''C]PK 11195 PET scans with arterial blood
sampling were acquired to generate input for pharmacokinetic
modelling. Differences between the saline-treated control
group and the virus-treated HSE group were explored using
volumes of interest and voxel-based analysis.

Results The biodistribution study showed significantly higher
[''C]CB184 uptake in the amygdala, olfactory bulb, medulla,
pons and striatum (p<0.05) in HSE rats than in control rats,
and the voxel-based analysis showed higher bilateral uptake in
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the pons and medulla (p<0.05, corrected at the cluster level).
A high correlation was found between tracer uptake in the
biodistribution study and on the PET scans (p<0.001, *=
0.71). Pretreatment with 5 mg/kg of unlabelled PK11195 ef-
fectively reduced (p<0.001) [''C]CB184 uptake in the whole
brain. Both, [''C]CB184 and [''C]PK 11195, showed similar
amounts of metabolites in plasma, and the binding potential
(BPnp) was not significantly different between the HSE rats
and the control rats. In HSE rats BPyp, for [''C]CB184 was
significantly higher (p<0.05) in the amygdala, hypothalamus,
medulla, pons and septum than in control rats, whereas higher
uptake of [''CJPK 11195 was only detected in the medulla.
Conclusion [''C]CB184 showed nonspecific binding to
healthy tissue comparable to that observed for
["'CIPK 11195, but it displayed significantly higher specific
binding in those brain regions affected by the HSE. Our results
suggest that [''C]CB184 PET is a good alternative for imag-
ing of neuroinflammatory processes.

Keywords PET - TSPO - PBR - Neuroinflammation - Rat

Introduction

Microglia, part of the innate immune system of the central
nervous system (CNS), constantly scan the brain for intruding
pathogens and contact synapses for neuronal damage. Activa-
tion of microglia in response to alterations in the brain micro-
environment is a dynamic process [1], characterized by a
change in the microglial shape and phagocytic behaviour.
All pathological events in the CNS are accompanied by acti-
vation of microglia, which acquire distinct functional and phe-
notypic states during progression of a specific pathology. This
responsiveness to brain insults suggests that the microglia



Eur J Nucl Med Mol Imaging (2015) 42:1106-1118

1107

have the potential to be used as diagnostic markers of disease
state and progression in pathologies such as Alzheimer’s and
Parkinson’s diseases, multiple sclerosis and herpes simplex
encephalitis (HSE), as well as in stroke, traumatic brain injury
and other neuropsychiatric diseases [2-5].

The translocator protein (18 kDa; TSPO), formerly known
as the peripheral benzodiazepine receptor, is a transmembrane
multimeric protein complex primarily located in the outer mi-
tochondrial membrane of cells [6]. TSPO has been shown to
be involved in a variety of cellular functions, including cho-
lesterol transport, steroid hormone synthesis, mitochondrial
respiration, mitochondrial permeability transition pore open-
ing, apoptosis and cell proliferation [6—9]. Under normal
physiological conditions, overall TSPO expression in the
CNS is low and is mainly located in glial cells (astrocytes
and microglia), with very low levels in neurons. In patholog-
ical processes, TSPO expression is upregulated in glial cells
and infiltrating macrophages [10]. Therefore, TSPO has been
considered a sensitive marker for the detection of
neuroinflammation.

Changes in TSPO expression can be visualized and quan-
tified in vivo using PET. (R)-[''C]PK 11195 has been widely
used as a PET probe for imaging TSPO expression in animal
models and humans with various CNS diseases, including
glioma, stroke, HSE and neurodegenerative disorders such
as Alzheimer’s disease, multiple sclerosis, amyotrophic lateral
sclerosis and Parkinson’s disease [5, 8, 11, 12]. However,
(R)-["'CIPK 11195 suffers from several limitations, including
poor signal-to-noise ratio (mainly due to its low binding po-
tential to TSPO and high levels of nonspecific binding), high-
ly variable kinetic behaviour and apparent lack of sensitivity
in detecting low levels of microglial activation [12, 13].

Because of these limitations of (R)-[''CJPK 11195, there has
been an effort to develop more sensitive and selective PET
ligands for imaging activated microglia. Several chemically
diverse ligands with high affinity for TSPO have been found
(detailed information is available elsewhere [5, 14, 15]). These
ligands include imidazopyridine acetamide derivatives (e.g.
["'C]CLINME [16]), indole acetamides (e.g.
[''C]SSR180575 [17]), pyrazolopyrimidines (e.g. [''C]DPA-
713 and ['®F]DPA-714 [18]) and phenoxy arylamides (e.g.
["'CIPBR28 [19], [''C]DAA1106 [20]). However, most of the-
se new TSPO ligands are still in the early stages of investiga-
tion, and in contrast to (R)-[''CJPK 11195, suffer from mixed-
affinity binding due to a TSPO polymorphism in humans [21,
22], which seriously complicates their use in clinical studies.

In the search for a better alternative to (R)-[''CJPK 11195,
the novel imidazopyridine compound [''C]CB184 was devel-
oped [23]. [ "'C]CB184 shows 7.9 times higher TSPO affinity
than (R)-[''C]PK11195 (K;=0.54 nM and 4.27 nM, respec-
tively). Furthermore, [''C]CB184 shows lower lipophilicity
than (R)-[''C]PK11195 (logP=2.06 and 2.54, respectively).
As a result, [''C]CB184 shows higher uptake in TSPO-rich

regions in normal mice (cerebellum and olfactory bulb), and
comparable inflammation-induced binding in 6-
hydroxydopamine-injured striatum in rats, as compared with
(R)-["'CIPK11195. In the present study, [''C]CB184 was fur-
ther evaluated in a rat model of HSE [18]. The study was
divided into two parts. First, the characteristics of
[''C]CB184 were investigated in ex vivo biodistribution and
in vivo PET imaging studies in healthy and HSE rats. In the
second part, a pharmacokinetic analysis was performed com-
paring [''C]CB184 and (R)-[''C]PK11195.

