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A deep learning diagnostic platform for diffuse
large B-cell lymphoma with high accuracy across
multiple hospitals
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Diagnostic histopathology is a gold standard for diagnosing hematopoietic malignancies.
Pathologic diagnosis requires labor-intensive reading of a large number of tissue slides with
high diagnostic accuracy equal or close to 100 percent to guide treatment options, but this
requirement is difficult to meet. Although artificial intelligence (Al) helps to reduce the labor
of reading pathologic slides, diagnostic accuracy has not reached a clinically usable level.
Establishment of an Al model often demands big datasets and an ability to handle large
variations in sample preparation and image collection. Here, we establish a highly accurate
deep learning platform, consisting of multiple convolutional neural networks, to classify
pathologic images by using smaller datasets. We analyze human diffuse large B-cell lym-
phoma (DLBCL) and non-DLBCL pathologic images from three hospitals separately using Al
models, and obtain a diagnostic rate of close to 100 percent (100% for hospital A, 99.71% for
hospital B and 100% for hospital C). The technical variability introduced by slide preparation
and image collection reduces Al model performance in cross-hospital tests, but the 100%
diagnostic accuracy is maintained after its elimination. It is now clinically practical to utilize
deep learning models for diagnosis of DLBCL and ultimately other human hematopoietic
malignancies.
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recision in diagnosis of human cancers is critical for pro-

posing correct treatment plans that save lives, and histo-

pathology is still a gold standard for diagnosis. Human
hematopoietic malignancies are a group of complex diseases and
their pathologic diagnoses are generally labor-intensive and
challenging. Diffuse large B-cell lymphoma (DLBCL) is a major
form of human blood cancer morphologically characterized by a
diffuse or sheet-like proliferation of large neoplastic B cells. The
diagnosis of DLBCL requires exclusion of other types of lym-
phomas and hematopoietic tumors that are pathologically similar
to DLBCLY2. To accomplish this, the use of immunohis-
tochemistry and/or flow cytometry is routine to increase diag-
nostic accuracy!2. In particular, expression of B-cell markers such
as CD20 and PAXS5 in such a diffuse infiltrate of large cells is
needed, and exclusion of other B-cell lymphomas with large-cell
morphology is mandatory, including mantle cell lymphoma,
lymphoblastic lymphoma, and plasmablastic lymphoma, among
others!2. It is also necessary to exclude malignant tumors of other
histogenesis including carcinoma, melanoma, and sarcoma that
may potentially mimic DLBCL?. Recently, artificial intelligence
(AI) technology has been used in reading pathologic slides of
tumor tissues from patients, and the results are promising in
reducing labor of pathologists and improving diagnostic accuracy.
However, in clinical practice, a high diagnostic accuracy of 100%
or >99% is absolutely required to avoid an omission of any
patients, but this level of accuracy has not been achieved by any
deep learning models so far.

Deep learning is a type of machine learning in which a model
learns to perform classification tasks directly from images. Deep
learning is usually implemented using neural network archi-
tecture?, Transfer learning is an approach that applies knowledge
of one type of problem to a different but related problem®. The
use of a pretrained network with transfer learning is typically
much faster and easier than the training of a network from
scratch, and medical image analysis and computer-assisted
intervention problems have been increasingly addressed with
deep-learning-based solutions®. Although the available deep-
learning platforms are flexible, they do not provide specific
functionality for medical image analysis and their adaption for
this domain of application requires substantial implementation
effort’. Consequently, there has been substantial duplication of
effort and incompatible infrastructure developed across many
research groups®. On the other hand, acquisition, annotation, and
distribution of medical image datasets have higher costs than
conduction of many computer vision tasks. For many medical
imaging modalities, image generation is costly. Image annotation
for many applications requires high levels of expertise from
clinicians with limited time. In addition, due to privacy concerns,
dataset sharing between institutions is logistically and legally
challenging. Although recent tools developed in AI industries are
beginning to reduce these barriers, typical datasets remain small.
Using smaller datasets increases the importance of data aug-
mentation, regularization, and cross-validation to prevent over-
fitting. The additional cost of dataset annotation also places a
greater emphasis on semi- and unsupervised learning.

Deep learning in computation improves visual object recog-
nition® and has exceeded human performance in high-level
thinking and reasoning such as playing games!%!1, implying that
there would be a great potential for deep learning in improving
medicine. In fact, recent studies on pathological analyses of
human tissues from patients have shown a promising sign of
using deep-learning technology to help pathologists to diagnose
human diseases®2-17, In medical practice, an unmet need in
computational pathology is to reach high diagnostic accuracy
equal or close to 100%.

