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ABSTRACT: Pt/ZrO2 model catalysts were prepared by atomic layer deposition
(ALD) and examined at mbar pressure by operando sum frequency generation
(SFG) spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy
(NAP-XPS) combined with differentially pumped mass spectrometry (MS). ALD
enables creating model systems ranging from Pt nanoparticles to bulk-like thin
films. Polarization-dependent SFG of CO adsorption reveals both the adsorption
configuration and the Pt particle morphology. By combining experimental data
with ab initio density functional theory (DFT) calculations, we show that the CO
reaction onset is determined by a delicate balance between CO disproportionation
(Boudouard reaction) and oxidation. CO disproportionation occurs on low-coordinated Pt sites, but only at high CO coverages and
when the remaining C atom is stabilized by a favorable coordination. Thus, under the current conditions, initial CO oxidation is
found to be strongly influenced by the removal of carbon deposits formed through disproportionation mechanisms rather than being
determined by the CO and oxygen inherent activity. Accordingly, at variance with the general expectation, rough Pt nanoparticles are
seemingly less active than smoother Pt films. The applied approach enables bridging both the “materials and pressure gaps”.
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The adsorption and catalytic oxidation of CO on Pt are
among the most frequently examined surface processes

due to their environmental and industrial relevance. Pt exhibits
superior catalytic properties for various applications, such as
(preferential) CO oxidation for emission control or cleaning of
hydrogen streams for fuel cells.1−5 Despite efforts to replace
expensive Pt by cheaper materials, its activity can typically not
be matched. Thus, the focus is rather on reducing the Pt
amount, e.g., by using Pt atoms, clusters, and small
nanoparticles6−13 (or alloys and core−shell structures14,15)
on suitable support materials. It is, however, still challenging to
obtain detailed knowledge about increasingly smaller nano-
particles, especially about their inherent activity and metal/
support interaction.16−21

In recent years, significant advances have been made in
model catalysis, enabling surface characterization at (near)
atmospheric pressure, overcoming the “pressure gap”,22−31 but
bridging the “materials gap” is evenly important. Previous
single-crystal studies have provided fundamental insight, but
they cannot fully mimic nanoparticles25,32,33 (with support
effects being apparently inaccessible), which is why more
realistic model systems are required, such as oxide-supported
nanoparticles/islands11,16,25,34 or inverse systems.35−37

In this contribution, we present Pt/ZrO2 model catalysts
prepared by atomic layer deposition (ALD) that were
examined at mbar pressures by operando sum frequency

generation (SFG) spectroscopy and near-ambient pressure X-
ray photoelectron spectroscopy (NAP-XPS), with simulta-
neous mass spectrometry (MS) product analysis, and
complemented by density functional theory (DFT) calcu-
lations.
ALD has been widely used in industrial manufacturing,38,39

especially for dielectrics and microelectronics, and is receiving
increasing attention for (upscalable) catalyst preparation.40

The current model catalysts consist of a zirconia film, ALD-
grown (400 cycles) on a Si (100) wafer, and Pt deposits
prepared by different numbers of ALD cycles (10−250; see
transmission electron microscopy (TEM) images in Figure 1a
and Figure S3). Whereas the zirconia ALD generated a
uniform 42 nm-thick oxide support, using a few (10, 50) Pt
cycles produced small Pt particles up to 8 nm in size (Figure
1a, right panel). Upon applying 125 or 250 deposition cycles,
the Pt particles coalesced into islands, finally forming a
homogeneous Pt film of uniform ∼10 nm thickness (Figure 1a,
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left panel). These nucleation and growth processes41 allow for
the preparation of different well-defined Pt/ZrO2 model
catalysts ranging from isolated Pt nanoparticles to bulk-like
thin films. Herein, the 50 and 250 cycle samples are the most
informative ones (other samples are described in the
Supporting Information). The ALD approach to catalyst
synthesis is not new,42,43 but the combination with operando

surface spectroscopy (SFG and NAP-XPS carried out in high-
pressure cells with simultaneous MS gas-phase analysis) and
DFT calculations provides a complementary picture.
The standard cleaning used for single crystals in ultrahigh