Materials and methods
Rats

Male outbred Wistar-Unilever rats (n=45) at 6 — 8 weeks of
age (weight 282+25 g) were obtained from Harlan (Horst,
The Netherlands). After arrival, the rats were allowed to ac-
climatize for at least 7 days. Rats were individually housed in
Makrolon cages on a layer of wood shavings in a room at
constant temperature (21+2 °C) and a 12-h light/night regime.
Commercial chow and water were available ad libitum. The
distribution of the rats across the groups is detailed in Table 1.
In summary, rats were divided into eight groups, used in the
PET SUV and ex vivo biodistribution studies (control, seven
rats; HSE, seven rats; control pretreated with PK11195, five
rats; and HSE pretreated with PK11195, five rats), and the
pharmacokinetic analysis of [''C]CB184 (control, five rats;
and HSE, six rats) and (R)-[''C]PK11195 (control, five rats;
and HSE, five rats).

All animal experiments were performed according to the
Dutch Law for Animal Welfare, and were approved by the
Institutional Animal Care and Use Committee of the Univer-
sity of Groningen (DEC 6264A).

Tracer synthesis

[''C]CB184 was labelled by bubbling [''C]methyl triflate with
helium gas at 30 ml/min into a solution of 0.25 mgN-propyl-
2-{6,8-dichloro-2-(4-methoxyphenyl)imidazo[ 1,2-a]pyridin-3-
yl}acetamide (precursor, CB185) and 5 ul 1 M NaOH in
0.25 ml acetone (Fig. 1). When the trapping of [''C]methyl
triflate was complete, the reaction mixture was diluted with
0.3 ml of water and 1.4 ml of HPLC eluent (55 % aqueous
acetonitrile). The reaction mixture was purified by HPLC using
a SymmetryShield C18 column (5 um, 7.8 mm inner diameter,
300 mm length) and acetonitrile/water (55/45) as the eluent
(flow 4 ml/min). The radioactive product with a retention time
of 12 — 13 min was collected. The product was diluted with
15 ml water and passed through an Oasis HLB 30-mg (1 ml)
cartridge. The cartridge was washed with 5 ml water and sub-
sequently eluted with 0.7 ml ethanol and 4.5 ml 0.9 % NaCl.

@ Springer
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Table 1

Experimental groups of rats, injected activities and injected masses (mean + SD)

Control groups  HSE groups  Injected activity (MBq)  Injected mass (nmol)

PET SUV and ex vivo biodistribution
[''CICB184 Scan 30 min 4 4 17.2+14.6 2.35+0.81

Scan 60 min 3 3 48.9+8.2 1.12+0.29

Scan 30 min + pretreated with PK11195 3 3 11.34£7.6 3.08+1.09

Scan 60 min + pretreated with PK11195 2 2 41.2+3.8 1.77+£0.73
Pharmacokinetic analysisp
[''CICB184 Scan 60 min + blood sampling 6 68.7+22.7 2.74+1.44
(R)["'CIPK11195  Scan 60 min + blood sampling 5 5 85.3+£20.8 2.27+0.89

The product was obtained in 42+7 % radiochemical yield (n=
14). Quality control was performed by UPLC, using a Waters
Acquity H-class UPLC system with a Berthold FlowStar LB
513 radioactivity detector, and a Waters Aquity UPLC C18
BEH phenyl column (1.7 um, 3.0%x50 mm). The product was
eluted with 40 % acetonitrile in water at a flow rate of 0.8 ml/
min. The UV signal was measured at a wavelength of 254 nm.
The retention time of the precursor was 2.4 min, and the reten-
tion time of [''C]CB184 was 5.3 min. The radiochemical purity
of [''C]CB184 was 99.2+0.9 % and the specific activity 60+
25 GBg/pumol. For in vivo imaging, the required dose of the
formulated product was dispensed and diluted with saline to a
final volume of 6.2+0.6 ml. The concentration of ethanol in the
administered product was always <10 %.

The synthesis of (R)-[''C]PK 11195 was as reported in de-
tail elsewhere [18].

HSV-1 inoculation

HSE rats were prepared as described previously [18]. Briefly,
a herpes simplex virus type 1 (HSV-1) strain was obtained
from a clinical isolate, cultured in Vero cells, and assayed for
plaque-forming units (PFU) per millilitre. The rats were slight-
ly anaesthetized with 5 % isoflurane and inoculated with
HSV-1 by administration of 100 pl of phosphate-buffered
saline (PBS) with 1x 107 PFU of virus into the nostrils using
a micropipette (50 ul per nostril). Healthy control rats were
treated similarly administering 100 pl of PBS without the
virus. After inoculation, clinical symptoms were scored daily
in all rats by the same observer.

Fig. 1 Radiosynthesis of
[''cicB184
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PET imaging and ex vivo biodistribution

PET scans were performed using a microPET Focus 220 cam-
era (Siemens Medical Solutions Inc., Malvern, PA) on either
day 6 or day 7 after inoculation with HSV-1 [18], depending
on the severity of clinical symptoms. The rats were anaesthe-
tized with 5 % isoflurane mixed with medical air at a flow rate
of 2 ml/min. After induction, anaesthesia was maintained with
1.5 -2 % of'isoflurane. The anaesthetized rats were positioned
in the camera in a supine position with the head in the field of
view. The PET tracer [''C]CB184 was manually injected via
the penile vein, and at the same time a dynamic 60-min scan
was started. Injected tracer doses and injected masses are sum-
marized in Table 1. Visual assessment of tracer uptake in the
60-min scans showed no substantial differences in uptake over
time after the first 30 min (Fig. 2). Therefore, it was decided to
scan the remaining animals with a 30-min scan. For 30 min the
animals were kept under anaesthesia on the operation table
after injection of the PET tracer into the penile vein, and were
then placed in the scanner for a 30-min dynamic scan. A
transmission scan was obtained in all rats using a >’Co point
source for attenuation and scatter correction. In the pretreated
group, 5 mg/kg unlabelled PK 11195 (Sigma-Aldrich, St. Lou-
is, MO) in dimethyl sulphoxide (DMSO) at a concentration of
10 mg/ml was administered via a tail vein 5 min before injec-
tion of the PET tracer.

After the scans (approximately 75 min after tracer injec-
tion), the rats were killed by extirpation of the heart while
under deep anaesthesia. The brain and peripheral organs were
excised and dissected, and blood was centrifuged to collect a

Cl
= =N 11
N SN / O CHj
O
-

[''CICH,OTf

NaOH
Acetone
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Fig. 2 [''C]CB184 time-activity curve of two representative regions: medulla (a) and frontal cortex (b)

plasma sample. Tissues were weighed and radioactivity was
measured in a gamma counter (LKB Wallac, Turku, Finland).
Tracer uptake in each region was corrected for the injected
tracer dose and body weight and expressed as standardized
uptake value (SUV), which was defined as: radioactivity
(MBg/cm®)/[injected dose (MBq)/body weight (g)].