In this work, we aim to generate highly accurate AI deep-
learning models for diagnosing DLBCL. Our results from reading
pathologic slides of DLBCL patients from three independent
hospitals show that the diagnostic accuracy of our AI models
reaches a high level (close to 100%) suitable for clinical use.

Results

Establishment of AI models for analysis of pathologic images.
Pathologic tissue slides for DLBCL and non-DLBCL were pre-
pared by taking photographs of the slide images or by scanning
the entire slides with a scanner for establishing AI models
(Fig. la). Non-DLBCL included reactive/non-neoplastic lymph
nodes and other types of tumors such as metastatic carcinoma,
melanoma, and other lymphomas including small lymphocytic
lymphoma/chronic lymphocytic leukemia, mantle cell lym-
phoma, follicular lymphoma, and classical Hodgkin lymphoma.
Unlike other research groups that utilized a single deep CNN, we
set up a globally optimized transfer deep-learning platform with
multiple pretrained CNNs (GOTDP-MP-CNNs). Specifically, we
combined 17 CNNs to utilize them as a whole in generation of
our Al models with a goal of increasing the accuracy of the
models. For establishment of our AI models, we used 80% of the
pathologic images for model training and 10% of the images for
model validation. We then used the remaining 10% of the images
for model testing (Fig. 1b). Another major feature in generation
of our Al models is that we conducted the transfer learning that
involved all 17 CNNss to optimize the fitness of the data (Fig. 1b).
Therefore, our AI models are expected to be more efficient and
accurate than the existing models in disease diagnosis. We need
to point out that besides using 0.8-0.1-0.1 (training 0.8, valida-
tion 0.1, testing 0.1) during the training, we also tried other ratios
such as 0.6-0.2-0.2 and 0.7-0.15-0.15 but did not notice sig-
nificant differences. This observation indicates that the data split
ratio in training does not play a significant role in our deep-
learning platform.

Variations of pathologic images. During the establishment of
our Al models, we faced a difficult challenge in dealing with
sample variations. By comparing DLBCL or non-DLBCL images
within or across three hospitals, we noticed several major varia-
tions reflecting differences in color, morphology, and quality of
the slides (Fig. 2a). Furthermore, we reviewed all images and
identified more variations, including artificial structures such as
air bubbles and empty space (Fig. 2b). In addition, the scanned
whole-slide images contained tissues unrelated to DLBCL (Sup-
plementary Fig. 1). We expect that these variations pose an
obstacle to establishing highly accurate AI models, which we
should intend to overcome.

Achievement of a high diagnostic accuracy with small datasets.
We aimed to establish AI analytical models with high diagnostic
accuracy for DLBCL. Because we anticipated a potential influence
of diagnostic accuracy by sample variations across hospitals
(Fig. 2) and expected to obtain a limited amount of human
samples from each hospital, we thought that it would be realistic
to establish single hospital-based Al models with small datasets to
determine whether our AI models could reach high diagnostic
accuracy. Initially, hematoxylin and eosin (H&E)-stained
formalin-fixed paraffin-embedded tissue sections prepared from
lymph nodes of DLBCL patients from two unrelated hospitals
were correctly labeled by pathology experts and then photo-
graphed at x400 original magnification to produce pathologic
images for analysis. Each slide with diagnosis was further con-
firmed by at least one pathologist with adequate experience. In
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Fig. 1 Strategies for the establishment of Al models for analysis of pathologic images. a Workflow of the system. Photographs of the slide images and
scanned images of the entire slides for DLBCL and non-DLBCL were used for establishing Al models. b Overview of data flow implemented and

components of the GOTDP-MP-CNNs. 17 CNNs [AlexNet, GoogleNet(ImageNet), GoogleNet(Places365), ResNet18, ResNet50, ResNet101, Vggl16, Vgg19,
Inceptionv3, InceptionResNetv2, SqueezeNet, DenseNet201, MobileNetv2, ShuffleNet, Xception, NasNetmobile, Nasnetlarge] were utilized as a whole in
generation of our Al models, and the transfer learning was used to optimize the fitness of the data. A specific Al model was established by training 80% of
total samples with 10% of them used for model validation and the remaining 10% of the samples for testing diagnostic accuracy of the established model.

