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Abstract: Construction safety is critical in the success of a project. A considerable amount of effort
has been placed on research and practice in order to reduce the potential risks on the construction
site. Recent application of electroencephalogram (EEG) to construction research enables researchers
to gain insight into construction workers’ physical and mental status during construction tasks.
By summarizing existing studies that involve EEG and construction safety, the literature review aims
to provide practical suggestions for future research and on-site safety management. The literature
search and inclusion process included eleven eligible studies. Comprehensive analysis was conducted
based on primary and secondary measures. The primary measures considered the frequency bands of
EEG and the channels for detecting electrical activity of the brain. The secondary measures that were
involved with physical and mental status with respect to EEG signal variations as a result of task,
working hour, and work conditions. Although the field of study that combines EEG measures with
construction tasks is still emerging, it is worth continuous attention in the future, as relevant findings
would be of great value to the safety management and risk control in the construction industry.
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1. Safety Management in Construction Industry

Safety management and risk control have been major concerns in the construction industry.
Construction workers are exposed to higher injury and death rates, two and three times respectively,
than workers in the other industries [1]. A variety of models have been proposed to analyze potential
reasons for on-site accidents. Sequential model attributes an accident to the cumulative consequence of a
series of events and circumstances [2]. The model assumes that breaking the chain of accident evolution
can prevent adverse outcomes from happening. Theoretically, with an increasing number of safety
hazards being identified, risks that are exposed to the construction workers can be controlled at a minimal
level. A recent study that was based on questionnaire surveys among 30 construction enterprises
provided a systematic approach to reducing on-site risks. The research identified four critical aspects
of construction safety management, including safety climate, safety culture, safety attitude, and safety
behavior [3]. In addition, Choudhry and colleagues [4] proposed a similar but more detailed plan
that consists of safety policy and standards, safety organization, safety training, hazardous conditions
inspection, personal protection program, plant and equipment, safety promotion, and management
behavior. Safety officers or project managers can make their construction sites safer by making
endeavors to identify and exclude potential risks and hazardous conditions [4].

Behavioral models focus on human errors and dangerous behaviors that are considered the
predominant sources of accidents, in contrast with the idea of making a thorough search for on-site
risks and removing any hazardous factor from the sequence leading to an accident [2,5]. It has
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been found that reducing unsafe behaviors contributes to a significant improvement in workers’
safety performance [6,7]. In a previous study, behavior was defined as observable actions [6].
However, behavior is more than observable actions. It results from interactions among a combination
of factors, such as physical workload, mental status, motivation, emotion, working environment,
etc. Construction work is labor-intensive, which poses considerable challenges to workers’ physical
and mental status [8]. Physical fatigue causes a decline in productivity and, notably, affects mental
and psychological status, which increases workers’ vulnerability to hazards on the construction
site [9]. Mental fatigue might result in depression, upset, boredom, frustration, and other negative
emotions. Additionally, increased workload can cause inattentional blindness. When too much focus
is placed on a complex task, people have less mental capacity to be aware of their surroundings [10].
Previous research summarized three major types of unsafe behaviors, including overlooking safety
due to heavy workload, taking shortcuts to save effort and time, and inaccurate risk perception [11].
It is apparent that, as mental and physical exertion accrues during high-intensity physical efforts over
long working hours, workers are more likely to conduct those unsafe behaviors [11].

The complexity of human behavior and the dynamic working environment have raised a series
of challenges to current safety management. Traditional injury prevention strategies were effective
between 1970s and the following 30 years [12]. However, safety performance in the construction
industry failed to indicate significant improvement over the last decade, which suggests saturation in
the effects of current injury prevention strategies and the need for innovations in safety management [13].
Automated technologies for real-time monitoring of workers’ behavior provide a promising approach
to greatly improve the on-site safety management in the future [14,15]. Currently, the major form
of on-site safety assessment is based on self-report questionnaire and safety checklist, which are
considered to be cumbersome to implement on the construction site and prone to an individual’s
subjective bias [16,17]. Therefore, a monitoring technique providing an objective assessment and
real-time information with minimal intrusion to regular construction activities has great value in
practice [14,17].

The value of real-time monitoring is to provide predictive information on workers’ behavior and
potential risk on the construction site. Physiological parameters, such as hear rate, body temperature,
oxygen consumption, and energy expenditure, are effective indicators of fatigue level, productivity,
and physical workload in relation to an undertaking construction task [17–20]. In addition,
position tracking systems, such as Ultra-Wide Band (UWB) and Global Positioning System (GPS),
have been used to prevent workers from accessing danger areas [14,21]. As the risk level increases,
a warning signal would be triggered to raise workers’ attention to potential risks in the surroundings [15].
Therefore, as compared with the traditional approach that relies on retrospective or lagging indicators,
real-time monitoring shows a prominent advantage in on-site safety management [22].

Physiological measures are effective in reflecting workers’ physical exertion during construction
activities, but a major challenge lies in monitoring workers’ mental and psychological state. EEG can
provide direct and quantitative measures of the brain activity as a noninvasive neuroimaging
technique [23]. The brain is involved with the initiation of voluntary movements. Therefore, brain
activity detected by EEG is indicative of corresponding behaviors. Additionally, cognitive and mental
status have significant influence on an individual’s behavior. Currently, EEG has been widely applied to
examine cognitive performance, as fluctuations of EEG components can reflect the activation of cognitive
systems [24]. The direct brain-behavior relationship implies that safety managers can identify workers
that are exposed to increased risks by evaluating subtle changes in their EEG-based behavioral and
cognitive status during construction works. With the assistance of EEG technique, necessary procedures
can be undertaken in advance to prevent unsafe behaviors and make on-site risks under control. EEG has
been considered to be the best neuroimaging technique for construction implementation because of its
advantages in mobility, portability, and tolerance to movement [8,10,25,26]. Researchers even expect a
revolutionary change in construction safety by means of the EEG-based monitoring technique [10].
Given the promising effect of EEG in safety enhancement, researchers and practitioners have shown
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increased interest in applying EEG to construction sites. The current literature review summarized
existing studies concerned with EEG application to the construction context. We aim to provide
suggestions for future research as well as for safety management practices in the construction industry
by searching and reviewing relevant studies in a systematic approach.