vacuum (UHV), i.e., sputtering/annealing, could not be
applied as it would have destroyed the ALD samples. Inspired
by the (re-)activation of technological catalysts, all samples
were thus cleaned from carbonaceous residues by heating in 10
mbar O2 to 400 °C and in 20 mbar CO/O2 (1:1) to 300 °C.
The Pt morphology was then addressed by polarization-

dependent SFG of CO adsorption (10 mbar CO at 150 °C;
Figure 1b; see the Supporting Information for SFG theory and
fit values). The spectra show the on-top CO resonance region,
as no other binding geometries were observed. Two polar-
ization combinations were employed: ppp (has its maximum
intensity for CO bonds parallel to the macroscopic surface
normal; black in Figure 1b) and ssp (has its maximum intensity
for CO bonds inclined with respect to the macroscopic
surface normal, i.e., around 30−40° depending on molecular
polarizability; red in Figure 1b).44,45 Due to the angular
dependence, the resulting intensity ratio Ippp/Issp for CO is
expected to decrease with increasing bond inclination of the
molecules.46,47 Because the Pt film of the 250 cycle sample
consisted of planar islands with a uniform height of about 10
nm, adsorbed CO was mostly perpendicular to the ZrO2/
Si(100) surface so that the CO peak intensity was high in ppp
and very low in ssp (ratio of 17.4). In light of our previous
study of CO/Pt(111),47 assuming an identical optical interface
model, this would correspond to an average CO tilt angle of
∼5° (relative to the macroscopic surface normal), although
this value is just meant to show a trend. In contrast, the 50
ALD cycle Pt film consisted of small particles (about 8 nm)
with multiple facets, many of which are no longer parallel to
the substrate. On these inclined facets, CO still adsorbs

Figure 1. (a) Cross-sectional TEM micrographs of 250 cycle and 50
cycle Pt films. The 250 cycle film consists of large uniform and planar
islands (∼10 nm in thickness), whereas the 50 cycle film is made up
of individual Pt particles (size of about 8 nm). (b) SFG spectra in two
different polarization combinations (ppp and ssp) of adsorbed CO
(10 mbar at 150 °C); the surface morphology of islands/particles (see
models) can be assessed by comparing the ppp to ssp intensity (ppp
(ssp) has a higher intensity if the CO bond is parallel (tilted) to the
macroscopic surface normal).

Figure 2. SFG spectra (ppp polarization) displaying on-top CO on different Pt surfaces, acquired in 10 mbar CO at the indicated temperatures.
The surface roughness increases from left to right, as indicated by the decreasing intensity and redshift of resonance positions. The indicated values
were obtained from data fits (solid lines). For rough surfaces, spectra at 275 °C showed a diminishing on-top CO, which was irreversible upon
cooldown (Figure S10). This cannot be explained by a decrease in CO coverage, as for Pt(111), the spectrum remained almost unchanged.
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perpendicularly, but the CO bonds are inclined with respect to
the macroscopic surface normal. Accordingly, the SFG
intensity is lower in ppp, resulting in a much lower Ippp/Issp
ratio of 2.3. Following the same assumptions as above, the
average CO tilt angle would be ∼40° (note that this again is
just to show the trend). This rough estimate agrees with the
facet inclination and ratio from TEM images.
Apart from the intensity, the peak position and peak

symmetry/asymmetry are noteworthy. The peak position
depends on the coordination of the Pt adsorption site and
the CO surface coverage (inducing chemical and dipole−
dipole interactions).27,48,49 As the coverage should be (nearly)
the same under identical pressure and temperature conditions,
the 3 cm−1 difference points to slightly rougher surfaces for the
nanoparticle sample. The (a)symmetry of an SFG signal
depends on the amplitudes Ar or Anr and phase difference ϕ
between resonant (adsorbed CO) and nonresonant signal
contributions50−52 (see the Supporting Information). The
nonresonant background Anr may originate from Pt surface
defects (changing the electron localization at the surface) and
electronic contributions of the ZrO2/Si(100) substrate.
Comparing the spectra of the 250 and 50 cycle samples, the
intensities of the resonant and nonresonant contributions are
much more similar in the case of the particulate film (smaller
particle size, more defects, and more metal/oxide interface),
while the resonance phase relative to the nonresonant
background, as obtained by means of the quantitative
deconvolution of the data, is found to be similar for both
CO-Pt systems. This leads to a more asymmetric line shape for
the 50 cycle Pt, directly reflecting its surface morphology.
In order to further characterize the ALD-prepared model