PET imaging with arterial blood sampling and blood
processing

PET scans with arterial blood sampling were performed in a
different set of rats to generate input for pharmacokinetic
modelling. For the arterial blood sampling a cannula was
inserted into the femoral artery after induction of anaesthesia.
The femoral vein was additionally cannulated for PET tracer
injection. After cannulation, the rats were positioned in the
camera and a transmission scan was acquired using a °>’Co
point source. The PET tracer ([''C]CB184 or
(R)-["'C]PK11195) was injected over 1 min using an automat-
ic pump at a speed of 1 ml/min, and a 60-min dynamic PET
scan was started. A 0.1 ml blood sample of was taken at 0, 5,
10, 15, 20, 30, 45, 60, 75, 90, 120, 180, 300, 450, 600, 900, 1,
800 and 3,600 s after injection. A larger blood sample of
0.5 ml was taken at three time points (5, 15, 30 and/or
60 min) for metabolite analysis. After collection of each blood
sample, heparinized saline was injected to prevent large
changes in blood pressure. A 25 pl aliquot of whole blood
was extracted from each sample for radioactivity measure-
ment. The remainder of each sample was centrifuged at 13,
000 rpm (15,996 ¢) for 8 min, and 25 pl plasma was taken for
radioactivity measurement. The radioactivity in blood and
plasma was measured with a gamma counter.

PET image reconstruction and analysis

The list-mode data from the emission scan were reconstructed
into three frames of 10 min for the dynamic 30-min scans, and
into 21 frames (6x10s,4x30s,2%x60s, 1x120s, 1x180 s,
4%x300 s, and 3x600 s) for the 60-min dynamic scans.

Emission sinograms were iteratively reconstructed (OSEM
2D, four iterations, and 16 subsets) after being normalized
and corrected for attenuation and decay of radioactivity. PET
images were analysed using VINCI 4.22 software (Max
Planck Institute for Neurological Research, Cologne, Germa-
ny). Scans were automatically registered to a functional
(R)-["'CIPK 11195 template [24], which was spatially aligned
with a stereotaxic T2-weigthed MRI template in Paxinos
space [25], facilitating the accurate reporting of results and
enabling the use of predefined standard-space atlas structures.
Volumes of interest (VOI) for the different brain regions were
defined by addition of previously constructed regions [24].
Brain radioactivity concentrations were calculated from these
regions of interest to generate time—activity curves (TACs).
The TACs were corrected for injected dose and animal body
weight, and expressed as SUV. Based on visual analysis of the
TACs, it was decided to use the last 10-min frame of the scans
obtained without arterial blood sampling for further SUV anal-
ysis of differences between groups, because at this point tracer
uptake reached a plateau (see Fig. 2). No significant differ-
ences were observed between the 30-min and the 60-min
scans, and their data were combined.

Metabolite analysis

Radioactive metabolites in plasma were measured using the
extra blood samples taken at three time points during each
scan (5, 15, 30 and/or 60 min). After centrifugation and col-
lection of the plasma sample for radioactive measurement, as
described above, the remaining plasma was diluted with ace-
tonitrile (1.5 times the amount of plasma) and vortex-mixed.
The plasma suspension was centrifuged at 5,300 rpm (3,030g)
for 3 min, and divided into supernatant and pellet. The super-
natant was filtered through a Millipore filter (Millex-HV 4-
mm syringe filter, pore size 0.45 um) and was then analysed
by HPLC using an Alltima RP-C18 column (5 pum, 10x
250 mm) and 60/40 acetonitrile/water at a flow of 4 ml/min
for [''C]CB184 or 70/30/0.5 acetronitrile/water/triethylamine
at a flow of 5 ml/min for (R)-[''CJPK11195 as the eluent.

@ Springer
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Fractions of 30 s were collected and measured in the gamma
counter.

The percentage of metabolites in plasma was calculated by
fitting an exponential function to the values obtained from the
HPLC analysis. The plasma values obtained from the blood
samples during the PET scan were then corrected for the pres-
ence of these metabolites, and used together with the whole-
blood curve for further analysis. Metabolite corrected plasma
TACs were fitted for each individual rat using iterative non-
linear least-squares fitting to the biexponential equation:
SUV,=d4e “’+Be ™, where SUV, is the plasma SUV at time
t, o and 3 are the apparent distribution and elimination rate
constants (s '), respectively, and 4 and B are the correspond-
ing zero-time intercepts. The weighting factors were the recip-
rocals of the plasma SUV squared. Distribution and elimina-
tion half-lives (seconds) were calculated as the natural loga-
rithm of 2 divided by « and (3, respectively.

To determine if radioactive metabolites of [''C]CB184 en-
tered the brain, the brain of one control rat and one HSE rat
were isolated 30 min after injection and homogenized with a
solution of ice-cold acetonitrile (3 ml). The homogenate was
centrifuged at 6,000 rpm (3,461 g) for 10 min. The supernatant
was then collected and processed by HPLC, as described
above.

Pharmacokinetic analysis

The TACs of those rats in which blood sampling was per-
formed, together with their corresponding whole-blood and
metabolite-corrected plasma curves, were used for pharmaco-
kinetic modelling using PMOD v3.3 (PMOD Technologies,
Ziirich, Switzerland). A preliminary Logan graphical analysis
[26] and a Patlak graphical analysis [27] of tracer kinetics
were performed to determine if the [''C]CB184 showed re-
versible or irreversible behaviour. Visual inspection showed a
better fit for Logan graphical analysis. Therefore, quantifica-
tion of [''C]CB184 and [''C]PK11195 binding was per-
formed with Logan graphical analysis using a delay time of
15 min to calculate the distribution volume (¥7). The revers-
ible two-tissue compartment model (2TCMR) with K;/k,
fixed to the whole cortex value [28] and a fixed blood volume
of 3 % were used to calculate the V1 and nondisplaceable
binding potential (BPyp, calculated as ks/k4 [29]).