2. Literature Search

2.1. Search Strategy

The literature search was conducted through PubMed, IEEE, EMBASE, EBSCO, and Web of
Science. Databases in the field of neuroscience and construction engineering are selected because
the current review involves research applying EEG to construction tasks. PubMed and EMBASE are
important sources for health, neuroscience, and biomedical topics, while IEEE is selected for literature
on construction and engineering. In addition to the databases for specific academic fields, EBSCO and
Web of Science provide access to a general search. By using multiple databases, the authors aim to
conduct a thorough search for relevant studies. The range of year for literature search is between
2000 and 2019. Given that the focus of the current review is placed on EEG and its application to
safety management in the construction-related tasks, the search scope considers four main aspects:
Construction workers, safety, physical or mental performance, and EEG. Accordingly, the following
combinations of key terms were used for literature search: “construction workers” and “safety
management OR risk control” and “physical exertion OR fatigue OR mental workload OR attention
OR emotion” and “electroencephalogram OR EEG.”

To determine the eligibility of each identified study for inclusion, several criteria were
pre-determined before (1) peer-reviewed articles published in English; (2) construction workers
were subjects of a study; (3) an experiment must involve on-site work conditions or construction tasks;
and, (4) real-time EEG data should be recorded as subjects were performing construction activities.
The current review only considers experimental studies published in peer-reviewed journals to
provide empirical evidence and suggestions for future research as well as practical safety management.
Thus, the review paper, book chapter, and conference abstract will be excluded.

2.2. Study Selection

A two-phase screening process was performed to select studies for inclusion. The initial phase
removed duplicates and irrelevant articles based on title and abstract examination. In the second phase
of screening, a full-text evaluation was conducted to assess the eligibility of the remaining articles.
In addition to the database search, a snowball search was conducted in the second phase. During the
full-text evaluation, a few references that were cited by the articles in the second phase appear to fit
into the interest of the current review. Full-text evaluation on the eligibility of the references was then
performed along with the other studies in the second phase of the screening process. Two researchers
(YZ and QF) worked independently to identify relevant papers. Any disagreement on the eligibility of
an article was resolved by having a discussion with another author (MZ) during consensus meetings.

An initial search across the five databases resulted in a total of 655 articles. Another three articles
were added to the initial search from other sources (e.g., expert’s advice). Of the 658 articles that were
identified in the initial search, 571 articles were excluded in the first phase of screening because of
duplicates (N = 350) and irrelevant topics (N = 221). There were 92 articles that were considered
for full-text analysis, with five references identified from the snowball search. The second screening
phase removed 81 articles for the following reasons: conference abstract (N = 6), review paper (N = 3),
not using EEG (N = 37), not peer-reviewed article (N = 6), duplicate articles (N = 2), not related to
construction task (N = 23), and not written in English (N = 5). The screening process finally retained
11 articles for quantitative review. Figure 1 shows each step in the selection process.
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Figure 1. Flowchart of the inclusion process.

2.3. Data Extraction

Study characteristics, such as publication year, sample size, and apparatus used in the studies,
will be summarized to provide basic information of the included articles. Construction work impacts an
individual’s emotion, cognitive function, and mental state. Therefore, one major issue that is addressed
in the current review is to find out how mental and physical state can be quantified by EEG components.
Information regarding EEG channels (e.g., AF3, F3, etc.), frequency bands (e.g., theta, alpha, beta, etc.),
and power spectral density will be collected from the included studies, which may offer valuable
information for the subsequent research. Another important concern of the current review is about
the changes of EEG signals in relation to construction tasks, work conditions, and working hours.
A summary of findings that are related to the second issue would be helpful in interpreting EEG
signals, thus providing great value for safety management practice.

3. EEG Measures in Relation to Construction Activity

3.1. Study Characteristics

According to the year of publication, all of the included studies were published in the last
three years (2016–2019), with one publication in 2016 [10], five publications in 2017 [16,17,25,27,28],
three publications in 2018 [8,29,30], and two publications in 2019 [31,32]. The information suggests a
trend that EEG-based research on safety and risk management is an emerging topic that is growing
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fast and drawing increasing attentions from researchers. Sample size of the included studies ranged
between five and 30, with a median of 10 subjects in the studies. There are two EEG models applied
to the included studies. One commonly used model is EPOC+, with 14 channels and two reference
electrodes–P3 and P4 locations according to the 10–20 system [8,16,25,28–32]. Three of the included
studies employed the NeuroSky EEG headset for neural signal collection [10,17,27]. The included
studies investigated frequency band variations in relation to mental and physical functions and mainly
focused on two main aspects: (1) the frequency band applied to measure brain activities associated
with the above-mentioned functions; and, (2) the electrodes that were used to detect EEG signals with
respect to each function. Further details regarding the characteristics of the included studies can be
found in Table 1.

The prominent advantage of EEG is a direct measurement of neural activities that reflect cognitive
dynamics over time [10,24]. The primary measures take into account various frequency bands, including
delta (<4 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz), and gamma waves (>30 Hz) [33].
The delta wave is associated with a state of unconsciousness, such as deep sleep. The theta wave
is related to drowsiness, inattention, and meditation. The alpha wave reflects physical and mental
relaxation with awareness of one’s surroundings. The beta frequency band is predominant in the
states of alertness, concentration, anxious thinking, tension, and fear. The gamma waves can be seen in
mentally demanding activities and information processing, such as learning and problem solving [34].
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Table 1. Summary of study characteristics.

Study Sample Size Apparatus Primary Measures Secondary Measures Main Findings

Chen et al., 2016 [10] N = 5 NeuroSky Think Gear

Frequency bands:
alpha, beta, and theta;
EEG channels: FP1 and TP10.
Engagement index =

β
α+θ

Mental workload in various construction
tasks (ladder climbing, nuts selection, and
bolts fastening)

Power spikes of engagement index can be seen in the process of ladder climbing and
bolt fastening, which suggest lower risk perception ability and higher risk for
accidents during the tasks.