catalysts, they were compared to Pt single crystals at different
temperatures. Figure 2 shows the SFG ppp spectra of smooth
(UHV annealed to 800 °C) Pt(111), 250 and 50 ALD cycle
Pt/ZrO2, and sputtered Pt(111) in 10 mbar CO. Respective
fitting values are given in the Supporting Information (our
system has a spectral accuracy of 2 cm−1). At 175 °C, the
characteristic on-top CO on Pt(111) was observed at 2092
cm−1, matching the saturation coverage.49,53 The 250 cycle
sample exhibited a continuous Pt surface (Figure 1 and Figures
S2 and S3), but was still rougher than the annealed Pt(111), as
indicated by the redshifted wavenumber (2089 cm−1) and
increased peak asymmetry. Adsorbed CO on the 50 cycle Pt/
ZrO2 sample, consisting of 8 nm (connected) particles,
exhibited a similar wavenumber, indicating identical coordina-
tion, but lower intensity and higher asymmetry due to the
inclined facets. The higher number of low-coordinated (step/
kink) sites54,55 on the ALD samples was confirmed by
comparison with the CO spectra of sputtered Pt(111) (2081
cm−1) and Pt(110) (2075 cm−1) (Figure S9), showing even
lower wavenumbers.53,56 Apparently, the ALD Pt catalysts
exhibit roughness intermediate between the annealed and
sputtered Pt(111).
Now, turning to the CO adsorption at higher temperatures

(225/275 °C), the decreased CO coverage induced a
redshift.24,48,49,53 For Pt(111), the on-top CO signal redshifted,
but the intensity was similar to that at 175 °C. Analogously, the
CO signals of the ALD samples and sputtered Pt(111)
exhibited small redshifts at 225 °C (and a minor intensity
loss). However, at 275 °C, the rougher surfaces showed a
pronounced intensity loss, peak shift, and phase alteration.
Previously, a similar observation on polycrystalline Pt foil57

was explained by CO desorption, but CO is more strongly

bonded to steps/defects than terraces.58,59 Furthermore, the
spectral changes were irreversible upon cooldown in CO (see
Figure S10) and ϕ changed significantly, ruling out simple
adsorption/desorption and rather suggesting a permanent
modification/blocking of the adsorption sites. It has been
reported that stepped Pt surfaces or small Pt particles/clusters
may cause CO dissociation, forming a carbon overlayer,60 in
line with the current observation. Indeed, the CO spectrum of
the 250 cycle Pt at 10 mbar/225 °C agrees quite well with the
reported values of Pt(557) at 30 mbar/250 °C, which showed
CO dissociation at 275 °C. The dissociation hypothesis is
supported by the fact that adding O2 to CO and heating
reversed the spectral change by reoxidizing carbon to CO2
(Figure S11). Nevertheless, CO dissociation on Pt has been
controversially discussed for a long time.
This motivated the DFT calculations of CO dissociation on

smooth and rough Pt surfaces (Figure 3). CO dissociation on

Pt(111) and Pt(211) is strongly endothermic and barriers >3
eV have been reported in the low coverage limit,61 making this
process improbable. For a more facile dissociation, the
adsorbed state of CO should be destabilized, whereas the
final state needs to be stabilized. A destabilization of the
adsorbed state is achieved by increasing the coverage (gas
pressure), whereas the final state is stabilized by CO2
formation. In particular, direct CO2 formation according to
the Boudouard reaction (CO* + CO* → CO2 + C*) hinders
the backward C−O association reaction. Similar contributions
(local coverage and final state) to favoring the Boudouard
reaction have been reported for PtSn61 and Cu.62,63 For

