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Abstract

Concomitant neuropsychiatric symptoms (NPS) are associated with accelerated Alz-

heimer's disease (AD) progression. Identifying multimodal brain imaging patterns

associated with NPS may help understand pathophysiology correlates AD. Based on

the AD continuum, a supervised learning strategy was used to guide four-way multi-

modal neuroimaging fusion (Amyloid, Tau, gray matter volume, brain function) by

using NPS total score as the reference. Loadings of the identified multimodal patterns

were compared across the AD continuum. Then, regression analyses were performed

to investigate its predictability of longitudinal cognition performance. Furthermore,

the fusion analysis was repeated in the four NPS subsyndromes. Here, an NPS-

associated pathological–structural–functional covaried pattern was observed in the

frontal-subcortical limbic circuit, occipital, and sensor-motor region. Loading of this

multimodal pattern showed a progressive increase with the development of AD. The

pattern significantly correlates with multiple cognitive domains and could also predict

longitudinal cognitive decline. Notably, repeated fusion analysis using subsyndromes

as references identified similar patterns with some unique variations associated with

different syndromes. Conclusively, NPS was associated with a multimodal imaging

pattern involving complex neuropathologies, which could effectively predict longitu-

dinal cognitive decline. These results highlight the possible neural substrate of NPS in

AD, which may provide guidance for clinical management.

K E YWORD S

Alzheimer's disease, cognitive decline, frontal-subcortical limbic circuit, neuropsychiatric
symptoms, supervised multimodal fusion

Received: 29 December 2021 Revised: 11 May 2022 Accepted: 30 July 2022

DOI: 10.1002/hbm.26051

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2023;44:119–130. wileyonlinelibrary.com/journal/hbm 119

https://orcid.org/0000-0003-3486-2277
https://orcid.org/0000-0002-1591-4900
https://orcid.org/0000-0002-8571-2802
https://orcid.org/0000-0003-4226-9369
https://orcid.org/0000-0003-0145-7558
mailto:zhangminming@zju.edu.cn
mailto:huangpy@zju.edu.cn
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/hbm


1 | INTRODUCTION

Neuropsychiatric symptoms (NPS) are frequently observed in mild

cognitive impairment (MCI) and Alzheimer's disease (AD) (Lyketsos

et al., 2002; Lyketsos et al., 2011), with 80% of AD patients

involved (Lyketsos et al., 2002). Longitudinal studies showed that

concomitant NPS is associated with accelerated cognitive decline

(Fischer et al., 2012; Karttunen et al., 2011; Teng et al., 2007),

severer neurodegeneration (Scaricamazza et al., 2019), and an ear-

lier death (Peters et al., 2015). Accordingly, exploring the underly-

ing pathophysiology correlates of NPS in AD is crucial for

improving clinical management.

Previous neuroimaging studies have revealed NPS-related brain

abnormalities from different aspects, suggesting that NPS is associ-

ated with brain functional and structural impairments in the cortical

and subcortical limbic circuit. For instance, depression has been found

associated with gray matter (GM) atrophy, white matter (WM) lesion,

and cortical hypometabolism (Chen et al., 2021). AD neuropathologies

are also associated with NPS (Ehrenberg et al., 2018; Krell-Roesch

et al., 2019), although the specific contribution of different patholo-

gies is still unclear. Some studies ascribe NPS to Tau pathology (Tissot

et al., 2021), but some others highlighted the importance of Aβ burden

(Pichet Binette et al., 2021). Apparently, these brain abnormalities

involve complex neuropathologies which may inherently interplay

with each other. For example, Aβ (Buckner et al., 2005; Kvavilashvili

et al., 2020; Mormino et al., 2011) accumulation could promote Tau

(Buckner et al., 2008) pathology, causing further functional and struc-

tural impairments. Nevertheless, they may also independently develop

based on different genetic and environmental factors. Therefore,

when investigating their impacts on clinical function, it is important to

use methods that can incorporate both complementary multimodal

information and cross-modal associations.