Wang et al., 2017 [16] N = 10 EPOC+
14 Channels

Frequency bands: alpha, beta, and
gamma waves;
EEG channels:
Left cluster (AF3, F7, and F3).

Vigilance
NASA-TLX scores

Vigilance of construction workers is related to different tasks, which can be measured
by EEG frequency bands and channels. The gamma frequency bands and left frontal
channel clusters (AF3, F7, and F3) can reflect vigilance variations in EEG signals.

Aryal et al., 2017 [17] N = 12 NeuroSky MindWave 2
Frequency bands:
alpha, beta, and theta;
Mental fatigue = α+θ

β

Physical fatigue monitored by skin
temperature and heart rate

The ratio showed some increase along with the development of physical fatigue.
However, no consistent changes were observed in the EEG signal among the
participants.

Jebelli et al., 2017 [25] N = 8 EPOC+
14 Channels

Frequency bands: beta;
EEG channels:
Motor cortex area (FC5 and FC6).

Physical exertion—Use EEG to differentiate
physically active state from inactive state

Higher spectral power of the beta frequency band is associated with physical
activities in construction tasks compared with inactive condition.

Chen et al., 2017 [27] N = 30 NeuroSky Think Gear
Frequency bands:
alpha, beta, and gamma;
EEG channels: FP1, FP2, TP9, and TP10.

Mental workload in various construction
tasks (ladder climbing, nuts selection, and
bolts fastening)

Mental workload can be reflected in EEG signals. In comparison with the alpha and
beta bands, high-frequency gamma band is more suitable for task differentiation and
is positively related to the mental demand.

Jebelli et al., 2017 [28] N = 8 EPOC+
14 Channels

Frequency bands:
alpha and beta;
EEG channels:
Frontal clusters (AF3, F3, AF4, and F4).
Valence =

α(F4)
β(F4) −

α(F3)
β(F3)

Emotions in relation to various real work
conditions (working at ground level, top of
the ladder, and in confined space)

The valence index is negative with respect to working on top of the ladder and in a
confined space, which suggests negative emotional states under the two work
conditions.

Hwang et al., 2018 [8] N = 10 EPOC+
14 Channels

Frequency bands: alpha and beta;
EEG channels:
Frontal clusters (AF3, F3, AF4, and F4).
Valence =

α(F4)
β(F4) −

α(F3)
β(F3)

Arousal =
α(AF3+AF4+F3+F4)
β(AF3+AF4+F3+F4)

Emotional state—valence and arousal—in
relation to working conditions (working at
ground level, on top of a ladder, and in a
confined space) and hours (working after
rest, 1 h, and 2 h)

Workers working at ground level for 1 h after rest display positive valence and
arousal which imply positive emotions such as happiness and joy. Working in a
confined space or at height for 2 h results in frustration and reduced alertness.

Jebelli et al., 2018 [29] N = 7 EPOC+
14 Channels

Frequency bands: alpha and beta; EEG
channels: Frontal clusters (AF3, F3, AF4,
and F4); Stress level based on EEG signal.

Cortisol level (a measure of stress) in
relation to various real work conditions

EEG-based stress recognition, online multi-task learning algorithms (OMTL),
indicated high accuracy of predicting new stressful situations in both lab environment
and real construction sites.

Jebelli et al., 2018 [30] N = 7 EPOC+
14 Channels

Frequency bands: alpha and beta; EEG
channels: Frontal clusters (AF3, F3, AF4,
and F4); Stress level based on EEG signal.

Cortisol level (a measure of stress) in
relation to various real work conditions
(working at ground level, top of the ladder,
and in confined space)

EEG signals based on the fixed windowing approach and the Gaussian Support Vector
Machine indicated the highest classification accuracy (80.32%) of stress identification.

Li et al., 2019 [31] N = 15 EPOC+
14 Channels

Frequency bands: theta, alpha, and beta;
Mental fatigue level is calculated by four
EEG-based indicators.

Mental fatigue level
EEG indicators
Self-reported fatigue
Stroop test

EEG indicators are effective in assessing mental fatigue level and filtering
construction workers who are not qualified for the on-site work due to mental fatigue.

Wang et al., 2019 [32] N = 10 EPOC+
14 Channels

Frequency bands: alpha, beta, and
gamma waves; EEG channels: All 14
channels of the device. Vigilance was
measured by candidate indices.

Vigilance
NASA-TLX scores

Among 30 candidate indices of vigilance, three indices showed highest correlation to
construction workers’ vigilance.
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3.2. EEG Measures of Risk Perception

Based on the features of each type of brainwave, the mental status of construction workers
was assessed by the ratios and indices of EEG components. Engagement index Equation (1) is a
measure of mental workload, which is computed by the power spectral density (PSD) of theta, alpha,
and beta waves [10]. The PSD represents the power distribution of EEG components in the frequency
domain [16]. The unit of PSD is usually denoted as microvolts-squared per Hz (mV2/Hz). In the
research that was conducted by Chen and colleagues, EEG data were collected from four sites, including
two prefrontal areas (FP1 and FP2) and two reference points after ears (TP 9 and TP 10). While FP1
reveals logical attention, such as decision making and working memory, FP2 provides information on
emotional attention, such as stress, impulse, and judgment [10,27]. The engagement index indicates a
positive relationship to the level of mental workload. Beta (14–30 Hz) frequency becomes dominant
when a person indicates a high level of alertness. Therefore, an increase in the index is a sign of more
attentions paid to an ongoing task, which implies the reduced capacity of detecting potential risks on
the construction site.