addition, the diagnosis was consistent with the results from other
tests such as immunohistochemistry and molecular biology as
well as clinical symptoms. Using the samples from each of these
two hospitals, hospital-specific AI models were established by
training 80% of total samples with 10% of them used for model
validation and the remaining 10% of the samples for testing
diagnostic accuracy of the established model. From the first
hospital (hospital A), 500 DLBCL and 505 non-DLBCL human
samples (one pathological image from one patient) were photo-
graphed and used. Using combined 17 CNNs (Fig. 1), we tested
our Al model for precision by computational reading of ran-
domly mixed pathologic images from hospital A to determine the

percentage of correctly recognizing DLBCL images. Compared
with the use of individual CNN, which showed an average per-
centage of diagnostic accuracy in the three hospitals ranging from
87 to 96% (Table 1), diagnostic accuracy of our AI models
reached 100% (Fig. 3a). To confirm the high accuracy of our
deep-learning algorithms, we established a Al model for reading
pathologic images of DLBCL (number of cases: 204) and non-
DLBCL (number of cases: 198) from another hospital (hospital
C), where the pathologic images were also collected by photo-
graphing (one pathological image from one patient). We found
that the diagnostic accuracy of this AI model also reached 100%
(Fig. 3a).
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Fig. 2 Image variations derived from tissue preparation procedures. a There were some major variations in color, morphology, and quality of the slides,
reflecting image variation derived from tissue preparation procedures. b There were some artificial structures unrelated to human tissues in the slide

images, including air bubbles, empty space, etc.

We next attempted to establish an AI model for reading
scanned whole-slide images (WSIs) of DLBCL (1467 square
images from 163 cases) and non-DLBCL (1656 square images
from 184 cases) samples obtained from the third hospital
(hospital B). Nine pathologic images from the tissue areas
representative of DLBCL were randomly selected from the
scanned image for each patient (Fig. 3b) (nine pathological
images from one patient), and a new hospital B-specific AI model
was established and tested for its diagnostic accuracy. The
diagnostic accuracy reached 99.71%. Unlike hospitals A and C
where we used one pathological image from each patient in

building our AI models, we used nine pathological images from
each patient for building the model in hospital B. Thus, it is
possible that a patient in hospital B has some slide images in the
training set and some in the test set. Nevertheless, taking all
results from the three hospitals into consideration, we clearly
demonstrate that our AI models allow achieving high diagnostic
accuracy for DLBCL, building a solid foundation for the use of
the AI models in clinical practice for diagnoses of DLBCL and
ultimately other hematopoietic malignancies.

On the one hand, it is impossible and unpractical to obtain
thousands or more DLBCL patient samples from a single hospital,
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Table 1 Diagnostic accuracy of 17 CNNs for DLBCL.
CNNs Diagnostic accuracy (%)
Model A Model B Model C
AlexNet 92.08 93.57 95.12
GoogleNet 95.05  90.68 95.12
Vggl6 95.05 94.53 99.50
ResNet18 92.08 88.42 95.12
SqueezeNet 92.08 89.39 92.68
MobileNetv2 90.10 88.42 92.68
Inceptionv3 90.10 93.89 87.80
DenseNet201 90.10 84.57 95.12
Xception 98.02 91.32 85.37
Vggl9 87.13 93.25 92.68
Places365GoogleNet 96.04 92.93 95.12
InceptionResNetv2 94.06 96.14 96.02
ResNet50 86.14 90.68 87.80
ResNet101 89.11 91.96 97.56
NASNetMobile 95.05 85.21 90.24
NASNetLarge 95.05 91.96 92.50
ShuffleNet 87.13 88.42 85.37
GOTDP-MP-CNNs 100.00  99.71 100.00
(with combined 17 CNNs)

and on the other hand, a tremendous amount of variations can be
derived from tissue preparation procedures (Fig. 2). Therefore, we
believed that it is critical to be able to use a smaller dataset (<1000
human samples) for establishing an AI model with high
diagnostic accuracy. In fact, we were able to establish accurate
AI models using limited number of patient samples from each of
the three hospitals (Fig. 3a).

The high diagnostic accuracy achieved using our AI models for
DLBCL is indeed striking (Fig. 3), which is likely due to the core
algorithms we developed. To further validate our Al algorithms,
we decided to analyze the dataset CIFAR-10 developed by CIFAR
(Canadian Institute for Advanced Research) using our core
algorithms, because CIFAR-10 provides a competitive platform
for research groups in the world to compare the accuracy of their
Al models. Of 49 available independent results, the highest
accuracy was 96.53% (Supplementary Table 1). In contrast, the
accuracy of our Al model reached 96.88%, explaining why we
achieved the high diagnostic accuracy for DLBCL.