Figure 3. (a) Potential energy diagram for CO disproportionation
over an adatom on Pt(100) (green) and Pt(410) (blue). The
dissociation is evaluated at the CO coverage given by a
thermodynamic analysis, and the zero level is the saturation coverage
minus one CO molecule and one CO molecule in the gas phase. The
inset shows the HOMO orbital for (CO−CO)2−. Panels (b)−(d) and
(e)−(g) show the initial, transition, and final states for dissociation at
an adatom on Pt(100) and Pt(410), respectively. Atomic color code:
C (dark gray), O (red), Pt adatom or top layer (beige), and Pt (light
blue).
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efficient CO−CO coupling and reaction, the C weight of the
2π* orbital on one reacting molecule should overlap with the
O weight on the other molecule. This may be accomplished on
stepped and kinked surfaces, so we considered two model
structures: a Pt adatom coordinated with two CO molecules
on Pt(100) and Pt(410). The barriers were evaluated at
coverages obtained from a thermodynamic analysis (Figures
S14 and S15). The barriers for the reactions are 1.8 and 2.1 eV
for dissociation at the adatom and Pt(410), respectively. For
the reaction at the adatom (Figure 3b−d), one of the CO
molecules on the Pt adatom is reacting with a CO on the
(100) facet. The transition state is a bent O−C−O structure
(Figure 3c), whereas the final state (Figure 3d) is gas-phase
CO2 and the remaining carbon atom is in a highly coordinated
position. A fourfold coordinated C on Pt(100) is (per carbon
atom) as stable as graphite, thus stabilizing the final state.64

The reaction path on Pt(410) is different as both reacting CO
molecules are below the step (Figure 3e−g). The 2π*−2π*
match is, in this case, enabled by an initial bending of the CO
close to the step, and the final state again has a fourfold
coordinated C atom. Accordingly, on the rougher Pt surfaces,
CO dissociation is facilitated by a barrier that is lower than 1
eV as compared to the smooth surfaces.
Turning to CO oxidation on the Pt/ZrO2 model catalysts,

Figure 4a,b shows the SFG ppp spectra acquired in a reaction
mixture of 10 mbar CO and 20 mbar O2 from 150 to 500 °C.
At 150 °C, the Pt particles were on-top CO-covered
(poisoned) and thus inactive, with 2091 cm−1 indicating
high-coordination sites for the 250 cycle sample. The 50 cycle
sample showed a 10 cm−1 redshift, indicating lower
coordination/higher roughness, with lower intensity and
more asymmetry, due to the nanoparticle morphology. Upon
temperature increase, the peak of adsorbed CO decreased and
redshifted (due to decreasing CO coverage) and finally
disappeared when the Pt surfaces were fully oxygen-covered
and thus active: at 400 °C for the Pt thin film, but at 450 °C
for the Pt nanoparticles. The temperature-dependent shifts
were 2091−2080 cm−1 for the smoother Pt film and 2081−
2074 cm−1 for the rougher Pt nanoparticles, the latter
wavenumbers indicating stronger bonding on the rougher
surfaces. The ignition temperatures were corroborated by the
simultaneously acquired CO2-MS traces in Figure 4c,d and are
in accordance with values reported in the literature31,65 (note
that MS measurements without simultaneous SFG, “laser-off”,
ruled out any laser-induced effects; Figure S16). As long as
adsorbed CO is present, the oxidation reaction is largely
inhibited, as the Pt surface can only be in a single stable state,
either CO-poisoned (inactive) or O-covered (active).66

Accordingly, both SFG and MS indicated that about 50 °C
higher temperature was required for ignition on the rougher
(50 cycle) Pt nanoparticles. This is unexpected, because
rougher Pt surfaces are generally considered to be more active
in CO oxidation,9,66 as their low-coordinated sites (steps,
kinks, and edges) bind both oxygen and CO stronger than
terraces. The O-covered active state can be more easily
established on rougher surfaces (indicated by the lower
ignition temperature and higher CO tolerance) despite the
higher CO oxidation barriers67 (according to the Brønsted−
Evans−Polanyi relation68). However, in the current case, the
inherent activity is not the only important factor, as shown in
the following.
To further examine the reaction onset, NAP-XPS was

