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The present study aimed to investigate the metabolism of Forsythoside A (FTA) by human fecal
bacteria to clarify the relationship between its intestinal metabolism and its pharmacological
activities. FTA was incubated with human fecal microflora in vitro to investigate its metabolic
process, and highly sensitive and specific ultra-performance liquid chromatography/quadrupole
time-of-flight mass spectrometry (UPLC–Q-TOF/MS) was performed using MetaboLynx™
software for metabolite analysis. Caffeic acid (CA) and hydroxytyrosol (HT) were obtained by
hydrolysis of FTA, and CAwas further hydrogenated to form 3,4-dihydroxybenzenepropionic acid
(DCA). The anticomplementary, antimicrobial and antiendotoxin activities of FTA and its
metabolites by human fecal microflora were evaluated in vitro with a hemolysis assay, the agar
disc-diffusion method, the MIC value and the gel clot LAL assay, respectively. The metabolites
showed higher biological activity than FTA, especially HT and DCA. Orally administered FTA may
be metabolized to HT and DCA, and the pharmacological effects of FTA may be dependent on
intestinal bacterial metabolism.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Fructus Forsythiae, the fruit of Forsythia suspense (Thunb.)
Vahl (Oleaceae), is a well-known traditional Chinese medicine
(TCM) and is widely used for the treatment of infections such as
acute nephritis, pharyngitis, pyrexia erysipelas, ulcer, tonsillitis
and gonorrhea [1]. Remarkably, Fructus Forsythiae was recom-
mended for the treatment and prevention of severe acute
respiratory syndrome (SARS) [2] that may be caused by the
inappropriate activation of complement systems [3]. So, it is
hopeful to search for anticomplementary components from
Shanghai Jiao Tong
ict, Shanghai 200240,
Fructus Forsythiae. Its main bioactive components were identi-
fied as phenylethanoid glycosides, lignans and flavonols accord-
ing to phytochemical investigations [4,5]. Forsythoside A (FTA)
is one of the main phenylethanoid glycosides from Fructus
Forsythiae, which possesses strong antimicrobial, antioxidant
and antiviral activities [6,7]. The chemical structure of FTA is
composed of three chemicalmoieties including aglycone (caffeic
acid), phenylethanoid aglycone (hydroxytyrosol), and sugar
moieties. Its content was approximately 8% in total, which was
much higher than other ingredients, but its absolute oral
bioavailability was approximately 0.5%, which was significantly
lower [8]. However, FTA bioavailability demonstrated a more
direct relationshipwith the pharmacological efficacy of forsythia
extract than the representative ingredients in lignans such as
phillyrin [9,10]. According to the reports, the mechanism of
FTA intestinal absorption was passive diffusion and involved
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paracellular transport, which is mainly governed by tight
junctions [11], and FTA may be a substrate of CYP3A4, CYP2C9,
CYP1A2, UGT1A6, UGT1A3, UGT1A1 and UGT1A9 for in vitro
metabolism in Sprague–Dawley rat liver microsomes [12].
Moreover, most herbal medicines are orally administered, and
their active components are therefore brought into contact with
intestinal microflora in the alimentary tract, which are mostly
composed of anaerobes [13]. Some of them are transformed by
intestinal bacteria before absorption from the gastrointestinal
tract. Studies on herbal component metabolism by intestinal
microflora are of a great importance to understanding their
biological effects [14,15]. So far, there is no report on the
metabolism of FTA by intestinal bacteria. In addition, most
studies on bioactivity of FTA were focused on antibacterial and
antiendotoxin activities but not anticomplementary activity. In
our study, FTA was anaerobically incubated with human fecal
microflora, its metabolites were identified via UPLC–Q-TOF/MS
and pharmacological effects were tested.