Effect of sample preparation procedures on diagnostic accu-
racy. The high diagnostic accuracy of our AI models for reading
pathologic slides of DLBCL patients from the three hospitals
(hospitals A, B, C) prompted us to test whether a cross-hospital
use of the same AI model on DLBCL diagnosis is practical for
retaining the high diagnostic accuracy. We were aware of the fact
that the sample preparation procedures among the three hospitals
differed largely in tissue staining, slide preparation, image col-
lection, etc. We used the AI model established by analyzing the
pathologic images of DLBCL patient samples from hospital A,
which resulted in a 100% diagnostic accuracy for the patients in
that hospital (Fig. 3a), to read those from hospital C. We chose
hospitals A and C in this cross-hospital test because in both
hospitals, the histomicrographs were taken using microscope
cameras. The result showed that the diagnostic accuracy of
DLBCL dropped from 100 to 82.09% (Fig. 3c), which is surprising
to us because our AI algorithms are among the best (Supple-
mentary Table 1). Then we realized that we did not standardize
the shape of the tissue images when conducting this cross-
hospital test. The model A was trained with the original rectan-
gular images (the width to height ratio is 4:3) from the hospital A
and the tested images from hospital C were squares in shape;

thus, the images from hospital C were twisted and fed into the
model A for testing. Therefore, we re-did this test by normalizing
the shape of 179 images in hospital C to the shape of the images
in hospital A to determine the generalization ability of our Al
model. After the shape of the images was unified between the two
hospitals, the diagnostic accuracy was significantly increased from
82.09 to 90.50% (Fig. 3¢). In other words, the diagnostic accuracy
of the model A dropped about 10% (from 100 to 90.50%) in this
new cross-hospital test. This 10% drop in diagnostic accuracy
suggests that the technical variation introduced by sample pre-
paration procedures between hospitals significantly affects the
accuracy. To provide supporting evidence to this assumption, we
did two tests. First, we used the model A established in hospital A
to read new images (in total 110 images) obtained from the same
hospital after the model A was established. Using the images from
the same hospital, we would be able to largely eliminate the
technical variation introduced by slide preparation methods and
imaging equipment. The result showed that diagnostic accuracy
for reading the new images remained at 100% (Fig. 3c). Second,
we conducted another cross-hospital test, in which we attempted
to use our model established in hospital B (model B) to read new
tissue images of patients from a different hospital (hospital D)
that utilized the slide preparation procedures similar to the ones
used by hospital B. For image collection, we scanned the patho-
logic slides from hospital D to produce whole-slide images (in
total 135 images) using the same scanner we used to collect
whole-slide images from hospital B. Thus, we basically eliminated
the differences between the two hospitals (hospitals B and D) in
slide preparation and image collection equipment. We then used
the model B established in hospital B to read the images from
hospital D, and 100% diagnostic accuracy for DLBCL was
achieved in this cross-hospital test (Fig. 3c).

Taken together, these results demonstrate that the technical
variability introduced by slide preparation and imaging equip-
ment can be eliminated through standardizing them among
different hospitals or building a single hospital-based deep-
learning model to achieve a 100% diagnostic accuracy. At present,
we believe that a realistic approach is to achieve a high diagnostic
accuracy close to 100% by establishing an AI model specifically
for each hospital. Because it is not possible to obtain a large
number of DLBCL samples from any single hospital, establish-
ment of a highly accurate ATl model for DLBCL diagnosis requires
using a smaller dataset, which we had achieved (Fig. 3a).

Sensitivity of AI models. We intend to have a high standard for
using our Al models in clinical practice, and our goal in diagnosis
is to reduce false-positive and eliminate false-negative rates. The
100% diagnostic accuracy in hospital A (Fig. 3a) and hospital C
(Fig. 3a) indicated that both false-positive and false-negative rates
for diagnosis of DLBCL were zero. However, the diagnostic
accuracy for hospital B was 99.71% (Fig. 3a), suggesting a pos-
sibility that a false-negative case existed, although the false-
positive rate was zero. In clinical diagnosis using AI models as an
initial screening tool for pathologists to skip reading of a sig-
nificant number of non-DLBCL slides, false-positive cases would
be acceptable but false-negative cases are absolutely not. There-
fore, we carefully examined that one case which was diagnosed as
DLBCL by pathologists but was not recognized as DLBCL by our
Al model (Fig. 4a). We thoroughly analyzed clinical data of this
patient and found that the patient had a poor response to con-
ventional therapy for DLBCL and did not have typical clinical
symptoms for DLBCL. To us, it was questionable whether this
patient really had DLBCL. Based on the symptoms and therapy
response, we came up with a conclusion that this patient was
unlikely to have typical DLBCL. Therefore, we traced back the
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Fig. 3 A high diagnostic accuracy of our Al models with the use of smaller datasets. a Hematoxylin and eosin (H&E)-stained formalin-fixed paraffin-
embedded tissue sections prepared from lymph nodes of DLBCL and non-DLBCL patients from four unrelated hospitals (hospitals A, B, C) were
photographed (hospitals A, C) or scanned (hospital B) at x400 original magnification to produce pathologic images for generating three separate Al
models (Models A, B, C), each of which was specifically generated using the DLBCL and non-DLBCL samples from the corresponding hospital. A high
diagnostic accuracy was reached by the three Al models (100% for hospital A, 99.71% for hospital B, 100% for hospital C, respectively). b Analysis of
whole-slide images from hospital B from each patient by randomly selecting nine pathologic images within the DLBCL cell-containing areas. Thus, each
experiment was done nine times. ¢ The diagnostic accuracy dropped from 100 to 90.50% or 82.09% with or without unifying the shape of the images
between hospital A and hospital C when cross-hospital use of the deep-learning model A was carried out to read the slide images of patients from hospital
C. The diagnostic accuracy increased to 100% when the model A was used to read new images of patients in the same hospital. 100% diagnostic accuracy
was also achieved when the model B was used to reach the slide images of patients from a new hospital (hospital D) after elimination of the technical