Statistical analysis

The results are presented as means + standard deviation (SD).
Statistical analysis was performed using IBM SPSS Statistics
20. Differences between groups were analysed using the in-
dependent samples #-test, and considered to be significant at
p<0.05 .

@ Springer

Voxel-based analysis Voxel-based analysis was performed
using SPM8 (Wellcome Department of Cognitive Neurology,
University College London, UK) and the SAMIT toolbox
[24]. A two-sample t-test (control rats vs. HSE rats) was per-
formed on [''C]JCB184 SUV images, obtained from the last
10-min frame of the 30-min and 60-min PET scans without
blood sampling. The analysis was done without global nor-
malization or a threshold. Images were smoothed with a
1.2 mm isotropic Gaussian kernel. For interpretation of group
differences, T-map data were interrogated at p<0.005
(uncorrected) and an extent threshold of 200 voxels. Only
clusters with p<0.05 corrected for family-wise error were
considered significant.

Results
[''C]CB184 characteristics
Ex vivo biodistribution

The ex vivo biodistribution study was performed to determine
the uptake of [''C]JCB184 in four experimental groups: con-
trol rats, HSE rats, and control or HSE rats pretreated with
unlabelled PK11195. The results of the ex vivo biodistribution
study are expressed as mean SUV + SD. Table 2 shows the
ex vivo biodistribution in the brain and peripheral organs of
the different groups approximately 75 min after tracer injec-
tion. Whole-brain uptake of [''C]CB184 was significantly
higher in HSE rats than in control rats (0.99+0.21 vs. 0.66+
0.16, p=0.006). Uptake of [''C]CB184 in HSE rats, as com-
pared with control rats, was significantly higher in the amyg-
dala (0.52+0.21 vs. 0.30+0.08, p=0.04), olfactory bulb (1.52
+0.22 vs. 1.06+0.15, p<0.001), medulla (1.51+0.57 vs. 0.59
+0.14, p=0.001), pons (1.26+0.52 vs. 0.63+0.08, p=0.008)
and striatum (0.45+0.15 vs. 0.28+0.07, p=0.03). [''C]CB184
binding to TSPO was blocked by administration of unlabelled
PK11195 5 min before tracer injection, resulting in a signifi-
cantly lower uptake of [''C]CB184 in all brain regions of HSE
and control rats, except in cingulate/frontopolar and frontal
cortices of control rats. When the whole brain was considered,
a highly significant difference between blocked and
nonblocked groups was found in both control and HSE rats
(p<0.001).

The ex vivo biodistribution study in peripheral organs
showed a high uptake of [''C]CB184 in TSPO-expressing
organs, including the adrenal glands, heart, kidney, lungs
and spleen. [''C]CB184 uptake was significantly higher in
the lungs of HSE rats than in control rats (22.53+2.41 vs.
18.39+2.20, p=0.006). [''C]CB184 uptake was effectively
blocked by pretreatment with unlabelled PK11195, resulting
in a significant reduction of uptake in almost all the tissues
except the adrenals in the control group, and in fat, plasma and
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Table 2 Ex vivo biodistribution of [''CJCB184, expressed as SUV (mean + SD) approximately 75 min after injection in control (PBS-treated) rats,
HSE rats (infected with HSV-1), and rats pretreated with 5 mg/kg of PK11195 5 min before [''C]CB184 injection

Control group (n=7)

HSE group (n=7)

PBS + PK11195 group (n=5)  HSE + PK11195 group (n=5)

Brain

Amygdala/piriform cortex 0.30+0.08 0.52+0.21* 0.10+£0.05%** 0.08+0.06**
Olfactory bulb 1.06+0.15 1.52+0.22%** 0.20+0.08%** 0.17+0.11%**
Cerebellum 0.52+0.06 0.84+0.41 0.13+0.08%** 0.11+0.06%**
Cingulate/frontopolar cortex 0.36+0.13 0.46+0.21 0.24+0.17 0.10+0.05**
Entorhinal cortex 0.36+0.13 0.57+0.39 0.09+0.07** 0.10+0.05*
Frontal cortex 0.44+0.44 0.39+0.09 0.10£0.07 0.08+0.05%***
Hippocampus 0.39+0.18 0.55+0.21 0.12+0.08* 0.09+0.05%***
Medulla 0.59+0.14 1.514£0.57** 0.12£0.07%** 0.13£0.06***
Parietal/temporal/occipital cortex 0.32+0.06 0.41+0.14 0.10+0.06%** 0.10+0.05%**
Pons 0.63+0.08 1.26+0.52** 0.12+£0.08*** 0.12+£0.10%**
Striatum 0.28+0.07 0.45+0.15* 0.11+0.07** 0.09+0.06%**
Whole brain 0.66+0.16 0.99+0.21** 0.15+0.08%** 0.08+£0.08***
Peripheral organs

Adrenals 14.84+5.45 13.86+4.42 7.72+£5.20%* 8.14+7.09
Bone 1.00+0.26 0.98+0.14 0.31+0.19%** 0.39+0.24%***
Colon 3.38+0.97 3.29+0.81 0.42+0.24%** 0.49+0.36%**
Fat 0.43+0.21 0.57+0.39 0.48+0.18 0.72+0.49
Heart 22.814+2.80 23.69+2.71 0.68+0.40%** 0.77+0.53%%%*
[leum 6.41+3.07 6.20+£2.67 231+1.15% 2.74+1.77*
Kidney 12.5242.22 13.1742.25 0.72+£0.44%%* 1.12+40.75%**
Liver 7.57+1.64 7.97£1.73 11.28+5.43 10.71+£9.25
Lung 18.39+£2.20 22.5342.41%* 0.95+£0.57%** 1.6240.98%**
Pancreas 3.55+0.52 4.23+0.76 0.57+0.34%%%* 0.62+0.37%%*
Plasma 0.18+0.08 0.28+0.24 0.27+£0.15 0.19+0.04
Red blood cells 0.19+0.18 0.13+0.01 0.11+0.05 0.11+0.07
Spleen 13.23+2.64 11.76+1.42 0.70+£0.47%%* 0.71£0.55%**
Stomach 5.04+0.82 5.88+1.87 0.70+£0.46%** 0.82+£0.60%**
Submandibularis 4.28+1.02 4.89+0.75 0.70+£0.46%** 0.79+£0.56%**
Testis 0.98+0.11 0.88+0.12 0.30+0.24%** 0.29+0.21%**
Thymus 3.36+0.58 3.23+0.33 0.72+0.44%** 0.74+0.46%**
Trachea 5.56+1.50 6.38+3.30 0.81+0.35%%%* 1.02+0.70%*

*p<0.05, **p<0.01, ***p<0.001, HSE vs. control groups, and groups pretreated with PK11195 vs. the same group without pretreatment

red blood cells in both HSE and control rats. The mean
[''C]CB184 uptake in the liver was higher after administration
of unlabelled PK 11195, but this increase did not reach statis-

tical significance.