2. Experimental

2.1. Materials and methods

2.1.1. Materials and reagents
General anaerobic medium broth (GAM broth) was

purchased from Shanghai Kayon Biological Technology Co.,
Ltd (Shanghai, China). Sheep erythrocytes, rabbit erythrocytes
and anti-sheep erythrocyte antibodies were purchased from
Shanghai Fortune Biological Technological Co., Ltd (Shanghai,
China). Heparin (sodium salt, 160 IU/mg) was purchased
from China National Medicines Co., Ltd (Shanghai, China).
Normal human serum was obtained from healthy adult
donors. Guinea pig serum was obtained from healthy guinea
pigs from the Laboratory Animal Research Center of Fudan
University. Escherichia coli (ATCC8739), Staphylococcus aureus
(ATCC25923), Klebsiella pneumonia (ATCC13883) and Candida
albicans (ATCC10231) were provided by the laboratory of Dr.
Mei Ge.

Forsythoside A was purchased from Shanghai Winherb
Medical Technology Co., Ltd.; hydroxytyrosol, caffeic acid and 3,
4-dihydroxybenzenepropionic acid were purchased from J&K
Chemical Ltd.; HPLC-grade acetonitrile and methanol were
purchased from Merck. Ultrapure water was prepared with a
Milli-Q water purification system (Millipore). All of the other
chemicals and reagents were of analytical grade.

2.1.2. Instrumentation
Analyses were performed on a commercially available

ACQUITY UPLC system connected online to an ACQUITY TQD
triple quadrupole mass spectrometer (Waters Corp., Milford,
MA, USA) with a conditioned autosampler at 4 °C. All of the
data were collected using MassLynx software. The separation
was performed on a Syncronis C18 column (100 × 2.1 mm i.d.,
1.7 μm; Thermo, USA) with the column temperature set to
35 °C. The mobile phase consisted of (A) ultra-pure water
containing 0.1% formic acid and (B) acetonitrile using a
gradient elution of 5–10% B at 0–1.5 min, 10–25% B at 1.5–
8min, 25–45% B at 8–13min, 45–100% B at 13–18min, 100% B
at 18–21 min, and 100–5% B at 21–24 min. The flow rate was
0.4 ml/min, and the injection volume was 5 μl.
The MS instrument consisted of a Waters Synapt™
QTOF/MS (Waters Corp., Milford, MA, USA). Ionization was
performed in the negative electrospray (ESI)mode.Mass range
was set at m/z 50–1000 Da with a 0.28 s scan time. The ESI
sourcewas operated in negative ionizationmodewith capillary
voltage at 2.0 kV. Source and desolvation temperatures were
set at 120 and 350 °C, respectively. Nitrogen was used as
desolvation and cone gas with a flow rate of 700 and 50 l/h,
respectively. For accurate mass measurement, the data were
centroided during acquisition using an external reference
(LockSpray™) comprising a 2 μg/ml solution of leucine–
enkephalin (purchased from J&K Chemical Ltd.), which was
infused continuously into the ESI source at a rate of 400 μl/min
via a syringe pump. The data were processed usingMassLynx™
4.1 software (Waters Corp., Milford, MA, USA).

2.2. FTA metabolism in human intestinal bacteria in vitro

Fresh fecal samples were obtained from 10 healthy
volunteers (five male, five female, 22 to 50 years of age), who
gave informed written consent to the study protocol. The
volunteers had no history of gastrointestinal disorders and had
not taken antibiotics for at least three months prior to the
study. The fresh fecal mixture samples were immediately
homogenizedwith 25 times of GAMbroth. The sedimentswere
removed by filtration through three pieces of gauze. The
suspension was incubated at 37 °C in an anaerobic incubator
in which the air had been replaced with a gas mixture (H2 5%,
CO2 10%, N2 85%). In total, 4 mg FTA was added to the human
fecal suspension (10 ml), and the mixture was incubated at
37 °C in an anaerobic incubator for 24 h. The cultured mixture
was removed and extracted with water saturated n-butanol.
The extract was evaporated, and the residue was dissolved in
methanol (0.5 ml) and analyzed with UPLC–Q-TOF/MS.