variability introduced by slide preparation procedures and image collection equipment.

diagnostic history of this patient and found that the original
diagnosis was follicular lymphoma or follicular diffuse mixed
type, which could progress to become DLBCL at a later stage of
the disease. Until recently, this patient developed DLBCL-like
disease, and the pathologic images we analyzed actually reflected
the tissues collected from the patient prior to transitioning to
DLBCL. If we eliminated this case in our analysis, which we
should have, the diagnostic accuracy for DLBCL in hospital B
would have reached 100%. Because of this incidence, we decided
to collect additional DLBCL and non-DLBCL lymph node sam-
ples from hospital B (in total 531 400x images) to further test the
diagnostic accuracy of our Al model established previously in this
hospital. To be careful, we compared the diagnostic accuracy of
our Al model with that of seven invited pathologists for reading
the same set of DLBCL and non-DLBCL 400x images. The
pathologists used about 60 min on average to read all 531 images,
and the highest diagnostic accuracy among the seven pathologists
was 74.39% (Fig. 4b). In contrast, it took <1 min with a notebook
computer for our AI model to finish reading all these images, and

the diagnostic accuracy was 100%. We should point out that
pathologists often read tissue slides at the magnitude of 400x and
lower with help from other clinical tests such as immunohis-
tochemistry and molecular biology to increase the accuracy of
pathological diagnosis. Thus, we do not expect a 100% diagnostic
accuracy from the pathologists when they only read H&E-stained
pathologic tissue slides at one magnification. Regardless, these
results demonstrate that our Al models for DLBCL diagnosis
have exceeded performance by pathologists and reached 100%
diagnostic accuracy and sensitivity for DLBCL with almost no
false-positive and false-negative errors.

Discussion

This work presents the GOTDP-MP-CNNs platform for
deep learning in medical imaging. Our modular implementation
of the typical medical imaging machine learning pipeline allows
us to focus our implementation effort on specific innovations,
while leveraging the work of others for the remaining pipeline.
The GOTDP-MP-CNNs platform provides implementations
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Fig. 4 Sensitivity of Al models. a Pathologic images of the sole case that
was diagnosed as DLBCL by pathologists but was not recognized as DLBCL
by our Al model. b Comparison of diagnostic accuracy of DLBCL between
pathologists and our Al model by reading additional DLBCL and non-DLBCL
lymph node samples (in total 531 400x images) from hospital B. Seven
experienced pathologists were invited to read the images. The pathologists
used about 60 min on average to read all 531 images with the highest
diagnostic accuracy of 74.39%. In contrast, the diagnostic accuracy of our
Al model was 100%.

for data loading, data augmentation, network architectures, loss
functions, and evaluation metrics that are tailored for the char-
acteristics of medical image analysis and computer-assisted
intervention.

Transfer learning is an efficient solution for many problems.
The classification accuracy on the ImageNet validation set is the
most common way to measure the accuracy of networks trained
on ImageNet. Networks that are accurate on ImageNet are also
often accurate when one applies them to other natural image data
sets using transfer learning or feature extraction. However, high
accuracy on ImageNet does not always transfer directly to other
tasks, so we believe that it is a better idea to use an ensemble of
multiple networks as we used in our study.