Recently, a reference-guided multimodal fusion method, called

multisite canonical correlation analysis with reference + joint inde-

pendent component analysis (MCCAR + jICA) (Qi et al., 2018), was

proposed to identify covarying multimodal imaging patterns that cor-

relate with a specific disease trait, such as NPS. Specifically,

MCCAR + jICA uses subject-wise clinical measure as a reference to

supervise multimodal image fusion by maximizing both inter-modality

association and reference-modality correlation. Thus, this model can

effectively extract multimodal patterns associated with a specific dis-

ease trait, taking inter-modality associations into account. Previous

application of this method successfully revealed cognitive-related net-

works in schizophrenia (Sui et al., 2018) and electroconvulsive therapy

treatment responsive networks in depression (Qi et al., 2020). Accord-

ingly, we believe that the MCCAR + jICA model is a proper method

for comprehensively evaluating the neuroimaging phenotypes of NPS

in AD-continuum subjects.

In the present study, we focused on four goals: (1) identify multi-

modal brain patterns associated with NPS total score within AD con-

tinuum; (2) assess group differences of these identified regions;

(3) evaluate ability of the identified brain patterns to predict changes

in cognition; and (4) identify the common and unique multimodal

attributes among four neuropsychiatric subsyndromes (psychosis,

affective symptoms, hyperactivity, apathy).

2 | MATERIALS AND METHODS

2.1 | Study participants

Data used in the current study were obtained from the AD neuroim-

aging initiative (ADNI) database (Supplementary Material 1 provides

detailed information about ADNI). All included subjects underwent

the T1-weighted structural scan, [18F]-AV45 PET, [18F]-AV1451 PET,

resting-state functional MRI (rsfMRI), NPS score, and comprehensive

neuropsychological assessments (Supplementary Material 2 provides

detailed information about the MRI and PET acquisition). This crite-

rion yielded 167 healthy control (HC), 34 subjective memory com-

plaint (SMC), 118 MCI, and 18 AD patients from the ADNI database

(see flowchart and inclusion criteria in Supplementary Material 3).

2.2 | Neuropsychological assessment

All subjects completed comprehensive neuropsychological tests,

including assessment of general mental status (MMSE and CDR),

memory (ADNI memory composite score [ADNI-MEM]), executive

function (ADNI executive function composite score [ADNI-EF]),

language function (ADNI language function composite score

[ADNI-LAN]), and visuospatial function (ADNI visuospatial function

composite score [ADNI-VS]). More detailed information about com-

posite cognitive scores is provided in Supplementary Material 4.

2.3 | Neuropsychiatric assessment

Quantitative assessment of behavioral manifestations was performed

via the Neuropsychiatric Inventory (NPI) (Cummings, 1997). The NPI

is a validated caregiver-based questionnaire for NPS evaluation in

patients with dementia (Cummings, 1997). It assesses the frequency

(from 0 to 4) and severity (from 0 to 3) of 12 NPSs: delusions, halluci-

nations, agitation/aggression, dysphoria/depression, anxiety, eupho-

ria/elation, apathy/indifference, disinhibition, irritability, aberrant

motor behavior, nighttime sleep disturbances, and appetite/eating

changes. The maximum total score (frequency � severity) for each

NPS is 12, and the NPI total cumulative score is 144 (Cummings, 1997).

Detailed information of the 12 NPI items was listed in Supplementary

Material 5.

Based on previous studies (Aalten et al., 2007; Ballarini

et al., 2016), we further clustered the 12 NPI symptoms into 4 distinct

subsyndromes as follows: (1) psychosis (delusions, hallucinations, and

nighttime sleep disturbances); (2) affective symptoms (anxiety and

depression); (3) hyperactivity (agitation/aggression, irritability, eupho-

ria/elation, aberrant motor behavior, and disinhibition); and (4) apathy

(apathy and eating and appetite changes). The score for each
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subsyndrome was derived by multiplying the frequency and severity

of the symptom.

2.4 | Image preprocessing

RsfMRI data preprocessing was performed using the data processing

assistant and resting-state fMRI toolbox (DPARSF; www.rfmri.org/

dpasfa) (Chao-Gan & Yu-Feng, 2010) based on Statistical Parametric

Mapping 12 (SPM12; www.fil.ion.ucl.ac.uk/spm). The first five rsfMRI

scans were discarded for the signal equilibrium and the subject's adap-

tation to the scanning noise (Chao-Gan & Yu-Feng, 2010). The

remaining 135 images were corrected for timing differences in slice

acquisition. After that, a rigid body motion correction was performed

to correct the head motion of the fMRI scans. Then, the mean rsfMRI

image was co-registered to the subject-specific T1 image, spatially

normalized to the Montreal Neurological Institute (MNI) standard

space, and resampled into 3 � 3 � 3 mm3 cubic voxel. Scrubbing was

then performed to reduce motion-related artifacts by using a frame-

wise displacement threshold of 0.5 (Power et al., 2012). To control

the residual effects of motion and other nonneuronal factors, we

removed covariates, including six head motion parameters and signals

of WM and cerebrospinal fluid (CSF) (Chao-Gan & Yu-Feng, 2010;