2.3. Anti-complement activity through the classical and the
alternative pathways

Based on our previous described method [16], the classical
and alternative complement pathway-inhibiting properties of
FTA and its metabolites were investigated. The data were
reported in CH50 and AP50 to indicate the concentrations that
resulted in 50% inhibition of sheep erythrocytes and the
concentrations that resulted in 50% rabbit erythrocyte hemo-
lysis inhibition, respectively. Heparin sodium salt was used as
the positive control.

2.4. Antimicrobial activity by the agar disc-diffusion method
minimal inhibitory concentration (MIC) determination

The antimicrobial activity assay was performed on FTA and
its metabolites with five test bacterial strains, and three
replicates were performed for all of the samples. The positive
controls were levofloxacin for bacteria and nystatin dehydrate
for fungus, and the negative control was sterile distilled water.
The antimicrobial effect of all of the samples was assessed in
petri dishes with 20 ml nutrient agar plus 0.2 ml microorgan-
ism suspension (108 CFU/ml, O.D 0.1, λ = 590 nm). Once the
agar had solidified, 200 μl of each sample and sterile distilled
water (negative control)was added towells that were 3mm in
diameter. The plates were incubated at 37 °C for 24 h, and the



Fig. 1. TIC chromatograms of FTA incubated with human intestinal bacteria.
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inhibition halos were evaluated (mm). The antimicrobial effect
was determined bymeasuring the inhibition halos that formed
around the wells [17,18].

The MIC value was determined by the dilution method
according to the National Committee for Clinical Laboratory
Standards [19]. The active samples and positive controls
were dissolved in dimethyl sulfoxide at a concentration of
3200 μg/ml. Twofold serial dilutions of the solution were then
prepared (3200, 1600, 800, down to 6.25 μg/ml). Nutrient
broth was prepared with 1% test bacteria strains (108 CFU/ml,
O.D 0.1, λ = 590 nm). In total, 10 concentrations of each
sample × three test bacterial strains × three replicate wells
were performed in sterile round-bottom 96-well plates by
comparing the sample with the non-inoculated nutrient broth.
Inoculated nutrient broth (0.9 ml) and sample (0.1 ml) were
placed into each well, and the plates were incubated at 37 °C
Fig. 2. Time courses of FTA production over 24 h after incubation with hu
for 24 h. MIC values were determined as the lowest concen-
tration that inhibited visible bacterial growth as detected by the
unaided eye.

2.5. Antiendotoxin effect of FTA and its metabolites by the gel clot
limulus amoebocyte lysate (LAL) assay

The LAL assaywas performed in duplicate using commercial
LAL reagent containing clotting enzyme (Zhanjiang A & C
Biological Ltd., Guangdong, China). The assay was performed in
pyrogen-free test tubes, to which 0.1 ml of test sample serial
dilutions (1000, 500, down to 7.8 μg/ml) and 0.1 ml LAL
reagent were added. The reaction solution was mixed thor-
oughly and placed immediately in a noncirculating water bath
at 37 °C ± 1 °C for 60 ± 2 min. At the end of the incubation
period, the test tubes were examined by 180° inversion for the
man intestinal bacteria. The data are presented as the mean ± SD.

image of Fig.�2


Table 1
Retention time (RT), ion mass peaks and peak area of FTA and its metabolites.

No. RT
(min)

[M–H]−

m/z
Metabolite
name

Formula Area
(%)

Parent Compound 5.58 623.1990 FTA C29H36O15 2.75
M1 1.80 153.0545 HT C8H10O3 0.93
M2 2.73 181.0509 DCA C9H10O4 0.16
M3 2.83 179.0335 CA C9H8O4 0.47
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presence of a stable solid clot. If a gel had formed and remained
intact in the bottomof the reaction tube after inversion, the test
was positive. The test was considered negative if a gel formed
but broke or collapsed when inverted. Endotoxin standard
(E. coli strain O111:B4, 0.125 EU/ml) and pyrogen-free LAL
reagent water, both provided by the manufacturer, were used
as controls [20].
3. Results