Limited AI study on DLBCL diagnosis is available, and one
report shows a 95% diagnostic accuracy for DLBCL in an intra-
hospital test!. In clinical practice, a diagnostic accuracy of 100%
or >99% is critical and this level of accuracy has not been reported
for pathological diagnosis of any types of hematopoietic malig-
nancies based on only reading H&E-stained pathologic tissue
slides. In this study, we have established AI deep-learning models
for diagnosing DLBCL by only reading the H&E-stained patho-
logic slides at x400 magnification with a 100% accuracy in
multiple hospitals. Our current success in Al-assisted reading of
pathologic slides of DLBCL with the high diagnostic accuracy
paves a road to beginning to employ Al deep-learning models in
diagnostic histopathology of human hematopoietic malignancies.
Because the technical variation introduced by tissue slide pre-
paration and image collection causes a significant reduction in the
diagnostic accuracy of AI models on cross-hospital use, one
practical strategy to overcome this problem is to standardize slide
preparation procedures and image collection equipment among
all hospitals, although this approach is challenging. Another
practical strategy is to establish “customized” AI models for a
particular hospital where the same slide preparation procedures

and image collection equipment could be employed, but this
requires an ability to establish highly accurate AI models using
smaller datasets obtainable from a single hospital. Although this
is a difficult approach, its feasibility has been shown by estab-
lishing our AI models with 100% diagnostic accuracy for
DLBCL using <1000 human samples. On the other hand, 100%
sensitivity on DLBCL diagnosis indicates that our AI models
reduce false-positive and false-negative errors to a level close to
zero. We believe that it is time to employ AI models for patho-
logic diagnosis of DLBCL to reduce workload of pathologists and
soon for DLBCL subtype classification and other hematopoietic
malignancies.

Methods

Ethical approval. All tissue slides involved in this study were historical samples
that were photographed or scanned and de-identified before inclusion in the study.
Therefore, approval by the Institutional Review Board is not required.

Slide preparation and validation. Throughout our study, only lymph nodes were
used for generating tissue slides and images. Lymph node excision and biopsy
samples from DLBCL and non-DLBCL specimens were prepared using routine
processing procedures including formalin fixation, automated processing, and
paraffin embedding, followed by sectioning at 5 microns and H&E staining using
automated strainers. DLBCL diagnosis was established based on the current WHO
classification including H&E morphology supplemented by immunohistochemistry
and/or flow cytometry!. Diagnosis of all cases was performed by experienced
board-certified hematopathologists. Non-DLBCL diagnoses included various cau-
ses of benign reactive lymphadenopathy, metastatic tumors to lymph nodes
including carcinomas and melanomas, and other lymphomas including T-cell
lymphomas and other B-cell lymphomas including small lymphocytic lymphoma/
chronic lymphocytic leukemia, mantle cell lymphoma, and follicular lymphoma,
among others. H&E slides were photographed at x400 original magnification using
microscope-based cameras and saved in jpeg format without modification of the
photomicrographs in any way. In detail, the slide images were collected from three
hospitals in the following ways:
Photos taken from hospital A:
Objective magnification: x40
Original image: 2592 x 1944 pixels
Original image file size: 14.4 Mb
Pixel size: 2.2 ym x 2.2 um
Whole slides information from hospital B:
Average slide dimensions in pixels: ~200,000 x ~400,000
Average file size: ~10 Gb
Objective magnification: x40
Pixel size: 0.121547 pm x 0.121547 pm
Cropped image for classification at 945 x 945 pixels
Photos taken from hospital C:
Objective magnification: x40
Original image: 2048 x 1536 pixels
Original image file size: 5-8 Mb
Pixel size: 3.45 um x 3.45 um
Cropped image at 1075 x 1075 pixels

Core algorithms. In order to achieve high diagnostic accuracy, we developed a
Globally Optimized Transfer Deep-Learning Platform with Multiple Pretrained
CNNs (GOTDP-MP-CNNs) that provides a modular deep-learning pipeline for a
range of medical imaging applications. Components of the GOTDP-MP-CNNs
pipeline, including data loading, data augmentation, network architectures, loss
functions, and evaluation metrics, are showed in Fig. 1b. GOTDP-MP-CNNs were
built on the MATLAB-R2019a framework, supporting features such as visualiza-
tion and computational graphs by default.

For the AI classification of DLBCL, we used deep-learning approaches
implemented with CNNs (or ConvNet), one of the most popular algorithms for
deep learning with images. In considering applying deep-learning methods to
medical images, we took advantage of the following:

(1) A CNN can be trained to independently predict a disease (such as DLBCL in
this study) with a reasonable high accuracy, and a trained CNN can identify
predictive imaging features for a given pathologic slide image;

(2) a pretrained CNN built by experts can be retrained to perform new
recognition tasks using a technique called transfer learning;

(3) while many pretrained CNNs are trained on more than a million high-
resolution images to recognize 1000 different objects, accurate transfer
learning can be achieved with much smaller datasets;

(4) by applying a true global optimization algorithm in selecting the best
training options of transfer learning, a retrained CNN can perform better
than other algorithms;
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(5) jointly using multiple different fine retrained models in classifying medical
images, the developed GOTDP-MP-CNNs trained with small datasets can
achieve near 100 % of diagnostic accuracy upon reading pathological images
for a human disease (such as DLBCL in this study); and

(6) the developed GOTDP-MP-CNNs can be widely used in medical images
classification for other diseases.