Friston et al., 1996). The fMRI data were then smoothed using an

8 mm full width at half maximum Gaussian kernel (FWHM). Finally,

we calculated the amplitude of the low frequency fluctuation (ALFF)

measure, which was the average square root of the power spectrum

(across 0.01–0.1 Hz) (Zang et al., 2007).

The preprocessing steps for T1-weighted image were: (1) spatial

registration to a reference brain template; (2) tissue segmentation into

GM, WM, and CSF based on an adaptive maximum a posterior

approach with partial volume estimation. An iterative hidden Markov

random field model (Cuadra et al., 2005) was further applied to

remove isolated/unclassified voxels; (3) bias correction of intensity

nonuniformities; (4) the GM maps were normalized to MNI coordinate

space, modulated via the Jacobian, and resampled to 3 � 3 � 3 mm3

voxel size; and (5) the GM volume (GMV) maps were smoothed using

an 8 mm FWHM Gaussian kernel.

The [18F]-AV45 PET and [18F]-AV1451 PET preprocessing was

performed using the PET-PVE12 (an SPM toolbox for partial vol-

ume effects (PVE) correction in brain PET (Gonzalez-Escamilla

et al., 2017)). Briefly, the T1-weighted image was processed using

the same method described above. Then, [18F]-AV45 PET and

[18F]-AV1451 PET data were co-registered to the structural MRI

data and corrected for PVE using the voxel-wise method defined

by Muller-Gartner et al. (PVEc-MG) methods (Muller-Gartner

et al., 1992). Here, we set the isotropic point spread function at

8 mm according to the effective image resolution of the ADNI PET

data. Then, the voxel-wise [18F]-AV45 PET map was calculated

using the whole cerebellar signal in the individual raw PET images

as the reference, and the voxel-wise [18F]-AV1451 SUVR map was

calculated using cerebellum crus. Finally, for voxel-based analyses,

PVEc-MG corrected [18F]-AV45 PET and [18F]-AV1451 PET images

were spatially warped using the deformation fields derived from

registration of the co-registered MRI scans to the reference tem-

plate. Finally, warped images were smoothed with an 8 mm FWHM

Gaussian kernel.

2.5 | Feature extraction

Four representative neuroimaging features ([18F]-AV45 PET SUVR,

[18F]-AV1451 PET SUVR, GMV, and ALFF) were included as the input

of fusion analysis. Here, we used the [18F]-AV45 PET SUVR and [18F]-

AV1451 PET SUVR to reflect AD neuropathologies, volume changes

to reflect the GM atrophy, and ALFF to reflect the intrinsic brain

activity. Normalization is done separately for each feature using the

square root of mean of squared data for all subjects.

2.6 | Multimodal fusion using NPS as the reference

The normalized features were jointly analyzed based on

MCCAR + jICA (Qi et al., 2018) using the Fusion ICA Toolbox (FIT,

https://trendscenter.org/software/fit/). Figure 1 shows a detailed

analysis flowchart. First, for each modality, the neuroimaging features

were stacked to 2D matrices with the row indicates the subject and

the column indicates the features. Then, NPS total score was used as

the reference to guide the joint decomposition of four features to

generate spatial maps and their corresponding canonical variants for

each modality. Based on the modified minimum description length cri-

terion (Li et al., 2007), 10 components were estimated for each fea-

ture. MCCAR identifies joint multimodal components that show

maximal correlation with the reference and inter-modality covariation

based on supervised learning. Finally, jICA is applied to the

concatenated spatial maps to obtain the final independent compo-

nents (ICs) and their corresponding mixing matrices. Here, the ICs rep-

resent the spatial location correlates with reference, while the loading

in mixing matrices represents the contribution weight for each subject

in the corresponding component. More details of the model are

shown in Qi et al. (2018).