3.1. Metabolic processing of FTA by human intestinal
bacteria in vitro

FTA was anaerobically incubated with a human fecal
bacterial mixture, and the metabolic samples incubated at 6,
12 and 24 h were extracted with water-saturated n-butanol
and analyzed by UPLC–Q-TOF/MS as demonstrated in Fig. 1.
In total, three peaks were observed compared with the blank
sample that only contained GAM and the standard FTA
solution, and their time courses were determined as demon-
strated in Fig. 2. FTA was converted to M1 and M3 at the initial
time of 6 h, andM1was increasedwith the incubated temporal
variation. M3 degraded after incubation for 6 h, and M2 was
converted at the same time. The content change between M2
and M3 was exactly opposite, indicating a mutual transforma-
tion between these two metabolites.
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Fig. 3. The possible metabolic pathway of FTA in
3.2. Identification of FTA metabolites

FTAmetabolitesM1–M3were analyzed by UPLC–MS,which
is demonstrated in Table 1. The negative electrospray mass
spectrum of FTA revealed a [M–H]− ion at m/z 623. The full
mass ofM3,whichwas detected at 2.83min, gave a [M–H]− ion
at m/z 179, indicating the loss of glucopyranose, rhamnose and
C8H10O3 from FTA to form caffeic acid (CA). The molecular ion
of M1 [M–H]− was 153, indicating the loss of glucopyranose,
rhamnose and CA from FTA to form hydroxytyrosol (HT). The
[M–H]− ion ofM2was atm/z 181, indicating the hydrogenation
reaction of CA to form 3,4-dihydroxybenzenepropionic acid
(DCA). To further confirm the chemical structure, three
metabolites were identified by comparing the retention times
and UV spectra with reference substances based on MS data.
Those data are summarized in Table 1, deglycosylated and
hydrogenated metabolites were present with human fecal
incubation.

3.3. FTA metabolism with human intestinal bacteria

Based on the results above, FTA metabolism by human
intestinal bacteria was proposed to function as follows (Fig. 3).
FTA was first desugared to form CA and large amounts of HT,
and CA was further hydrogenated to form DCA.

3.4. Classical and alternative anticomplementary pathway activity

The effect of FTA and its metabolites on guinea pig
complement activation through the classical pathway was
examined in 1:40 diluted guinea pig serum, andheparin sodium
was used as the positive control. The percent of activation that
1:40 diluted guinea serum occurred in the classical pathway
was 98.34 ± 5.23% in the complement control group. The
percentage of activation that 1:10 diluted normal human serum
occurred in the alternative pathway was 97.26 ± 7.85% in the
complement control group. As Table 2 demonstrates, FTA
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Table 2
Anticomplementary activity of FTA and its metabolites by human intestinal
bacteria.

Sample CH50 (mg/ml)a AP50 (mg/ml)a

FTA NEb NE
HT 0.096 ± 0.007 0.121 ± 0.012
DCA 0.321 ± 0.011 0.427 ± 0.023−
CA 0.923 ± 0.037 1.038 ± 0.131
Heparin sodium 0.068 ± 0.002 0.086 ± 0.003

a The data are expressed as the mean ± SD of independent experiments
performed in triplicate.

b NE denotes that this compound has no inhibitory effect at the maximal
concentration tested.

Table 4
MIC of FTA and its metabolites by human intestinal bacteria.

Samples MIC (μg/ml)

E. coli S. aureus

FTA NEa 50
HT 50 25
DCA NE 50
Levofloxacin 0.1 1.5

a NE denotes that this compound has no inhibitory effect at the maximal
concentration tested.
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demonstrated no anticomplementary activity for either the
classical pathway or the alternative pathway. HT, CA and DCA
all exhibited complement modulation properties in a dose-
dependent manner. The CH50 were 0.096 ± 0.007 mg/ml,
0.321 ± 0.011 mg/ml and 0.923 ± 0.037 mg/ml for HT, DCA
and CA, respectively. In the AP50 assay, the concentrations that
resulted in 50% hemolysis inhibition of rabbit erythrocyteswere
0.121± 0.012 mg/ml forHT, 0.427± 0.023 mg/ml for DCA and
1.038± 0.131 mg/ml for CA, respectively. HT demonstrated the
most significant activity comparable to the positive inhibitor
(heparin sodium, CH50 = 0.068 ± 0.002 mg/ml; AP50 =
0.086 ± 0.003 mg/ml).