Global optimization algorithms. Usually to conduct transfer learning we should
test the performance of the newly trained network. If it is not adequate, typically we
should try adjusting some of the training options and retraining. Obviously, there is
no guarantee to achieve the best performance in this way. To overcome the pro-

blems and achieve the highest accuracy in classification, in retraining, we not only
use multiple models but also adopt our true global optimization algorithms (SDL)?.
The SDL global optimization algorithms were developed in DNA microarray data
analysis!?, which is a collection of strategies in searching for a global minima or

maxima of a multiple variables equations. Minimization of the loss was achieved via
SDL, and the final loss was the weighted average of the losses over a model pool.

Pretrained convolutional neural networks. Pretrained Neural Network Models
used in this study include Alexnet, Googlenet(ImageNet), Goolgenet(Places365),
Resnet18, Resnet50, Resnet101, Vggl6, Vggl9, Inceptionv3, Inceptionresnetv2,
Squeezenet, Densenet201, Mobilenetv2, Shufflenet, Xception, Nasnetmobile, and
Nasnetlarge (Fig. 1b). The network overview and details are provided in the On-
line Appendix.

Pretrained networks have different characteristics that matter when choosing a
network to apply to a given problem. The most important characteristics are
network accuracy, speed, and size. Choosing a network is generally a tradeoff
between these characteristics.

To improve classification results, usually one tries those available pretrained
networks built by experts one by one with the hope of achieving higher accuracy by
luck. The developed GOTDP-MP-CNNs do not compare and/or choose pretrained
networks beforehand. Instead, it takes advantage of every pretrained model to
achieve much better performance than any single model.

Software infrastructure for general-purpose deep learning is an additional
development. Due to the high computational demands of training deep-learning
models and the complexity of efficiently using modern hardware resources
(general-purpose graphics processing units and distributed computing, in
particular), numerous deep-learning libraries have been developed and widely
adopted.

General system. Deep convolutional neural networks (CNNs) have emerged as an
important image analysis tool. The ability of CNNs to learn predictive features
from raw image data is a paradigm shift that presents exciting opportunities in
medical imaging. In order to achieve very high diagnostic accuracy, we developed a
Globally Optimized Transfer Deep-Learning Platform with Multiple Pretrained
CNNs (GOTDP-MP-CNNGs) that provides a modular deep-learning pipeline for a
range of medical imaging applications. Components of the GOTDP-MP-CNNs
pipeline including data loading, data augmentation, network architectures, loss
functions, and evaluation metrics are shown in Fig. 1b.

Hardware and software. All experiments were conducted on a CPU Sever (Intel®
Core™ i5-8250U CPU@1.80 GHz Installed Ram 8.00GB) and a Laptop computer
(Microsoft Surface Pro: Intel® Core™ i7-4650U CPU @1.70 GHz 2.30 GHz
RAMS8.00GB Windows 8.1). In particular, the MATLAB2019a was used for
training AI models. We took advantage of a few toolboxes provided by MATLAB,
such as the deep-learning toolbox and the image processing toolbox, in data pre-
paration, programming, and deployment. GOTDP-MP-CNNs were built on the
MATLAB-R2019a framework, supporting features such as visualization and
computational graphs by default.

Model testing statistics. We use the following definitions:

DLBCL: positive for DLBCL

Non-DLBCL: negative for DLBCL (healthy or other diseases)

True positive (TP): the number of cases correctly identified as DLBCL

False positive (FP): the number of cases incorrectly identified as DLBCL

True negative (TN): the number of cases correctly identified as healthy or other
diseases

False negative (FN): the number of cases incorrectly identified as healthy or
other diseases

Accuracy: The accuracy of a test is its ability to differentiate the DLBCL and
Non-DLBCL cases correctly. To estimate the accuracy of a test, we should calculate
the proportion of true positive and true negative in all evaluated cases.
Mathematically, this can be stated as:

Accuracy = (TP 4 TN) /(TP + TN + FP + FN) (1)

Sensitivity: The sensitivity of a test is its ability to determine the DLBCL cases
correctly. To estimate it, we should calculate the proportion of true positive in

DLBCL cases. Mathematically, this can be stated as:
Sensitivity = TP/(TP + FN) (2)

Specificity: The specificity of a test is its ability to determine the Non-DLBCL
cases correctly. To estimate it, we should calculate the proportion of true negative
in Non-DLBCL cases. Mathematically, this can be stated as:

Specificity = TN/(TN + FP) (3)

Prediction scores: To classify an input image into one of two classes (DLBCL
and Non-DLBCL), a neural network has an output layer of 2 neurons, one for each
class. Passing the input through the network results in calculating a numeric value
for each of those neurons. These numeric values, called as prediction scores,
represent the network’s prediction of the probability of the input belonging to
each class.