Analysis of variance (ANOVA) was performed to explore group

differences in the loadings of the four imaging features. Post hoc anal-

ysis using pair-wise two-sample t tests was performed to examine the

source of ANOVA difference (significant at p < .05, false discovery

rate [FDR] corrected). We listed the detailed analysis flowchart in

Figure 1.

2.7 | Correlation between imaging features and
cognitive scores

To explore whether the multimodal brain alterations underpin the

cognitive decline, we further examined the potential relationship

between loadings of imaging features and cognitive performance. The

Pearson correlation between the loadings of imaging features and
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cognitive scores (ADNI-MEM, ADNI-EF, ADNI-LAN, ADNI-VS) was

calculated across subjects (significant at p < .05, FDR corrected).

2.8 | Predictability of the identified pattern on the
longitudinal cognition progression

We also tested the predictability of the identified pattern on longitu-

dinal cognitive changes in the subgroups (HC = 80, SMC = 30,

MCI = 80, AD = 9). For each domain score, simple linear regression

analyses were performed using all subjects. Annual change rate of the

cognitive score was set as the dependent variable, and the loadings of

the four imaging features were regressors, with age, gender, and edu-

cation as covariates. For comparison, the predictability of NPS total

score was also investigated with similar settings.

2.9 | Multimodal fusion using each
neuropsychiatric subsyndrome as the reference

To further identify the common and unique multimodal covarying pat-

terns in four neuropsychiatric subsyndromes (psychosis, affective

symptoms, hyperactivity, apathy), the same fusion analysis method

was performed using each subsyndrome score as a reference,

respectively.

3 | RESULTS

3.1 | Demographic and neuropsychological data

Detailed demographics are provided in Table 1. We used a chi-

squared test for categorical (gender, APOE genotype) and ANOVA for

continuous data (age, education), respectively (SPSS, version 19.0).

Then, a two-sample t test was performed to reveal the source of

ANOVA difference (significant at p < .05).

There were no group differences in age, gender, or education

among HC, SMC, MCI, and AD. In terms of cognitive level, MCI and

AD had lower cognitive scores in all items compared to HC. In terms

of neuropsychiatric scores, MCI and AD had higher NPS total scores

and subsyndromes scores compared to HC. SMC showed increased

affective symptoms when compared to HC. Moreover, comparisons

between patient groups (SMC, MCI, and AD) showed progressively

decreased cognitive scores and increased NPS scores.

3.2 | NPS total score associated multimodal
covarying imaging pattern

One joint component was significantly correlated with NPS total score

and showed significant alterations along the AD continuum (HC, SMC,

MCI, AD). The resulting spatial maps were Z-transformed and

F IGURE 1 Flowchart of NPS-guided multimodal fusion and prediction analysis. (a) NPS total score was set as the reference to guide the four-
way MRI fusion. (b) Correlation analysis and linear regression were performed to estimate the associations between the identified multimodal
pattern and baseline cognitive performance across groups and longitudinal cognitive scores in the subgroup, respectively. (c) The same fusion
with reference method was performed by using four subsyndrome scores as the reference individually, to guide the four-way MRI fusion to
further identify the common and unique multimodal attributes. ALFF, amplitude of low frequency fluctuations; GMV, gray matter volume; IC,
independent components; ICA, independent component analysis; MCCAR, multisite canonical correlation analysis with reference; NPS,
neuropsychiatric symptoms; SUVR, standard uptake value ratios
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visualized at jZj > 2 in Figure 2(a). Along AD-continuum, NPS was cor-

related with (1) increased amyloid and Tau deposition while decreased

GMV and ALFF in the inferior parietal gyrus (IPG); (2) increased Tau

deposition while decreased GMV and amyloid deposition in the tem-

poral regions (especially involves the HP); (3) decreased GMV, amy-

loid, and Tau deposition in the subcortical regions, including the insula

and thalamus; and (4) increased ALFF in the occipital lobe while

decreased ALFF in the frontal regions. Anatomical information for the

identified regions in the joint component is listed in Supplementary

Material 6.

As shown in Figure 2(b), higher loadings of imaging features were

associated with worse NPS (r = .18, p = .001 for amyloid SUVR;

r = .21, p < .001 for Tau SUVR; r = .15, p = .006 for GMV; r = .13,

p = .019 for ALFF; p values are FDR corrected). Significant differences

in loadings of amyloid SUVR, Tau SUVR, ALFF, and GMV (Figure 2(c))

among groups were also observed. To be specific, AD showed higher

loadings than HC in amyloid SUVR, Tau SUVR, and GMV. MCI

showed higher loadings than HC in Tau SUVR and GMV. Moreover,

progressively increased loadings of amyloid SUVR, Tau SUVR, and

GMV changes can be observed along the whole AD continuum.