applied as the second operando technique (which again rules

out laser-induced effects). Due to technical limitations, the
pressure was limited to 1 mbar CO and 2 mbar O2. The C 1s
spectra acquired during CO oxidation (Figure S17) detected
graphitic carbon (284.7 eV),69 adsorbed CO (286.2 eV),59,70 a
weak shoulder (around 288 eV; likely carbonate on zirconia),
and gas-phase CO (∼291 eV). Figure 4e,f displays the fitted
peak areas vs (increasing) temperature for adsorbed CO and
carbon. In analogy to SFG, for smoother (250 cycles) Pt films,
CO fully disappears at a temperature 50 °C lower than for
rougher (50 cycles) Pt nanoparticles (the absolute temper-
atures are lower due to the 10-fold lower pressure).
However, NAP-XPS showed that much more carbon was

present during the reaction on the 50 cycle (rough) Pt
nanoparticles, which even increased during the first two
temperature steps, clearly indicating CO disproportionation
(Figure 4f). Atomic carbon apparently poisons the (low-
coordinated) active sites for oxygen activation until it is
removed by oxygen at higher temperatures. This effect explains
the higher reaction onset temperature of the Pt nanoparticles
despite their presumably more active surface. In contrast, the
smoother 250 cycle Pt film was much less affected by C
poisoning, yielding a lower reaction onset temperature. After

Figure 4. (a, b) SFG spectra (ppp polarization) acquired in 10 mbar
CO + 20 mbar O2 (batch mode) for the 250 and 50 cycle ALD Pt
samples. The spectra redshift at higher temperatures due to reduced
CO coverage until the surfaces fully switch to oxygen coverage. (c, d)
Derivatives of the mass spectrometry data of CO and CO2. For the
rougher 50 cycle film, both the disappearance of CO in SFG and the
onset of CO2 production are shifted to higher temperature. (e, f)
Temperature-dependent evolution of adsorbed CO and carbon
deduced from C 1s NAP-XPS (1 mbar CO, 2 mbar O2; flow mode).
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ignition, both Pt surfaces were O-covered and showed the
expected hysteresis upon lowering the temperature (Figure
S19). CO readsorbed at a comparably lower temperature
paralleled by less coking (due to cooling in an oxygen-
containing atmosphere). Throughout all experiments, the
operando Pt 4f spectra revealed that Pt remained metallic
(Figure S17).
In summary, combining the ALD model catalyst preparation,

operando SFG/NAP-XPS/MS spectroscopy, and DFT calcu-
lations enabled us to build another bridge across the “materials
and pressure gap”. Few ALD Pt deposition cycles produced Pt
nanoparticles with multiple inclined facets, whereas more
deposition cycles (≥125) led to more uniform Pt films. The
polarization-dependent SFG revealed the molecular orienta-
tion of CO (relative to the macroscopic surface normal) and
thus both the morphology and roughness of different ALD-
grown Pt model catalysts. Upon CO adsorption at mbar
pressure around 275 °C, Pt(111) did not show CO
disproportionation, whereas rougher Pt particles/films and
sputtered Pt(111) did. According to the DFT calculations,
direct CO dissociation is unfeasible even at stepped Pt
surfaces. Dissociation instead occurs at high coverages via a
disproportionation reaction at low-coordinated sites that
structurally promote CO−CO coupling and stabilize the
remaining C atom. The effect of surface roughness on the
CO oxidation was monitored at mbar pressure and elevated
temperature by correlating the operando SFG and NAP-XPS
spectra with the MS reactivity data. Different from the general
expectation, the reaction onset temperature was higher for the
smaller/rougher Pt nanoparticles than for the smooth Pt
surfaces. The rougher surfaces were poisoned by carbon
coking, detected by NAP-XPS, and explained by DFT
calculations via CO disproportionation on favorable sites.
Only after the removal of the carbon deposits did the rough Pt
surfaces become active, but at 50 °C higher temperature than
for smooth Pt. Upon cooldown, the smooth Pt films exhibited
a wider hysteresis window and were hardly affected by CO
disproportionation. Future studies of ALD Pt particles and
films on different support materials should reveal whether
reducible supports facilitate activation at lower temperature
and reduce/suppress the initial carbon poisoning.
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