Dataset curation. The datasets were not curated, because we intended to test the
applicability of the proposed system in a real-world, clinical scenario. Across all
datasets, no slides were removed from the collections from the hospitals. Specifi-
cally, although we identified whole-slide images with poor image quality arising
from imaging artifacts or tissue processing (Fig. 2), we did not remove any images
containing tissue-processing artifacts from analysis.

Transfer learning. We took 17 pretrained image classification networks that have
already learned to extract powerful and informative features from natural images
and used them as a starting point to learn our new task. The majority of the
pretrained networks were trained on a subset of the ImageNet database?. These
networks have been trained on more than a million images and can classify images
into 1000 object categories. Fine-tuning pre-networks with transfer learning is
often faster and easier than constructing and training new networks.

Training options. The learning rate varied from 0.01 to 0.0001. We used mini-
batches of size 32 to 128 for 17 pretrained models. We specified the maximum
number of epochs as 30 and validation frequency as 20, respectively. All selected
pretrained models were initialized with ImageNet pretrained weights and biases.
Three optimization algorithms (SGDM, RMSProp, and Adam) were used to
minimize the loss functions.

Slide diagnosis. We retrained 17 pretrained models, and no best-performing
model on the validation set was selected. By contrast, a last classification layer
computed the weighted scores, a score matrix S, for both DLBCL and Non-DLBCL.
The score matrix S consists of two vector elements, Spipcr, and Sxon-pLBCL
S S, S$,-8

s _[ DLBCL ] _ [ Pur SN (4)
SNon-DLECL S0 S220Sox
Where N is the number of models, and S(i,j) are the vector elements of scores for
each class (in this study, i=1,2and j=1, 2, ..., 17).

We also define TSp;pcr and TSyon-precr as follows:

N
TSprpcL = I/NZ Spract (1) (5)
n=1
N
TSxon-pLacr = I/NZ Sxon-prct () (6)
n=1

Here TSprpcy is the final score of DLBCL and TSyon-pracry is the final score of
Non-DLBCL.

DLBCL,

if TSprpcr. 2 TSyon-pLBCL )
Non-DLBCL,

Diagnosis = { .
if TSprpcr < TSyon-pLBCL

CIFAR-10 dataset. The classification accuracy on the ImageNet validation set is
the most common way to measure the accuracy of networks trained on ImageNet.
The CIFAR-10 based on the ImageNet, developed by CIFAR (Canadian Institute
for Advanced Research), are datasets of RGB images with its classification labeled
commonly used in object recognition. It is widely used for image classification task/
benchmark in research community.

The CIFAR-10 dataset contains 60,000 32 x 32 color images in 10 different
classes, with 6000 images per class. There are 50,000 training images and 10,000
test images. The publicly shared CIFAR-10 dataset is available at http://rodrigob.
github.io/.

The 10 different classes represent airplanes, cars, birds, cats, deer, dogs, frogs,
horses, ships, and trucks. For the time being the published highest classification
accuracy achieved is 96.53% (http://rodrigob.github.io/are_we_there_yet/build/
classification_datasets_results.html). We explored the CIFAR-10 with our
GOTDP-MP-CNNs and 96.88% accuracy is reached.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

We present three illustrative medical image analysis applications built using GOTDP-
MP-CNNs infrastructure. All of the raw image data can be downloaded from www.
umass.edu/Al/data upon request to shaoguangli@umassmed.edu. This paper was
produced using no publicly available DLBCL imaging data except the experimental
CIFAR-10 data. The authors have made every effort to make available links to these
resources as well as make publicly available the software methods and information used
to produce the datasets, analyses, and summary information. Further information on
research design is available in the Nature Research Reporting Summary linked to this
article. All data supporting the findings of this study are available within the paper or
from https://fts.umassmed.edu (user name: dli; password: Dongl1956) or from the
corresponding author upon reasonable request to shaoguangli@umassmed.edu. The size
of our research data is too huge to be properly accepted and stored in public repositories.
Also, due to the complexity of our research data, it is better for public users to reach out
to shaoguangli@umassmed.edu for avoiding any misunderstanding of the data and for
using the data appropriately.

Code availability
Whole source code can be found from https:/fts.umassmed.edu (user name: dli;
password: Dong1956) or obtained by sending a request to shaoguangli@umassmed.edu.
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