3.5. Determination of the antimicrobial activity of FTA
and its metabolites

The primary antimicrobial screening was performed using
the agar well diffusion method. The antimicrobial activity of
FTA and its metabolites was compared with levofloxacin and
nystatin dihydrate as standard antibiotics. As demonstrated in
Table 3, none of the tested samples exhibited any activity
against C. albicans and K. pneumonia, but some of them
possessed inhibitory activity against E. coli and S. aureus. HT
demonstrated inhibitory effects against the Gram-positive
bacteria S. aureus and the Gram-negative bacteria E. coli, while
FTA and DCA were limited to S. aureus. The MIC values of FTA,
HT and DCA against the bacteria are summarized in Table 4. HT
displayed the highest antimicrobial activity overall followed by
FTA and DCA.

3.6. Antiendotoxin effect of FTA and its metabolites

The antiendotoxin effectwas determined by theGel clot LAL
assay in vitro. As the results presented in Table 5, FTA and CA
Table 3
Antimicrobial activity of FTA and its metabolites by human intestinal bacteria.

Samples Zone of inhibition (cm)

E. coli S. aureus K. pneumonia C. albicans

FTA NEa 0.8 NE NE
CA NE NE NE NE
HT 1.2 1.6 NE− NE
DCA NE 1.1 NE NE
Levofloxacin 2.8 2.3 2.1 NE
Nystatin Dihydrate NE NE NE 2.2

a NE denotes that this compound has no inhibitory effect at the maximal
concentration tested.
were invalid even at the maximal concentration. However, HT
and DCAwere still effective when diluted four and three times,
respectively. HT possessed the highest antiendotoxin effect
among the four compounds.

4. Discussion

FTA, one of the main, most abundant active ingredients in
Fructus Forsythiae, had low bioavailability. There were many
physiological factors such as bile, intestinal microflora, and the
gastrointestinal tract pH, which would be related to drug
bioavailability [21]. According to the present study, after oral
administration, FTA was first metabolized into CA and HT in
anaerobic conditions, and then CA was converted to DCA by
human fecal bacteria. The incubation process as well as the
activity tests are under 37 °C or at low temperatures due to FTA
instability at high temperature. Fortunately, no metabolites
in our study was found (Figure not given) when FTA was
incubatedwith blank that only contained GAM. Accordingly, the
intestinal bacterial metabolism played an important role in the
generation of three metabolites. FTA was proved to deglycosyl-
ated to CA and HT under the existence of glycosidase in the
intestinal microflora. The same metabolic behavior was ob-
served in naringin [22] and anthocyanin metabolism [23].
Hydrogenation also played an important role in CA metabolism
in our study. These results were different from the Parkar's
report [24], which demonstrated that CA may be metabolized
into 3-hydroxyphenylpropionic acid and DCA mainly when
incubated for 24 h with human fecal bacteria. This difference
may due to different substrate concentrations or the presence of
HT during the metabolic process.

So far, there is no report on the anticomplementary effect of
FTA. The anticomplementary activities of phenylethanoid
glycosides from Monochasma savatieri have previously been
investigated [25]. In the present study, HT, as a main human
intestinal bacteria-derived metabolite of FTA, demonstrated
considerable anticomplementary activity compared with the
positive control drug heparin sodium for the first time. HT is
present in olive oil mainly as secoiridoid derivative, and it is
the most active polyphenol from olive tree leaves, olive pulp
and olive oil [26]. Interestingly, previous reports indicated
that extracts of olive (Olea europaea L., Oleaceae) leaves
demonstrated anticomplementary activity [27]. Accordingly,
HT was indispensable in the anticomplementary effect of olive
leaves. Conversely, the metabolite CA had a moderate effect
to inhibit the classical and alterative pathways of the comple-
ment system, which is consistent with the previous report
on the anticomplementary effect study of compounds from
Gnaphalium affine D. Don [28].