Engagement index =
β

θ+ α
(1)

Vigilance reflects an individual’s attention level when performing a task. Construction workers
with high vigilance are able to stay alert during the task and make quick responses to an approaching
hazard. However, when mental workload increases along with performing a complex task,
vigilance level with respect to surrounding risks decreases. As a result, construction workers are more
likely to underestimate the surrounding risks and adopt unsafe behaviors [10]. In an experiment
consisting of six construction tasks, researchers assessed subjects’ vigilance stage when performing
different tasks [16]. The study identified that the gamma wave (30–40 Hz) and the left frontal channel
clusters (AF3, F7, and F3) were the suitable frequency band and brain regions to provide valid measures
of vigilance. However, more comprehensive ratio indices comprising various frequency bands have
been proposed because a single frequency band is difficult to directly measure changes of vigilance [35].
A following research investigated validity of 30 indices assessing vigilance level of the construction
workers, with three indices indicating the feasibility of being applied to in vigilance detection [32].
The theta/beta ratio Equation (2) results from dividing the short-wave power density (theta wave)
by fast-wave power density (beta wave) [36]. A relative predominance of the beta wave lowers the
ratio, which suggests the better functioning in orienting network—directing attention to a target
stimulus [37].

Vigilance =
θ
β

(2)

In addition, two author-designed indices were found to be strongly correlated to vigilance
Equations (3) and (4). The designed indices comprise high frequency band, such as gamma wave
(30–50 Hz). The high correlation coefficients validate the two quantitative vigilance indicators.
However, as the researchers discussed in the article, more experiments are needed to explain the high
correlation among the three indicators [30].

Vigilance =
θ+ β

α+ γ
(3)

Vigilance =
α
β+ γ

(4)

3.3. EEG Measures of Emotional Status

Emotional status involves two dimensions, including valence, varying from negative to positive,
and arousal, varying from low to high [38]. While an individual’s behavior is indicative of his
or her emotional states, emotional states are also predictive of one’s behavioral outcomes [39].
Real-time monitoring of emotional status is important in preventing construction workers from unsafe
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behaviors due to the strong relationship between emotion and behavior. The commonly used measure
of valence is based on the approach/withdraw model of frontal EEG asymmetry, which states that the
relatively greater left frontal activity corresponds to affectively positive stimuli, whereas increased right
frontal activity or reduced left frontal activity corresponds with affectively negative stimuli [40,41].
The included studies of the current review adopted alpha and beta rhythms in the bilateral frontal
lobe (AF3, F3, AF4, and F4) to quantify the variations of emotional status and arousal level during
construction activities [8,28]. However, the two measures are analyzed in different ways. Where valence
is calculated by asymmetric activities between left and right hemisphere Equation (5), arousal is the
ratio of alpha to beta rhythm in the frontal regions of both hemispheres Equation (6). A positive valence
is indicative of greater activity in the left hemisphere, which suggests more pleasant emotions [8,26].

Valence =
α(F4)
β(F4)

−
α(F3)
β(F3)

(5)

Arousal =
α(AF3 + AF4 + F3 + F4)
β(AF3 + AF4 + F3 + F4)

(6)

In the included studies, valence and arousal are both calculated based on the power spectral
density (mV2/Hz) of alpha and beta bands in the frontal areas. According to the approach/withdraw
model, greater activity in the left hemisphere is associated with an approach-related effect to positive
emotions [42]. Given the feature of alpha and beta frequency that is characterized by relaxation
and active state, respectively, increased activation in the left hemisphere is represented by relatively
predominant power density of beta frequency in AF3 and F3 [8]. Therefore, a greater valence implies
positive emotions, such as joy and happiness. Additionally, the ratio of the mean power spectral
density of alpha to that of beta is a measure of arousal state [8,28]. A greater value of the alpha/beta
ratio in the frontal areas indicates more aroused emotional state, such as alertness and excitation [8].

3.4. EEG Measures of Physical and Mental Fatigue

Beta rhythm (12–30 Hz) has been found to be a suitable indicator of physical exertion [25,27].
Chen et al. mentioned that the beta band is useful in identifying less mentally demanding, but more
physically demanding tasks [27]. Body movement is associated with motor cortex activation, which can
be detected by electrodes of FC5 and FC6 [25]. The power spectral density of beta frequency becomes
predominant as physical exertion increases. Therefore, the EEG signals differentiate physically active
conditions from inactive conditions [27]. Researchers attempt to investigate whether physical fatigue
as a result of prolonged physical activity is associated with a decline in the power density of beta
frequency based on the findings of the positive relationship between physical exertion and the power
of beta rhythm. However, the only included study that considered this issue did not find adequate
evidence [17]. The study measured physical fatigue by means of both EEG ratio and Borg’s Rating of
Perceived Exertion (RPE), which reflected participants’ perceived fatigue level from 1 (low fatigue level)
to 4 (very high level) [43]. The EEG measure of fatigue is based on the ratio represented by Equation
(7), which suggests that a greater ratio is a sign of increased fatigue level. A positive relationship is
assumed between the EEG ratio and the RPE score. However, as the EEG ratio showed inconsistent
changes among the participants, no conclusive evidence was found to substantiate the assumption [17].

Fatigue level =
α+ θ
β

(7)

Mental fatigue is another prominent risk factor in the construction site. Li and colleagues examined
the effects of four EEG ratios on reflecting individual’s mental fatigue [31]. The indicators comprise
power spectral density of theta, alpha, and beta frequencies. By considering the four indicators as
well as other influential factors on mental state, including self-reported fatigue level, sleep hours,
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and performance in the Stroop test, researchers found two indicators, Equations (7) and (8) to be
effective in identifying workers with high mental fatigue levels.

Fatigue level =
θ
β

(8)

Theta wave is indicative of inattention, distractibility, and depression [27]. The power spectral
density of theta frequency tends to become predominant due to accumulated fatigue. In addition,
as an indicator of mentally and physically active status, beta frequency can be depressed due to the
increased fatigue. Therefore, an increased value of the ratios implies greater risks associated with
fatigue. Based on EEG spectral analysis, the researchers developed an algorithm to screen workers
with a high fatigue level [31]. Project managers may use such a quantitative assessment instrument
to identify individuals who may not be qualified to perform the construction tasks demanding high
mental and physical workload.