PET imaging: VOI-based analysis

In order to assess the ability of [''C]CB184 to visualize the
TSPO overexpression, healthy control and HSE rats were
imaged using PET. The SUVs obtained from the last
10 min of the 30-min and 60-min PET scans (without
blood sampling) are shown in Table 3. Uptake of
[''C]CB184 in whole brain was significantly higher in
HSE rats than in control rats (0.52+0.08 vs. 0.41+0.08,

p=0.02). For the predefined brain regions (VOI), uptake
was significantly higher in the medulla (0.86+£0.27 vs.
0.47+0.08, p=0.003), pons (0.73+0.17 vs. 0.44+0.11, p=
0.002) and striatum (0.38+0.06 vs. 0.29+0.09, p=0.04).
[''C]CB184 uptake in rats pretreated with unlabelled
PK11195 was significantly lower in all brain regions
(p<0.01).

TACs of two representative brain regions are shown in
Fig. 2. Pretreatment with unlabelled PK11195 reduced the
uptake of [''C]CB184 in the same manner in control rats
and in HSE rats. There was a good correlation between the
biodistribution values and the SUVs from PET scans acquired
50 — 60 min after [''C]CB184 injection (p<0.001, *=0.71;
Fig. 3).

@ Springer



1112

Eur J Nucl Med Mol Imaging (2015) 42:1106-1118

Table 3

[''C]CB184 uptake, expressed as SUV (mean + SD), obtained from the PET scan acquired for 50 — 60 min after [''C]CB184 injection in

control (PBS-treated) rats, HSE rats (infected with HSV-1), and rats pretreated with 5 mg/kg of PK11195 5 min before [''C]CB184 injection

Control group (n=7)

HSE group (n=7)

PBS + PK11195 group (n=5) HSE + PK11195 group (n=5)

Amygdala 0.43+0.11 0.49+0.14
Olfactory bulb 0.84+0.13 0.96+0.18
Cerebellum 0.48+0.08 0.62+0.17
Frontal cortex 0.44+0.12 0.42+0.13
Remaining cortices 0.40+0.07 0.45+0.06
Hippocampus 0.31+0.09 0.40+0.11
Hypothalamus 0.47+0.15 0.56+0.10
Medulla 0.47+0.08 0.86+0.27**
Midbrain 0.33+0.09 0.42+0.12
Pons 0.44+0.11 0.73+0.17**
Septum 0.29+0.12 0.40+0.16
Striatum 0.29+0.09 0.38+0.06*
Thalamus 0.26+0.07 0.33+£0.07
Whole brain 0.41+0.08 0.52+0.08*

0.16£0.02%** 0.16£0.05%**
0.21£0.03%** 0.26+0.03%**
0.14+0.02%** 0.14+0.03%**
0.14£0.02%** 0.18+0.03**

0.14+0.07%**
0.13+0.03**

0.16+0.03%**
0.19+0.04%**
0.11+0.02%**
0.18+0.03%**

0.15+0.02%**
0.12+0.03%**
0.18+0.05%**
0.19+0.06%**
0.13+£0.03%**
0.19+0.05%**

0.10£0.01** 0.12+0.03%**
0.11+0.03** 0.17£0.05%**
0.12+0.02%* 0.11+0.03%**x*

0.14£0.01%** 0.15+0.02%**

*p<0.05, **p<0.01, ***»p<0.001, HSE vs. control groups, and groups pretreated with PK11195 vs. the same group without pretreatment

PET imaging: voxel-based analysis

The results of the voxel-based analysis are shown in Fig. 4 and
Table 4. Uptake of [''C]CB184 in several brain regions was
significantly higher in HSE rats than in control rats (cluster-
level p<0.05, corrected for family-wise error). This higher
uptake was bilateral for the pons and medulla (Fig. 5), with
the maximum difference in uptake located in the left ventral
cochlear nucleus (Paxinos coordinates x,y,z=—4.5,-9.4,—9,
and x,y,z=—4,-10.6,—9.2) and the left reticular formation (x,
y,z=—2.5,-11.6,-9.2). Also, an asymmetrically higher uptake
was found in the right hemisphere only in the thalamus, hy-
pothalamus, internal capsule, substantia innominata, globus
pallidus and diagonal band, with the maximum difference in
uptake located in the right bed nucleus of the stria terminalis
(x,z=1.3,-0.8,-7.2, and x,,z=0.9,-1.2,-9.2) and the right
lateral hypothalamic area (x,y,z=2.1,-1.2,—8.2).

© PBS

257 eHsE
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Biodistribution SUV

0.5+

p < 0.001
r? Linear = 0.711
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Fig.3 Correlation between [''C]CB184 SUV values determined ex vivo
and those obtained from the PET scan, from control and HSE rats
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Comparison of [''C]CB184 and (R)-[''C]PK 11195
Plasma clearance

Figure 6 shows the mean TACs of plasma corrected for the
percentage of metabolites for [''C]CB184 and
(R)-[''CIPK 11195 following intravenous injection. A signifi-
cant difference was found at the peak tracer concentration in
plasma during the distribution phase (p<0.003 at 45 s). No
significant difference was found during the elimination phase.
The distribution half-lives were 17+7 s and 22+7 s, and the
elimination half-lives were 44+26 min and 65+46 min for
[''C]CB184 and (R)-[''C]PK 11195, respectively.

The metabolite concentrations in plasma indicated a similar
metabolic rate for both tracers, with 50 % of parent tracer still
present in plasma at about 21 min after tracer injection. The
amount of [''C]CB184 metabolites found in the brain (includ-
ing the blood component of the brain) at 30 min after tracer
injection was 1.2 % in control rats and 1.3 % in HSE rats,
suggesting that metabolites do not cross the blood—brain bar-
rier (BBB).