Moreover, there were significant associations between loadings

of imaging features: r = .34, p < .001 for association between amyloid

SUVR and Tau SUVR; r = .20, p < .001 for association between amy-

loid SUVR and GMV; r = .16, p = .003 for association between amy-

loid SUVR and ALFF; r = .19, p < .001 for association between Tau

SUVR and GMV; r = .15, p = .006 for association between Tau SUVR

and ALFF.

3.3 | Correlation between multimodal patterns and
cognition

The identified multimodal brain alterations were significantly associ-

ated with cognitive performance in four major domains. The loadings

of four imaging features (amyloid SUVR, Tau SUVR, ALFF, and GMV)

were negatively correlated with memory, executive, language, and

visuospatial function. Detailed results are listed in Table 2 and

Figure 3.

We also performed the correlation analysis within every group

(HC, SMC, MCI, and AD) and listed the results in Supplementary

Material 7.

3.4 | Predictability of longitudinal cognition
change

Linear regression analyses were performed in subgroups (NC = 80,

SMC = 30, MCI = 80, AD = 9, detailed demographic information was

listed in Supplementary Material 8). Our analysis found that the

baseline multimodal changes can effectively predict the decline of

TABLE 1 Demographic information

Demographic characteristics HC n = 167 SMC n = 34 MCI n = 118 AD n = 18 F-value/X2 Significance

Age 74.85 ± 7.83 74.72 ± 4.85 75.35 ± 8.02 76.74 ± 8.55 0.40 .752

Gender (female) 95/167 23/34 51/118 6/18 11.09 .011bcd

Education 16.62 ± 2.47 16.47 ± 2.44 16.32 ± 2.79 15.28 ± 2.54 1.57 .196

Cognition

CDR global 0.04 ± 0.13 0.09 ± 0.19 0.51 ± 0.39 0.89 ± 0.37 110.39 <.001bcde

CDR sum 0.14 ± 0.49 0.26 ± 0.59 2.07 ± 2.42 4.78 ± 1.93 74.17 <.001bcde

MMSE 28.92 ± 1.35 29.15 ± 1.05 27.03 ± 3.42 22.44 ± 2.43 51.64 <.001bcde

ADNI_MEM 0.93 ± 0.61 1.08 ± 0.73 0.26 ± 0.85 �0.88 ± 0.39 51.02 <.001bcde

ADNI_EF 0.96 ± 0.81 1.11 ± 0.82 0.26 ± 1.02 �0.91 ± 0.91 33.24 <.001bcde

ADNI_LAN 0.83 ± 0.76 1.00 ± 0.73 0.15 ± 1.01 �0.70 ± 0.63 30.15 <.001bcde

ADNI_VS 0.23 ± 0.63 0.03 ± 0.71 �0.10 ± 0.87 �0.70 ± 1.28 10.13 <.001bce

NPI score

Total score 1.38 ± 3.28 3.62 ± 8.78 5.44 ± 9.37 10.72 ± 13.41 13.407 <.001bce

Hyperactivity 0.31 ± 1.09 1.24 ± 4.21 1.86 ± 3.92 4.17 ± 6.63 11.361 <.001bce

Psychosis 0.47 ± 1.46 0.71 ± 1.64 1.20 ± 2.29 1.56 ± 3.58 4.133 .007bce

Affective symptoms 0.37 ± 1.12 1.38 ± 3.22 1.04 ± 2.22 1.44 ± 2.23 5.223 .002abc

Apathy 0.23 ± 1.43 0.29 ± 1.40 1.34 ± 3.34 3.56 ± 5.76 11.376 <.001bcde

Note: Data are presented as means ± standard deviations. a–e denotes post hoc analysis further revealed the source of ANOVA difference (a: HC vs. SMC;

b: HC vs. MCI; c: HC vs. AD; d: SMC vs. MCI; e: MCI vs. AD).