3.5. EEG Measures in Relation to Construction Activities

Task allocation influences construction workers’ mental status, such as arousal, attention,
and motivation, which are critical factors in safety management [27]. Managers should consider impacts
of construction tasks on workers’ mental status to make appropriate decisions on task allocation.
After reviewing the measures of mental, emotional, and physical states employed in the included
studies, we pay attention to the impacts of working conditions and construction activities on EEG
signals. Working conditions involved working at ground level, on top of a ladder, and in a confined
space [8,28]. Construction activities include ladder climbing, nuts selection, bolts fastening, and other
normal work on the construction sites [10,25,27]. The included studies identified altered EEG patterns
as a function of work conditions and tasks. Analysis in the following sections focused on the impacts
of work conditions, tasks, and working hours on mental status, as reflected by variations in EEG signal.

3.5.1. Work Conditions

Four of the included studies investigated workers’ emotional status in different working
conditions [8,28–30]. The subjects in the two studies were asked to perform construction tasks
at the ground level, on top of a ladder, and in a confined space. The results indicated that working
in a confined space and on a top of a ladder led to undesirable emotions that were observed as an
under-activation in the beta frequency band of the left frontal lobe. In contrast, working at the ground
level suggested a neutral to positive influence on workers’ mental status. The researchers also assessed
the effects of chatting and short rest during the construction tasks. Chatting with coworkers reduced
negative emotions, as evidenced by an increased valence value from −1.39 to −0.11 [28]. In addition,
taking a short break during work indicated a positive effect on workers’ emotions [8,28].

3.5.2. Tasks

Chen and colleagues examined mental workload in relation to different tasks [10,27]. Both studies
examined engagement index Equation (1) and the power of gamma rhythm when subjects were
performing construction related tasks, including ladder climbing, nut selection, and bolt fastening.
Signal spikes in the engagement index and the gamma band were observed in ladder climbing and bolt
fastening, which suggested a higher level of mental demanding than nut selection. In another study
regarding vigilance and attention level, subjects needed to avoid obstacles while carrying heavy objects
to an assigned place [16]. A strengthened power of gamma rhythm was observed when construction
workers were facing obstacles on the way. The EEG signals suggest increased attention level in response
to the potential hazards.
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3.5.3. Working Hours

The emotional status of construction workers varies as a function of working hours. Hwang et al.
conducted an experiment in which EEG signals recorded mental states at three time points: after rest,
1 h after rest, and 2 h after rest [8]. A short break resulted in reduced arousal and a positive valence,
which suggested a state of contentment and relaxation. Working 1 h after rest appears to generate
the most desirable emotional status, with happiness and joy being reflected in the EEG signals.
Negative emotions can be identified in the situation of working 2 h without rest. Construction workers
indicated a combination of negative valence, but positive arousal, which was associated with frustration
and anger [8].

4. Discussion

Safety management and risk control has been an important issue in the construction industry [16].
Construction workers are exposed to potential risks and unexpected hazards during their ongoing
tasks, especially when they are performing a task of considerable mental and physical demand.
Therefore, monitoring construction workers’ physical and mental status would be of great value in
keeping on-site risks under control. Instruments that are based on self-report survey and biofeedback
(i.e., skin temperature and heart rate) have been widely applied to construction sites. However, it has
been a challenge to reflect an individual’s mental and psychological condition through objective and
reliable means [10,16]. Recently, a wearable EEG device has largely overcome technical limitations
and been applied to relevant research. In the included studies, EEG-based algorithms (i.e., online
multi-task learning algorithms) have shown reasonable accuracy in identifying individuals at high
risks due to increased stress and fatigue level during construction tasks [29,30]. The current literature
review included studies that applied EEG to monitor construction workers’ physical and mental status
during construction tasks. All of the studies confirmed the validity of using EEG to assess the physical
and mental status of construction workers. The groundwork has shown a promising direction of
integrating neuroscience into the study of safety management in the construction industry.

EEG analysis involves the computing power of frequency bands, including delta, theta, alpha,
beta, and gamma, or ratios between these frequency bands [44]. Different frequency bands of EEG
signals can reflect the mental and psychological status, including mental workload, valence, arousal,
and vigilance. Gamma band is mainly associated with perceptual processes [45]. Cognitive functions,
such as attention [46,47], arousal [48], object recognition [49,50], and language perception [51], can be
identified within the gamma frequency range. Previous research on industrial and occupational fatigue
mostly used low frequency bands, such as theta and alpha waves [52–54]. However, the included
studies of the current review recognized gamma activity during construction work, which suggested
that construction tasks are more than labor-intensive and manual in nature [10,16,27]. Beta band is
predominant in an alert and active state [34,55]. An increase in the beta band is often associated with a
physically active state as well as a high level of alertness, motivation, emotion, and mental activity [54].
Therefore, an increase in the engagement index can be observed with increased mental workload as
well as the attention level during construction tasks [10,16,27]. On the other hand, reduced beta power
density could be a sign of less active status related to fatigue. Evidence can be found in the fatigue
indices, in which the beta wave is the denominator Equations (7) and (8). Reduced beta power density
inflates the indices, which suggests increased fatigue level [31]. Alpha and theta are at relatively
low frequency ranges that reflect an inactive and relaxed state. Alpha and theta activity tend to be
suppressed with higher level of concentration, whereas increase as a sign of fatigue or reduced alertness,
such as drowsiness, boredom, and exhaustion [31,56]. Alpha and theta frequency bands are sensitive
measures of fatigue [57]. The included studies identified the tendency of the declined engagement
index as a result of accumulated mental fatigue during prolonged construction work [10,27].

Brain region is another main consideration in EEG data analysis. Frontal regions (FP1, FP2, AF3,
F3, AF4, and F4) are the primary areas to detect mental status, because the frontal and prefrontal cortex
are responsible for important cognitive functions, such as emotional expression, problem solving,
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reasoning, decision-making, and executive functions [58]. Emotional state is often measured by cortical
activities between the left and right frontal lobe [8,28]. It is worth noting that the activation of the left
frontal areas or deactivation of the right frontal areas is associated with positive emotions, such as
happiness, joy, and contentment [8]. Brain activities that are related to physical exertion can be detected
based on the EEG signals in the motor cortex (FC5 and FC6). Electrodes placed in the area of FC5 and
FC6 can indicate the difference between the active and inactive conditions [25].