Kinetic modelling

For both [''C]CB184 and (R)-[''C]PK11195, the Vy deter-
mined using 2TCMR and the V't assessed by Logan graphical
analysis (Fig. 7) showed an excellent correlation (»p<0.001,
#=0.99). Comparison of V; values between groups was not
possible due to the high interindividual variance (Fig. 8). For
example, Vr values for [''C]CB184 in the control rats ranged
from 4.42 to 10.47 in the medulla. Therefore, it was decided to
use BPyp for the analysis, calculated as the k3/k, obtained
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Left
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Right
Fig. 4 [''C]CB184 voxel-based analysis. Uptake of [''C]CB184 is sig-
nificantly higher in HSE rats than in control rats (cluster-level p<0.05,

corrected for family-wise error). These regions correspond to the pons
and medulla bilaterally, and the thalamus, hypothalamus, internal capsule,

from the 2TCMR (Fig. 5). In control rats, no significant dif-
ference was found between the BPyp of [''C]CB184 and the
BPnp of (R)-[''C]PK11195. There were statistically signifi-
cant differences in [''CJCB184 BPyp between control and
HSE rats for the amygdala (2.4+1.2 vs. 3.6+0.3, p=0.05),
hypothalamus (2.7£1.6 vs. 4.6+£0.4, p=0.02), medulla (2.6+
1.2vs.5.1£1.4,p=0.01), pons (2.6+1.3 vs. 4.5+£0.9, p=0.02)
and septum (1.5+0.9 vs. 2.7+0.5, p=0.02). There was a sta-
tistically significant difference in (R)-[''CJPK 11195 BPyp, be-
tween control and HSE rats only for medulla (1.7+0.6 vs. 2.6
+0.4, p=0.02). [''C]CB184 BPyp and (R)-[''C]PK11195
BPyp for the various brain regions in control and HSE rats
are shown in Table 5.

Discussion

In order to test the suitability of [''C]CB184 as a PET tracer
for TSPO imaging, we compared [''C]CB184 with the most
widely used tracer (R)-[''C]PK 11195 in a rat model of HSE.
This animal model does not rely on invasive injection of a
toxin into the brain, but has known microglial activation in
response to viral infection, as confirmed previously by immu-
nohistochemical staining [18, 30]. It can be considered a lim-
itation of the model that the infection cannot be controlled
precisely between rats and that the mortality may be relatively
high, especially when the rats are followed for longer periods.

x=-1.3 mm y =-0.8 mm

5

-~
Right
z=-84 mm

L

—
€
-
-

Right

substantia innominata, globus pallidus, bed nucleus of the stria terminalis,
and diagonal band of the right side. Left Standard ‘glass brain’ output in
SPM. Right Overlay of the results on the MRI template

However, in our study there were no observable differences in
clinical symptoms between rats, being limited to slight ruftled
fur and/or irritated mouth and nose with the absence of more
severe symptoms and premature death. While the levels of
neuroinflammation may vary between HSE rats reflecting dif-
ferent levels of HSE severity, [''C]JCB184 consistently detect-
ed a higher TSPO expression in those regions known to be
affected in this model, such as the medulla and pons [18].

In the ex vivo biodistribution study of control rats, the
highest uptake of [''C]CB184 was found in the adrenal
glands, heart, kidney, lungs and spleen, when compared with
other peripheral regions, while for the brain the olfactory bulb
showed the highest uptake. These results are in accordance
with those previously reported in mice [23], and with known
TSPO expression in these organs [31]. Pretreatment with
unlabelled PK11195 resulted in a significant reduction in
[''C]CB184 uptake in all brain regions in the control rats,
except in the cingulate and frontal cortices. In the peripheral
organs, pretreatment with unlabelled PK11195 resulted in a
statistical significant decrease in all the tissues except fat,
plasma and red blood cells. There was a less significant
blocking effect in the adrenal glands in the control rats and
there was no significant effect in the HSE rats. This apparent
low blocking effect of the unlabelled PK11195 in a known
TSPO-expressing organ may have been a result of the high
variance in the present study (SUV 7.93+5.87, range
4.65 — 19.81, for the control and HSE groups together).

Table 4 [!'C]CB184 voxel-

based analysis (statistically sig- Peak probability level ~ Cluster level Paxinos coordinates (mm)
nificant results)
p value  Threshold Family-wise error correction ~ Uncorrected ~ Voxels — x y z
0.005 200 voxels  <0.001 <0.001 26,598 4.5 -94 -9
-2.5 -11.6 -9.2
—4 -10.6 -9.2
0.005 0.001 4,357 1.3 -0.8 =72
2.1 -1.2 —8.2
0.9 -1.2 -9.2
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Fig. 5 Transaxial [''C]JCB184
PET images of the head of a
healthy control rat and a rat with
herpes simplex encephalitis
(HSE) (arrow increased uptake of
[''C]CB184 in the region of the
pons and medulla)

Another possible explanation, which is suggested by similar
results found with [''C]DPA-713 and ['*F]DPA-714 [18, 32],
is the presence of alternative binding sites predominantly
expressed in the adrenal glands that do not bind PK11195
[18]. In addition, in the liver there seemed to be a trend to-
wards a higher [''C]JCB184 uptake in PK11195-pretreated
animals, although this difference was not statistically signifi-
cant. Probably, this observation was a result of decreased liver
metabolism due to competition of the tracer with unlabelled
PK11195.

The amount of DMSO used as solvent for administration
of the unlabelled PK11195 may be considered as a possible
confounder in the blocking study. However, DMSO has
been shown to have neuroprotective effects, probably me-
diated via a separate signalling pathway not involving
TSPO, and to increase neuronal survival independently of
alterations to microglia or astrocytes [33]. Therefore, we
consider that the possible interference of DMSO in the
blocking effect in the TSPO receptors by the administration
of unlabelled PK11195 can be considered minimal or
negligible.

o [''CICB184
(R)-["CIPK11195

{ .