Table 5
Antiendotoxin effect of FTA and its metabolites by human bacteria.

Samples Tubes no.

1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 Positive Negative

FTA + + + + + + + + + + + + + + + + + + − −
CA + + + + + + + + + + + + + + + + + + − −
HT − − − − − − − − + + + + + + + + + + − −
DCA − − − − − − + + + + + + + + + + + + − −
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In our study, FTA demonstrated inhibition against the
Gram-positive bacteria S. aureus but no effect against the
Gram-negative bacteria E. coli and K. pneumonia as well as
C. albicans. The results indicated that S. aureus was the most
susceptible to FTA among the four strains tested. HT possessed
the highest antibacterial activity against the Gram-positive
bacteria S. aureus and the Gram-negative bacteria E. coli.
This result was consistent with what has been reported by
Papadopoulou [29]. Other phenolic compounds have also
demonstrated good activity against S. aureus such as
epigallocatechin-3-O-gallate [30] and oleuropein [31]. DCA, a
major metabolite, had the same antibacterial effect against
S. aureus as FTA, which supports that phenylpropionic acid was
more active against Gram-positive bacteria [32]. Characteriza-
tion of the interaction between these antimicrobial compounds
and their target sites also need to be further studied.

LAL assays are the most sensitive assays that are currently
known for endotoxin [33]. Three types of LAL endotoxin testing
methods (the gel-clot method, the chromogenic method, and
the turbidimetric method) have been approved by the United
States Pharmacopeia for the evaluation of end-product inject-
able drugs,medical devices, and rawmaterials [34]. The gel-clot
method is thought of as the most accurate and sensitive
procedure for determining endotoxin content because fewer
false-positive and false-negative results are observedwhen that
method is used [35]. Our study reveals that among FTA and its
intestinal bacterialmetabolites, HT andDCAhadan antagonistic
effect against endotoxin. DCA, a possible metabolite of CA
containing the o-dihydroxyl structure, expressed higher anti-
endotoxin, anticomplementary and antibacterial effects than
CA. Previous results suggested that the olefinic double bond in
CA is an important factor for enhancing antioxidant activity [36].
Thus, it is likely that the 2,3-double bond of CA is critical for the
pharmacodynamic expression of DCA.

DCAwas reportedly found in human plasma as ametabolite
of CA after dietary supplementation andmay have been formed
by intestinal bacteria [37]. Wang et al. [38] also demonstrated
that HT and CA were identified as two major metabolites of
echinacoside (a typical phenylethanoid glycoside) in rat urine
and feces samples. What's more, anticomplementary and
antiendotoxin properties of HT and DCA were determined for
the first time in our study. Therefore, both DCA and HT were
considered to be possible and effective metabolites in the body
after oral administration of phenylethanoid glycosides such as
FTA. The present result indicated that the biological activities
were increased when FTA was metabolized to HT and DCA by
human intestinal bacteria, which were coincident with the
previous report that the intestinal flora played an important
role in the metabolism of orally administered or bile-excreted
compounds [39]. Herbal components should be transformed to
bioactive compounds by intestinal bacteria and to perform the
pharmacological action of herbal medicines [40,41]. This
conclusion might help explain that FTA demonstrated a
positive correlation between dose and biological activity in
Forsythia suspense [42].
5. Conclusion

Our results demonstrated that the presence of intestinal
bacteria played an important role in FTA metabolism after oral
administration. The metabolic process is involved in hydrolytic
reactions and the generation of non-polar low-molecular-
weight byproducts, and FTA was accompanied by active
metabolites. The results indicated that the pharmacological
effects of FTA may be dependent on the metabolism of FTA by
intestinal bacteria, which also clarified the low FTA bioavail-
ability. However, further studies should be performed to
elucidate anticomplementary and antimicrobial activity in vivo
as well as the mechanism of action related to pharmacological
activity.
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