Abbreviations: AD, Alzheimer's disease; ADNI-EF, the composite scores for executive function in ADNI; ADNI-LAN, the composite scores for language in

ADNI; ADNI-MEM, the composite scores for memory in ADNI; ADNI-VS, the composite scores for visuospatial function in ADNI; APOE, apolipoprotein;

CDR, clinical dementia rating; GDS, geriatric depression scale; HC, healthy control; MCI, mild cognitive impairment; MMSE, Mini-Mental State

Examination; NPI, Neuropsychiatric Inventory; SMC, subjective memory complaint.
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follow-up memory, executive, and language functions. The baseline load-

ings of Tau SUVR and GMV were significantly correlated with the annual

change rate of memory. The baseline loading of GMV was significantly

correlated with the annual change rate of executive function; the base-

line loading of amyloid SUVR was significantly correlated with the annual

change rate of language (Table 3). Baseline NPS total score could not

predict the longitudinal cognitive changes. Moreover, we also tested the

predictability of the identified pattern on the longitudinal cognitive pro-

gression within each group (Supplementary Material 9).

3.5 | Imaging patterns associated with the four
subsyndromes

Subsyndrome scores (psychosis, affective symptoms, hyperactivity,

and apathy) associated joint components were also identified

(Figure 4 and Supplementary Material 10). The NPS total score-

associated and subsyndrome-associated multimodal patterns are dis-

played in Figure 4 for visual comparison. Both common and unique

patterns were identified.

F IGURE 2 The identified joint component using NPS total score as the reference. (a) The spatial maps are visualized at jZj > 2, where the
positive Z-values (red regions) mean more amyloid and Tau deposition, higher GMV, and ALFF, and negative Z-values (blue regions) indicate less
amyloid and Tau deposition, decreased GMV and ALFF. (b) The loadings of the identified imaging features and NPS total score were positively
correlated (HC: blue dots, SMC: green dots; MCI: orange dots; AD: red dots). (c) Boxplot of the loading parameters of the identified joint
component (FDR corrected). AD, Alzheimer's disease; ALFF, fractional amplitude of low frequency fluctuations; GMV, gray matter volume; HC,
healthy control; MCI, mild cognitive decline; NPS, neuropsychiatric symptoms; SMC, subjective memory complaint; SUVR, standard uptake value
ratios

TABLE 2 Correlation between loadings of the imaging features and cognitive scores in all subjects

Cognitive scores

Amyloid SUVR Tau SUVR GMV ALFF

r p r p r p r p

Memory �.314 <.001* �.533 <.001* �.277 <.001* �.202 <.001*

Executive function �.329 <.001* �.477 <.001* �.295 <.001* �.139 .012*

Language �.164 .003* �.469 <.001* �.267 <.001* �.188 .001*

Visuospatial function �.233 <.001* �.419 <.001* �.140 .010* �.040 .465

Note: The significant correlation that passes the multiple comparisons is marked by one asterisk (FDR corrected, q = 0.05).

Abbreviations: ALFF, amplitude of low frequency fluctuations; GMV, gray matter volume; SUVR, standard uptake value ratios.
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Similar to the multimodal pattern associated with NPS total

score, several common changes were observed in the subcortical,

temporal, and parietal regions. Notably, subsyndrome-specific mul-

timodal patterns were also identified, especially in the sensor-

motor (SM) and occipital regions. Thereinto, SM showed increased

GMV or ALFF with or without regional AD pathology deposition,

while occipital changes are less consistent in different

subsyndromes.

To show the multimodal brain alterations more clearly, we sum-

marize all the results into Figure 5 to show the NPS associated co-

occurring patterns. We performed additional analyses to prove the

robustness of our findings: (1) to reduce the possible effect of age,

F IGURE 3 Correlations between loadings of the imaging features and cognitive scores in all subjects. AD, Alzheimer's disease; ALFF,
amplitude of low frequency fluctuations; MCI, mild cognitive impairment; HC, healthy control; SMC, subjective memory complaint; SUVR,
standard uptake value ratios
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gender, education and sites, we include them as covariates in the

ANOVA analysis of group differences (Supplementary Material 11)

and associations between imaging features and cognition

(Supplementary Material 12); (2) to show the possible effect of data

distribution, we transformed the reference data and repeated the

fusion analysis (Supplementary Material 13). Results remain largely

consistent with our original findings. Details can be found in Supple-

mentary Materials 11–14.