1'0 2'0 50 4'10 '50 6’0 7'0 8’0 9’0 12)0 1'10 1%0
Time (sec)

Plasma clearance (SUV)

T
0 10 20 30 40 50 60
Time (min)

Fig. 6 Left Plasma clearance corrected for metabolites (SUV + standard
error) of [('C]JCB184 and (R)-[''C]PK 11195 during the 60 min dynamic
PET scan (inset expanded view of the first 120 s). Right Curves showing
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The study of the response of microglia to HSV-1 infection,
in particular the ability of [''C]CB184 to detect changes in
TSPO expression, was performed using four different
methods: ex vivo biodistribution, analysis of PET images
using predefined VOIs, voxel-based analysis of PET images,
and comparison of the BPyp calculated from the dynamic
PET data using a 2TCMR with a plasma input function. In
the ex vivo biodistribution study, HSE rats showed signifi-
cantly higher SUVs in the amygdala, olfactory bulb, medulla,
pons and striatum than control rats. The VOI-based analysis
also demonstrated significant differences in HSE rats com-
pared with control rats in most of these regions, including
the medulla, pons and striatum, while differences in the olfac-
tory bulb and amygdala were not detected probably due to
partial volume effects and/or spillover in these regions.
In vivo PET imaging and ex vivo biodistribution data were
highly correlated.

In the ex vivo biodistribution study and VOI analysis, pos-
sible alterations in TSPO expression were explored bilaterally,
making no distinction between brain hemispheres. To explore
the existence of asymmetry in [''C]CB184 uptake as a

100 o ['CICB184
(R)-["CIPK11195

80

Metabolites (%)

T
0 10 20 30 40 50 60
Time (min)
the percentages of metabolites present in plasma from the time of

injection until the end of the PET scan (dashed lines 95 % confidence
intervals)
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Fig. 7 Correlation between [""C]CB184 (R)-['"CIPK11195
distribution volume (V) 25 25
determined by the reversible two-
tissue compartment model
(2TCMR) and V5 for [''C]CB184 20+ 4 20
and (R)-["'CIJPK 11195 deter-
mlned.by Logan graphical > 15 5.
analysis o
=
(3] o
=
N 104 o 10
5 5
1=0.995 r2=0.986
p<0.0001 p<0.0001
0 T T T T T 0 T T T T T
0 5 10 15 20 25 0 5 10 15 20 25
Logan V,

consequence of the infection and to explore alterations not
limited to predefined anatomical regions, a voxel-based anal-
ysis was performed with the same SUV images employed in
the VOI analysis. In this voxel-based analysis, a statistically
significant difference was found bilaterally in the pons and
medulla, and also in the right thalamus and hypothalamus,
as well as in regions of the internal capsule, substantia
innominata, globus pallidus, diagonal band and bed nucleus
of the stria terminalis.

All analysis methods clearly showed an increased expres-
sion of TSPO bilaterally in the brainstem (medulla and pons)
caused by HSV-1 invasion via the neural pathway from the
olfactory bulb to the locus coeruleus, or by direct invasion via
the trigeminal nerve [30, 34]. However, the results in other
brain regions varied depending on the methodology used.

Several factors may be involved in these differences. One
factor is that the SUV is a semiquantitative measurement that
can be affected by several biological factors (e.g. body size,
weight composition, tracer metabolism and blood flow), or
technological factors related with the acquisition and recon-
struction of the image (e.g. field of view and matrix size) [35].
Moreover, the voxel-based approach may, in theory, identify
subtle changes better than VOI-based analysis, as the latter
analysis is limited mainly by the spatial resolution of the scan-
ner rather than by the size of the VOIs. In our study, this was
reflected in those regions where microglial activation seemed
to have a lateralized pattern, as observed in the voxel-based
analysis but not in the VOI-based analysis. Moreover, the use
of a voxel-based analysis allows investigation of the whole
brain and is not limited to hypothesis-based predefined

Fig. 8 Distribution volume (V7)
values for [''C]JCB184 and
(R)-["'CIPK 11195 in control rats
(PBS) and rats infected with HSV-
1 (HSE) determined using the re-
versible two-tissue compartment
model 2TCMR)

25

20+

2TCMR V,
o
1

-
o
1

@™ O
00

['"C]CB184 - PBS

T T T T
['"C]CB184 - HSE ["C]JPK11195 - PBS  [''C]PK11195 - HSE
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Table 5 [''C]JCBI184 and (R)-[''C]PK11195 binding potentials (mean
+ SD) in control rats (PBS group) and rats infected with HSV-1 (HSE
group) calculated using the reversible two-tissue compartment model

Brain region  [''C]CB184 R)"'CIPK11195

PBS group HSE group  PBS group HSE group
Amygdala 239+123 3.56+033*% 1.65+0.62 1.92+0.73
Olfactory bulb  5.56+2.67 8.8242.97  3.76+1.16 4.03+1.20
Cerebellum 2.88+139 3.83+0.63 1.51£0.60 1.89+0.39
Frontal cortex ~ 2.14£123  3.08+£1.20  1.35£0.51 1.54+0.54
Rest cortices ~ 2.27+1.37  2.69+047  133+046 1.62+0.60
Hippocampus ~ 1.55£0.90 2.44+034  0.98+0.44 139+0.58
Hypothalamus ~ 2.74+1.62  4.65+£0.44* 1.92+0.82 228+0.84
Medulla 2.64£1.16  5.10£1.42% 1.65£0.60 2.56+0.42%
Midbrain 173098  2.50+0.51  0.96+0.49 1.34+0.42
Pons 263131  447+094% 1.74£0.69 2.44+041
Septum 1.53£0.90 2.71+046* 120+038 1.34+0.57
Striatum 128+0.74 191+0.41  0.88+0.33 1.03+0.43
Thalamus 1.17£0.78  1.85+0.41  0.75+0.35 1.03+0.51
Whole brain ~ 2.25+1.17 3254041  1.38+049 1.72+0.49

#p<0.05, HSE group vs. PBS group for ['' C]CB184. There were no
statistically significant differences between the PBS groups for
[''C]CB184 and ['! C]PK11195

regions. In this study, this advantage led to the higher uptake
of [“C]CB]84 in HSE rats than in control rats in the right
globus pallidus, internal capsule and the bed nucleus of the
stria terminals, areas that were not included in the VOI-based
analysis. Therefore, whenever the study design allows this, it
is advisable to perform a voxel-based analysis of parametric
images (i.e. voxel-by-voxel representation of the binding, for
example using V't or BPyp, or otherwise SUVs) instead of — or
in addition to — a VOI-based analysis.