Practical advice can be developed from the findings of the included studies. Construction workers
may need to avoid working in an uncomfortable or dangerous site (i.e., in confined space or at
height) over 2 h due to the impacts of working hours and conditions on valence, arousal, attention,
and vigilance [8,28–30]. It would be necessary to divide a complex and time-consuming project into
multiple intervals to provide workers with adequate rests. Therefore, diverse working hours and
working conditions could help construction workers to keep a positive emotional status and high
arousal level [8]. Current studies found that mentally demanding tasks reduce perception capacity,
which makes the construction workers vulnerable to unexpected hazards [10]. In accordance with the
finding, necessary precautions, such as trip and fall protection, electric shock prevention, and falling
objects protection, must be implemented in the areas where complex tasks are performed [59].
The abovementioned suggestions for on-site safety management have already been known to
the construction industry, but it is the first time that the safety procedures are substantiated by
neuroscience evidence.

5. Limitations and Future Direction

A major limitation of the current review is the small number of studies, given that only eleven
articles met the eligible criteria. In addition, the sample size is also small, which can be largely attributed
to the fact that primary purpose of the preliminary studies is to test the validity and reliability of using
EEG to monitor construction workers’ physical and mental status during work. Another limitation is
related to the heterogeneity across the included studies, with three studies focusing on the fatigue level
of construction workers [17,25,31], four studies examining emotion and motivation [8,28–30], and four
studies investigating mental workload [10,16,27,32]. Diverse focuses of these studies provide a broad
view on EEG patterns and construction activities, but further investigations are needed in the future
research. Researchers and practitioners should interpret results of the review with caution because of
the limitations in the current review.

Despite the limitations at this moment, preliminary studies have shown a promising direction for
construction safety research in the future. The application of EEG provides an additional dimension
of safety control in the construction industry [10]. Brain activities in response to different tasks
and work conditions largely remain unknown because relevant research in this field is still at an
initial phase. For example, the tasks that are involved in the reviewed studies (i.e., bolts fastening
and ladder climbing) only account for a limited proportion of construction workers’ daily routines.
It would be valuable to investigate physical and mental status under various situations. In addition to
safety management, the productivity of construction workers could be another interest of EEG study.
Researchers have applied EEG to monitor workers’ attention level, emotion, and motivation, which
are essential factors with respect to productivity in the workplace. With the knowledge of desirable
emotional and mental status, appropriate task allocation can be assigned to optimize the performance
and productivity of construction workers [27].

The application of neuroscience to construction engineering will not only improve safety
management practice, providing refined techniques in automated assessment and prediction of
construction workers’ behaviors, but also benefit neuroscience in return. It is interesting to see such a
fast development in the past few years, during which researchers attempted to validate the method
of using wearable EEG to reflect construction workers’ physical and mental changes in both lab and
on-site environment in the first two years between 2016 and 2017 [10,16,27,28]. However, recent
publications in the last two years indicate a trend toward acquiring high quality of EEG signals and
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improving data processing techniques by means of algorithms [29–32]. Neuroscience enables scientists
in the civil engineering to understand an individual’s behavioral and psychological responses from
the neural level. In the meantime, the algorithms that were developed from engineering will provide
neuroscientists with powerful research instruments to filter artifacts due to movement and explore
brain activities in dynamic, movement-related conditions that were difficult to study without effective
and robust information processing techniques. The interdisciplinary benefits between neuroscience
and civil engineering will contribute to continuous advancement in both fields.

6. Conclusions

EEG is a promising approach for improving the effectiveness of safety management on the
construction site. The included studies substantiate the feasibility of using EEG technique as a measure
of construction workers’ physical exertion, mental workload, and emotional status. In addition,
EEG signal variations in relation to different construction tasks, working hours, and work conditions
provide predictive information on construction workers’ behaviors. The current review summarizes
recent findings based on combined research work between civil engineering and neuroscience.
Researchers in the civil engineering may use the current review to develop and refine EEG-based
experiments, and thus contribute to enhancing on-site safety management in the construction industry.
On the other hand, neuroscientists are able to acquire high-quality EEG data from the experiments
requiring body movement by taking advantage of the artifact removal techniques. Future research
is needed to expand the current knowledge base on the relationship between EEG patterns and
corresponding construction activities, which enables practitioners to optimize the performance of
construction workers while maintaining on-site risks under control.

Author Contributions: Conceptualization, Y.Z., M.Z., and Q.F.; supervision, M.Z. All authors conducted literature
search, analyzed the results, and wrote the manuscript. All authors gave final approval for publication.

Funding: This research received no external funding.

Acknowledgments: The authors would like to express gratitude for the help and support from faculty members
of School of Civil Engineering, Qingdao University of Technology, in conducting this review.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sousa, V.; Almeida, N.M.; Dias, L.A. Risk-based management of occupational safety and health in the
construction industry—Part 1: Background knowledge. Saf. Sci. 2014, 66, 75–86. [CrossRef]

2. Heinrich, H.W. Industrial accident prevention. A scientific approach. In Industrial Accident Prevention.
A Scientific Approach; McGraw-Hill Book Company, Inc.: New York, NY, USA; London, UK, 1941.