4 | DISCUSSION

We applied a multimodal fusion method and identified an NPS-related

multimodal covarying pattern. The loading of this multimodal pattern

started to increase from the MCI stage and progressively worsens

with the advancement of AD. It was associated with impairments in

multiple cognitive domains and had good predictability in longitudinal

cognitive decline. Further analysis using the subsyndrome scores as

references partially replicated the NPS-related patterns but also

revealed some subsyndrome-specific patterns. Collectively, the cur-

rent study provided insights into the linkage between NPS and multi-

modal brain alterations in AD, which might underpin the disease onset

and progression.

4.1 | NPS associated multimodal pattern spatially
involves frontal-subcortical limbic circuits, which
significantly associated with cognitive performance
and progression

A pathological–structural–functional covaried pattern was observed

in the HP, thalamus, caudate, IPL, and frontal regions. These regions

are core components of the frontal-subcortical limbic circuit (Chen

et al., 2021), important for emotion regulation and cognitive function.

Similarly, based on rsfMRI data alone, Wang et al. also identified the

front-limbic regions as the core areas of NPS in AD (Wang

et al., 2019).

Functionally, the frontal-subcortical circuit is typically associated

with emotional/cognitive integration, while the IPL–subcortical circuit

is associated with sensory/cognitive integration. For example, distur-

bances in the frontal regions can cause attentional and cognitive dis-

turbances, and subcortical regions are associated with insomnia and

loss of appetite (Chen et al., 2021). Moreover, hippocampal-prefrontal

cortex dysconnectivity has been found associated with cognitive dys-

function in both major depression and AD (Sampath et al., 2017).

Therefore, impairment of the frontal-subcortical limbic circuit may

contribute to both cognitive decline and concomitant NPS in AD

patients.

Our results provide additional insights. To be specific, group com-

parisons showed progressively increased loadings of NPS-associated

multimodal patterns along the whole AD continuum, and the multi-

modal pattern was significantly associated with cognition, including

memory, executive, language, and visuospatial function. These results

prove that the identified NPS-associated multimodal pattern signifi-

cantly affects cognition in AD. Notably, baseline multimodal imaging

features but not the baseline NPS total score could effectively predict

the longitudinal cognitive decline. This indicates that the identified

multimodal brain alterations may the potential neural mechanisms

underlying the associations between NPS and cognitive decline.

4.2 | Different frontal-subcortical limbic circuit
regions suffer different pathogenic mechanisms in AD
subjects concomitant with NPS

Our further analysis found significant inter-modal associations and

demonstrated the interactions among different complex neuropathol-

ogies. Similarly, another study found that the NPS-associated brain

circuit identified from rsfMRI can further predict the baseline and lon-

gitudinal changes of AD pathology (Wang et al., 2019). Combining the

inter-modal associations and spatial information can help us to

explore the different pathogenic mechanisms underlying different

components of the frontal-subcortical circuit.

To be specific, IPL suffered amyloid deposition and decreased

brain function, while the temporal regions suffered Tau deposition

and GMV atrophy, indicating that these AD biomarkers were respon-

sible for IPL and temporal degeneration. Similarly, another study also

observed the strongest association between Tau and NPS in the tem-

poral regions in the preclinical AD (Pichet Binette et al., 2021). This is

consistent with the AD neuropathology spread pattern: amyloid depo-

sition starts from the precuneus/parietal regions while Tau deposition

starts from the temporal regions.

Interestingly, functional changes were found in frontal regions

without apparent AD pathology. Several possible reasons exist. First,

the effect of network modulation may be the key reason. Supporting

TABLE 3 Results of multiple regression analyses using the
stepwise variable selection method

β-coefficienta p-Value

Annual change rate of ADNI_MEM, adjusted R2 = .108, p < .001

loading of Tau SUVR �.243 .000

loading of GMV �.217 .002

Annual change rate of ADNI_EF, adjusted R2 = .040, p = .007

loading of Tau SUVR .145 .039

loading of GMV �.185 .009

Annual change rate of ADNI_LAN, adjusted R2 = .046, p = .001

loading of Amyloid SUVR �.226 .001

Abbreviations: AD, Alzheimer's disease; ADNI-EF, the composite scores

for executive function in ADNI; ADNI-LAN, the composite scores for

language in ADNI; ADNI-MEM, the composite scores for memory in

ADNI; ADNI-VS, the composite scores for visuospatial function in ADNI;

ALFF, amplitude of low frequency fluctuations; GMV, gray matter volume;

HC, healthy control; MCI, mild cognitive control; SMC, subjective memory

complaint; SUVR, standard uptake value ratios.
aStandardized β.
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evidence can be obtained from previous studies, which proposed

that the frontal is relatively spared from the AD neuropathological

deposition while is more initiated as the compensatory mechanism

resulted from the network modulation. Moreover, other factors,

like genetic and environmental factors, should also be considered.