Both tracers showed similar metabolic rates in plasma, with
approximately 50 % of the parent tracer still present in plasma
at about 21 min after tracer injection. Interestingly, a signifi-
cant difference was found at the peak concentration of tracer
during the distribution phase at 45 s after tracer injection.
While this may have been a consequence of differences in
first-pass extraction, binding affinities to plasma proteins
[36], differences in lipophilicity, or other intrinsic characteris-
tics of the tracers, this could not be confirmed in the present
study. Furthermore, the presence of metabolites of a
radioligand in plasma that can cross the BBB may confound
the results of PET studies. (R)-[''C]PK 11195 has two major
radioactive metabolites, both more polar than the parent
(R)-["'CIPK11195: [''C]formaldehyde and N-[''C]methyl-
sec-butylamine [37]. The percentage of unchanged
(R)-["'C]PK 11195 in rat brain homogenate was 93+4 % and
90+7 % at 20 and 40 min, respectively, after injection [38].
For [''C]CB184, on the other hand, the percentage of intact
tracer present in the brain at 30 min after injection was
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approximately 99 %, as confirmed previously in mouse brain
[23]. Since the small fraction of [''C]JCB184 metabolites in
brain homogenates probably originated from the blood com-
partment in the brain, these results suggest that the metabolites
of [''C]CB184 do not cross the BBB.

The pharmacokinetic analysis of tracer uptake in the brain
was performed with a 2TCMR, with plasma corrected for me-
tabolites as the input function. The values of K;/k, were fixed to
values for the whole cortex, as it was found to be optimal for the
analysis of (R)-[''CJPK11195 [28]. In this experiment, BPyp
seemed to be more appropriate for estimating [''C]CB184 and
(R)-["'CJPK 11195 binding than Vs, due to interindividual var-
iations of K/k,. Interestingly, no significant significant differ-
ence in BPyp between the two tracers was found in the control
rats, which seems to indicate that nonspecific binding of the
tracers under physiological conditions is similar. In the healthy
brain, this diffuse low-level signal is probably attributable to the
expression of TSPO in the muscle cells of arteries, perivascular
macrophages, lymphocytes and neutrophils, choroid plexus,
and ependyma and meninges [39, 40]. HSV-1 encephalitis is
known to involve the activation of microglia [41] and astro-
cytes [42], both of which overexpress TSPO when activated
[43]. [''C]CB184 was able to detect TSPO overexpression bet-
ter than (R)-[''CJPK 11195, as reflected by a higher BPyp, in the
amygdala, hypothalamus, medulla, pons and septum, whereas
increased (R)-[''C]PK11195 uptake was only found in the
medulla.

In recent years new radiotracers have been developed for
imaging TSPO with PET. The preferred characteristics of the-
se radioligands include [13, 44]:

1. Metabolic stability.

2. High affinity to the target and low nonspecific binding
(i.e. good signal-to-noise ratio).

Adequate dissociation from the target.

Suitable lipophilicity to cross the BBB.

Radiolabelled metabolites should not cross the BBB.
The synthesis of the radioligand must be simple, quick,
and with high yield.

S kW

In the present study, the [''C]CB184 radioligand was
shown to fulfil all these criteria. Its metabolism was similar
to that observed for (R)-[''CJPK11195. Most importantly, the
presence of radiolabelled metabolites in brain tissue can be
considered negligible. In addition, [''C]CB184 showed better
specific binding to TSPO than (R)-[''C]PK 11195, e.g. in the
medulla, the most affected region in the HSE rats used in this
study, the BPyp of [''C]CB184 was 93 % higher than in
control rats, while the increase in the BPyp of
(R)-[""C]PK 11195 was only of 55 %. This was probably the
result of the higher affinity of [''C]CB184 (7.9 times) for
TSPO than (R)-[''CJPK11195. The pharmacokinetic profile
of [''C]CB184 also seems to be better than that of
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(R)-[''CIPK 11195, with a high peak availability of the tracer
in the blood pool in the first minute after injection. And finally,
the time required for synthesis of [''C]JCB184 is of about
35 min from the end of irradiation, with a decay-corrected
radiochemical yield of 42+7 % (versus 33+15 % for
(R)-[''CIPK 11195 [18]).

A significant number of TSPO radioligands have been de-
veloped with higher affinity and/or lower nonspecific binding
than (R)-[''C]PK11195, including [''C]DAA1106,
[''C]PBR28 and ['®*F]DPA-714. Our group has previously
used the HSE model for evaluation of some of these new
TSPO radioligands. [''CIDAA1106 did not show significant-
ly higher uptake in vivo in HSE rats than in control rats [45].
Additionally, [''C]DPA-713 and ['*F]DPA-714 were tested in
a similar study [18] in which [''C]DPA-713 was found to
perform better than (R)-["'CIPK 11195, with a similar uptake
in infected regions, but with lower nonspecific binding, while
['SF]DPA-714 uptake was lower than that of
(R)-["'CIPK 11195 in infected regions. This last result differs
from those obtained in another model of neuroinflammation
caused by cerebral ischaemia in which ['*F]DPA-714 showed
a higher signal-to-noise ratio than [''C]PK11195 [46]. The
differences in methodology in the studies of the new com-
pounds makes direct comparison of the results difficult, and
further effort must be focused on the performance of this new
generation of TSPO radioligands [47]. Moreover, recent stud-
ies have shown mixed binding affinity of several new PET
tracers to the TSPO in humans, due to presence of a TSPO
polymorphism [21, 22]. Therefore, despite the promising re-
sults obtained in this study, further clinical imaging studies
with [''C]CB184 need to be performed to assess the added
value of this new TSPO radioligand, and to determine whether
[''C]CB184 could replace (R)-[''C]PK11195.

Conclusion

Ex vivo and in vivo experiments demonstrated that
[''C]CB184 shows a high and specific uptake in the enceph-
alitic rat brain. The nonspecific binding of the tracer to healthy
brain tissue was comparable to that of (R)-[''CJPK 11195, but
[''C]CB184 showed a significantly higher uptake in those
brain regions affected by the HSE. Our results suggest that
[''C]CB184 could be a good alternative for the imaging of
TSPO overexpression in neuroinflammatory processes, and
further evaluation in humans is warranted.
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