3. Wu, X.; Liu, Q.; Zhang, L.; Skibniewski, M.J.; Wang, Y. Prospective safety performance evaluation on
construction sites. Accid. Anal. Prev. 2015, 78, 58–72. [CrossRef] [PubMed]

4. Choudhry, R.M.; Fang, D.; Ahmed, S.M. Safety management in construction: Best practices in Hong Kong.
J. Prof. Issues Eng. Educ. Pract. 2008, 134, 20–32. [CrossRef]

5. Guo, H.; Yu, Y.; Skitmore, M. Visualization technology-based construction safety management: A review.
Autom. Constr. 2016, 73, 135–144. [CrossRef]

6. Choudhry, R.M. Behavior-based safety on construction sites: A case study. Accid. Anal. Prev. 2014, 70, 14–23.
[CrossRef] [PubMed]

7. Choudhry, R.M. Implementation of BBS and the impact of site-level commitment. J. Prof. Issues Eng. Educ.
Pract. 2012, 138, 296–304. [CrossRef]

8. Hwang, S.; Jebelli, H.; Choi, B.; Choi, M.; Lee, S. Measuring workers’ emotional state during construction
tasks using wearable EEG. J. Constr. Eng. Manag. 2018, 144, 04018050. [CrossRef]

9. Rowlinson, S.; YunyanJia, A.; Li, B.; ChuanjingJu, C. Management of climatic heat stress risk in construction:
A review of practices, methodologies, and future research. Accid. Anal. Prev. 2014, 66, 187–198. [CrossRef]

10. Chen, J.; Song, X.; Lin, Z. Revealing the “invisible gorilla” in construction: Estimating construction safety
through mental workload assessment. Autom. Constr. 2016, 63, 173–183. [CrossRef]

http://dx.doi.org/10.1016/j.ssci.2014.02.008
http://dx.doi.org/10.1016/j.aap.2015.02.003
http://www.ncbi.nlm.nih.gov/pubmed/25746166
http://dx.doi.org/10.1061/(ASCE)1052-3928(2008)134:1(20)
http://dx.doi.org/10.1016/j.autcon.2016.10.004
http://dx.doi.org/10.1016/j.aap.2014.03.007
http://www.ncbi.nlm.nih.gov/pubmed/24686162
http://dx.doi.org/10.1061/(ASCE)EI.1943-5541.0000111
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001506
http://dx.doi.org/10.1016/j.aap.2013.08.011
http://dx.doi.org/10.1016/j.autcon.2015.12.018


Int. J. Environ. Res. Public Health 2019, 16, 4146 13 of 14

11. Haslam, R.A.; Hide, S.A.; Gibb, A.G.; Gyi, D.E.; Pavitt, T.; Atkinson, S.; Duff, A.R. Contributing factors in
construction accidents. Appl. Ergon. 2005, 36, 401–415. [CrossRef]

12. National Safety Council. Accident Facts; National Safety Council: Itasca, IL, USA, 2006.
13. Esmaeili, B.; Hallowell, M.R. Diffusion of safety innovations in the construction industry. J. Constr. Eng.

Manag. 2011, 138, 955–963. [CrossRef]
14. Lee, U.-K.; Kim, J.-H.; Cho, H.; Kang, K.-I. Development of a mobile safety monitoring system for construction

sites. Autom. Constr. 2009, 18, 258–264. [CrossRef]
15. Carbonari, A.; Giretti, A.; Naticchia, B. A proactive system for real-time safety management in construction

sites. Autom. Constr. 2011, 20, 686–698. [CrossRef]
16. Wang, D.; Chen, J.; Zhao, D.; Dai, F.; Zheng, C.; Wu, X. Monitoring workers’ attention and vigilance in

construction activities through a wireless and wearable electroencephalography system. Autom. Constr.
2017, 82, 122–137. [CrossRef]

17. Aryal, A.; Ghahramani, A.; Becerik-Gerber, B. Monitoring fatigue in construction workers using physiological
measurements. Autom. Constr. 2017, 82, 154–165. [CrossRef]

18. Wong, D.P.-L.; Chung, J.W.-Y.; Chan, A.P.-C.; Wong, F.K.-W.; Yi, W. Comparing the physiological and
perceptual responses of construction workers (bar benders and bar fixers) in a hot environment. Appl. Ergon.
2014, 45, 1705–1711. [CrossRef]

19. Abdelhamid, T.S.; Everett, J.G. Physiological demands during construction work. J. Constr. Eng. Manag.
2002, 128, 427–437. [CrossRef]

20. Cheng, T.; Migliaccio, G.C.; Teizer, J.; Gatti, U.C. Data fusion of real-time location sensing and physiological status
monitoring for ergonomics analysis of construction workers. J. Comput. Civ. Eng. 2012, 27, 320–335. [CrossRef]

21. Cho, Y.K.; Youn, J.H.; Martinez, D. Error modeling for an untethered ultra-wideband system for construction
indoor asset tracking. Autom. Constr. 2010, 19, 43–54. [CrossRef]

22. Sgourou, E.; Katsakiori, P.; Goutsos, S.; Manatakis, E. Assessment of selected safety performance evaluation
methods in regards to their conceptual, methodological and practical characteristics. Saf. Sci. 2010,
48, 1019–1025. [CrossRef]

23. Szafir, D.; Signorile, R. An exploration of the utilization of electroencephalography and neural nets to
control robots. In Proceedings of the IFIP Conference on Human-Computer Interaction, Lisbon, Portugal,
5–9 September 2011; pp. 186–194.

24. Cohen, M.X. It’s about time. Front. Hum. Neurosci. 2011, 5, 2. [CrossRef] [PubMed]
25. Jebelli, H.; Hwang, S.; Lee, S. EEG signal-processing framework to obtain high-quality brain waves from an

off-the-shelf wearable EEG device. J. Comput. Civ. Eng. 2017, 32, 04017070. [CrossRef]
26. Gevins, A.; Smith, M.E. Neurophysiological measures of cognitive workload during human-computer

interaction. Theor. Issues Ergon. Sci. 2003, 4, 113–131. [CrossRef]
27. Chen, J.; Taylor, J.E.; Comu, S. Assessing task mental workload in construction projects: A novel

electroencephalography approach. J. Constr. Eng. Manag. 2017, 143, 04017053. [CrossRef]
28. Jebelli, H.; Hwang, S.; Lee, S. Feasibility of field measurement of construction workers’ valence using

a wearable EEG device. In Proceedings of the ASCE International Workshop on Computing in Civil
Engineering, Seattle, WA, USA, 25–27 June 2017; pp. 99–106.