For example, alterations in microRNA-124 in frontal regions are

specifically associated with social behavioral deficits and autism

(Mor et al., 2015). However, more work needs to be done to clarify

this problem.

4.3 | Subsyndrome-specific patterns identified
among neuropsychiatric subsyndromes

Variability in neuropsychiatric subsyndromes may be resulted from

the disruption of different neural networks in AD. Here,

subsyndrome-specific multimodal patterns were identified, especially

in the occipital regions and SM.

The occipital lobe participates in perceiving personal communica-

tion and social interactions. Previous studies have reported the associ-

ation between occipital structures and anxiety/disinhibition (Boublay

et al., 2020) and visual hallucinations (Holroyd et al., 2000; Lin

et al., 2006). In the current study, the affective symptom is specifically

associated with increased Tau deposition and GMV in the occipital

regions, indicating the disturbance may be a key pathogenic feature.

Interestingly, we also observed the hyperactivity-associated amyloid

deposition increase in the frontal regions and ALFF decrease in the

occipital regions. Such covariation patterns that involve distinct brain

regions may be the results of system modulation.

SM has been found connected with the emotion circuit and asso-

ciated with NPS in AD (Chen et al., 2021), for example, depression

and anxiety (Boublay et al., 2020). In the current study, psychosis and

F IGURE 4 The identified joint components using NPS subsyndrome scores as the reference. ALFF, fractional amplitude of low frequency
fluctuations; GMV, gray matter volume; NPS, neuropsychiatric symptoms; SUVR, standard uptake value ratios

F IGURE 5 Neuropsychiatric

symptoms (NPS) associated multimodal
brain regions and their predictivity in the
cognitive progression. To summary the
results here, the IPL, subcortical regions,
HP, and frontal regions work together as
the core structures to keep the
neuropsychiatric symptoms and cognitive
function. Correlation analysis and
regression analysis indicate that these
regions are significantly correlated with
cognition. ALFF, amplitude of low
frequency fluctuations; GMV, gray matter
volume; HP, hippocampus; ITG, inferior
temporal gyrus
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affective symptom are associated with increased GMV in the SM

regions, while hyperactivity is associated with increased Tau deposi-

tion and ALFF in the SM regions. The possible explanation is that SM

is the transfer hub which conveys the sensory information contained

from the emotion-inducing stimuli to other brain regions.

4.4 | The possible connective mechanism between
NPSs and AD neuropathology

There are several possible connective mechanisms between NPSs and

AD neuropathology. One is that NPSs may arise because of AD neu-

ropathology. That is, AD neuropathology affects key brain regions of

underlying emotional, mental and cognitive, so NPSs may be the non-

cognitive manifestation of AD (Jicha & Carr, 2010). Alternatively, NPS

may be the causal reason which affects circuit function and finally

lead to accelerated cognitive impairment. Furthermore, NPSs and AD

neuropathology may co-occur because of some shared pathologic

processes, such as brain vascular disease or WM change

(Alexopoulos, 2006), or the shared genetic factors, like apolipoprotein

E (Porcelli et al., 2016; Ye et al., 2016). In this case, there is no causal

relationship between NPSs and AD neuropathology but rather is a

third factor.

5 | LIMITATION

There are several limitations to the current study. First, the sample

sizes of different groups are unbalanced, with a relatively small sample

size for the AD group. Future studies with balanced subjects for each

group should be validated. Second, the intrinsic causality between the

four features may provide further information about the underlying

interaction. The current study is mainly descriptive and needs further

investigation. Finally, the possible connective mechanism between

NPSs and AD neuropathology is not clear. Further study should focus

more on this question.

6 | CONCLUSION

NPS was associated with a multimodal imaging pattern involving com-

plex neuropathologies. This pattern was correlated with cognitive per-

formance and could predict cognitive decline. This evidence highlights

the importance of NPS in AD progression and may provide clues for

future treatment studies or for clinical management.
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