29. Jebelli, H.; Khalili, M.M.; Lee, S. A continuously updated, computationally efficient stress recognition
framework using electroencephalogram (EEG) by applying online multi-task learning algorithms (OMTL).
IEEE J. Biomed. Health Inform. 2018, 23, 1928–1939. [CrossRef]

30. Jebelli, H.; Hwang, S.; Lee, S. EEG-based workers’ stress recognition at construction sites. Autom. Constr.
2018, 93, 315–324. [CrossRef]

31. Li, H.; Wang, D.; Chen, J.; Luo, X.; Li, J.; Xing, X. Pre-service fatigue screening for construction workers
through wearable EEG-based signal spectral analysis. Autom. Constr. 2019, 106, 102851. [CrossRef]

32. Wang, D.; Li, H.; Chen, J. Detecting and measuring construction workers’ vigilance through hybrid
kinematic-EEG signals. Autom. Constr. 2019, 100, 11–23. [CrossRef]

33. Holm, A.; Lukander, K.; Korpela, J.; Sallinen, M.; Müller, K.M. Estimating brain load from the EEG. Sci. World J.
2009, 9, 639–651. [CrossRef]

34. Buzsaki, G. Rhythms of the Brain; Oxford University Press: Oxford, UK, 2006.
35. Liu, N.-H.; Chiang, C.-Y.; Chu, H.-C. Recognizing the degree of human attention using EEG signals from

mobile sensors. Sensors 2013, 13, 10273–10286. [CrossRef]

http://dx.doi.org/10.1016/j.apergo.2004.12.002
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000499
http://dx.doi.org/10.1016/j.autcon.2008.08.002
http://dx.doi.org/10.1016/j.autcon.2011.04.019
http://dx.doi.org/10.1016/j.autcon.2017.02.001
http://dx.doi.org/10.1016/j.autcon.2017.03.003
http://dx.doi.org/10.1016/j.apergo.2014.06.002
http://dx.doi.org/10.1061/(ASCE)0733-9364(2002)128:5(427)
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000222
http://dx.doi.org/10.1016/j.autcon.2009.08.001
http://dx.doi.org/10.1016/j.ssci.2009.11.001
http://dx.doi.org/10.3389/fnhum.2011.00002
http://www.ncbi.nlm.nih.gov/pubmed/21267395
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000719
http://dx.doi.org/10.1080/14639220210159717
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001345
http://dx.doi.org/10.1109/JBHI.2018.2870963
http://dx.doi.org/10.1016/j.autcon.2018.05.027
http://dx.doi.org/10.1016/j.autcon.2019.102851
http://dx.doi.org/10.1016/j.autcon.2018.12.018
http://dx.doi.org/10.1100/tsw.2009.83
http://dx.doi.org/10.3390/s130810273


Int. J. Environ. Res. Public Health 2019, 16, 4146 14 of 14

36. Morillas-Romero, A.; Tortella-Feliu, M.; Bornas, X.; Putman, P. Spontaneous EEG theta/beta ratio and
delta–beta coupling in relation to attentional network functioning and self-reported attentional control.
Cogn. Affect. Behav. Neurosci. 2015, 15, 598–606. [CrossRef] [PubMed]

37. Geva, R.; Zivan, M.; Warsha, A.; Olchik, D. Alerting, orienting or executive attention networks:
Differential patters of pupil dilations. Front. Behav. Neurosci. 2013, 7, 145. [CrossRef] [PubMed]

38. Anders, S.; Lotze, M.; Erb, M.; Grodd, W.; Birbaumer, N. Brain activity underlying emotional valence and
arousal: A response-related fMRI study. Hum. Brain Mapp. 2004, 23, 200–209. [CrossRef] [PubMed]

39. Baumeister, R.F.; Vohs, K.D.; DeWall, C.N.; Zhang, L. How emotion shapes behavior: Feedback, anticipation,
and reflection, rather than direct causation. Personal. Soc. Psychol. Rev. 2007, 11, 167–203. [CrossRef]

40. Coan, J.A.; Allen, J.J. Frontal EEG asymmetry and the behavioral activation and inhibition systems.
Psychophysiology 2003, 40, 106–114. [CrossRef]

41. Winkler, I.; Jäger, M.; Mihajlovic, V.; Tsoneva, T. Frontal EEG asymmetry based classification of emotional
valence using common spatial patterns. World Acad. Sci. Eng. Technol. 2010, 45, 373–378.

42. Coan, J.A.; Allen, J.J.B.; McKnight, P.E. A capability model of individual differences in frontal EEG asymmetry.
Biol. Psychol. 2006, 72, 198–207. [CrossRef]

43. Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [CrossRef]
44. Berka, C.; Levendowski, D.J.; Lumicao, M.N.; Yau, A.; Davis, G.; Zivkovic, V.T.; Olmstead, R.E.; Tremoulet, P.D.;

Craven, P.L. EEG correlates of task engagement and mental workload in vigilance, learning, and memory
tasks. Aviat. Space Environ. Med. 2007, 78, B231–B244.

45. Herrmann, C.S.; Munk, M.H.; Engel, A.K. Cognitive functions of gamma-band activity: Memory match and
utilization. Trends Cogn. Sci. 2004, 8, 347–355. [CrossRef]

46. Tiitinen, H.; Sinkkonen, J.; Reinikainen, K.; Alho, K.; Lavikainen, J.; Näätänen, R. Selective attention enhances
the auditory 40-Hz transient response in humans. Nature 1993, 364, 59–60. [CrossRef] [PubMed]

47. Pantev, C. Evoked and induced gamma-band activity of the human cortex. Brain Topogr. 1995, 7, 321–330.
[CrossRef] [PubMed]

48. Strüber, D.; Basar-Eroglu, C.; Hoff, E.; Stadler, M. Reversal-rate dependent differences in the EEG gamma-band
during multistable visual perception. Int. J. Psychophysiol. 2000, 38, 243–252. [CrossRef]
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