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Slight reduction in SARS‑CoV‑2 
exposure viral load due to masking 
results in a significant reduction 
in transmission with widespread 
implementation
Ashish Goyal1, Daniel B. Reeves1, Niket Thakkar2, Mike Famulare2, E. Fabián Cardozo‑Ojeda1, 
Bryan T. Mayer1,5 & Joshua T. Schiffer1,3,4,5*

Masks are a vital tool for limiting SARS-CoV-2 spread in the population. Here we utilize a 
mathematical model to assess the impact of masking on transmission within individual transmission 
pairs and at the population level. Our model quantitatively links mask efficacy to reductions in viral 
load and subsequent transmission risk. Our results reinforce that the use of masks by both a potential 
transmitter and exposed person substantially reduces the probability of successful transmission, even 
if masks only lower exposure viral load by ~ 50%. Slight increases in mask adherence and/or efficacy 
above current levels would reduce the effective reproductive number (Re) substantially below 1, 
particularly if implemented comprehensively in potential super-spreader environments. Our model 
predicts that moderately efficacious masks will also lower exposure viral load tenfold among people 
who get infected despite masking, potentially limiting infection severity. Because peak viral load 
tends to occur pre-symptomatically, we also identify that antiviral therapy targeting symptomatic 
individuals is unlikely to impact transmission risk. Instead, antiviral therapy would only lower Re if 
dosed as post-exposure prophylaxis and if given to ~ 50% of newly infected people within 3 days of an 
exposure. These results highlight the primacy of masking relative to other biomedical interventions 
under consideration for limiting the extent of the COVID-19 pandemic prior to widespread 
implementation of a vaccine. To confirm this prediction, we used a regression model of King County, 
Washington data and simulated the counterfactual scenario without mask wearing to estimate that 
in the absence of additional interventions, mask wearing decreased Re from 1.3–1.5 to ~ 1.0 between 
June and September 2020.

Masks are a barrier method to prevent the spread of respiratory viral infections. A mask essentially serves as a 
filter that prevents passage of some portion of viruses from the airway of the transmitter to the airway of exposed 
contacts. Mask efficacy is therefore mediated by a reduction in exposure viral load which we define as the virus 
that reaches the airway of the exposed contact after the filtration from masks used by transmitter and/or exposed 
contact1,2. If a potential transmitter as well as an exposed contact are masked, then this filtering process occurs 
twice potentially amplifying protection.

Mask efficacy is inferior to that of other, less permeable barrier methods to prevent infections such as 
condoms1,3,4. The most commonly used cloth and hospital masks do not provide a perfect facial seal and mask 
fabric does not block emission or inhalation of all aerosolized viral particles5,6. N95 masks may bypass these 
shortcomings but are in short supply and difficult to wear for long periods of time7,8. As a result of these imper-
fections, recommendations for mask use have varied over the course of the COVID-19 pandemic. Neverthe-
less, widespread mask use is recognized as a critical component of any viable public health strategy against 
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COVID-199–11. Recent models demonstrate that slight increases in mask utilization could be the single most 
important factor that prevents exponential growth in incident cases12–14.

Quantifying mask efficacy in real-world settings remains challenging. Elegant experimental work demon-
strated the efficacy of masks in animal models15. Many studies have been performed in hospital settings where 
mask compliance is uniform and other complementary infection prevention methods are more commonly 
employed than in other public gathering or work locations16,17. To the best of our knowledge, no study has 
captured the impact of masking on the likelihood of super-spreader events, with specific consideration of inter-
mittent compliance.

Here we develop a mathematical model capturing viral load-mediated effects of mask use on transmission 
probability within transmission pairs and at the population level. We use this approach to estimate the efficacy 
of masks in real world settings, and to characterize effects on super-spreader events as well as exposure viral 
loads of those who get infected despite masking. We also validated our conclusion about the outsized impact of 
mask wearing using epidemiological data from Washington state following a mask mandate—by estimating the 
transmission reductions due to mask wearing and simulating a counterfactual scenario without masks. Finally, 
we compare the preventative impact of masking to the use of antiviral therapies given early during symptomatic 
infection, or when used as post-exposure prophylaxis (PEP).

Results
Baseline mathematical model of SARS‑CoV‑2 viral load dependent transmission.  To deter-
mine the impact of masks on epidemics, we employed two of our previously developed modeling frameworks 
including (i) a within-host viral dynamics model whose parameters are informed by the fitting of 25 untreated 
SARS-CoV-2 infected individuals18, and (ii) a multi-scale model which links viral load shedding at the indi-
vidual level with population level epidemic spread19. The latter model is built upon the assumptions that each 
transmitter has a specific number of exposure contacts per day and that each exposure contact has a certain 
probability of successful transmission based on the transmitter viral load (i.e., the measured SARS-CoV-2 viral 
loads in the transmitter via nasal swabs). This probability is based on a transmission dose (TD) response curve, 
which we characterize by fitting the model to mean R0 as well as frequency histograms describing heterogeneity 
of individual R019, or the number of secondary infections attributed to each infected person obtained from the 
contact tracing data of 391 SARS-CoV-2 cases in Shenzhen, China among other locations20–24. The model was 
simultaneously fit to mean serial interval, the time from the onset of symptoms in the transmitter to symptom 
onset in the secondarily infected person, and distributions of individual serial intervals obtained from the data 
on 468 COVID-19 transmission events reported in mainland China25. Of note, the individual R0 distribution for 
SARS-CoV-2 transmission is highly over-dispersed, meaning that most infected people do not spread infection 
while a minority infect a large number of people. The distribution of serial interval of SARS-CoV-2 is inclusive 
of negative values, which is suggestive of the occasional onset of symptoms in the secondarily infected person 
before the onset of symptoms in the transmitter. The overall qualitative conclusions of this model were that the 
period of contagiousness for SARS-CoV-2 is quite short, typically less than a day, and that super-spreader events 
are largely attributable to high variability in the number of exposure contacts per day among infected people19.

Predicted impact of transmitter or exposure contact masking on transmission probability 
within transmission pairs.  We added masking to this model by assuming that a mask decreases the expo-
sure viral load in a transmission pair by a value that we refer to as the combination mask efficacy (εC). This 
efficacy represents the proportion of viruses filtered by masks worn by both the transmitter and exposed person. 
If the transmitter is wearing a mask with efficacy εT and the exposed person is wearing a mask with efficacy εE, 
then the exposure viral load VE can be related to the transmitter viral load VT by: VE = VT (1 − εT)(1 − εE). The 
combination mask efficacy is then εC = 1 − (1 − εT)(1 − εE), which takes on a value of zero when both parties are 
not wearing a mask or wearing masks that are totally ineffective (Fig. 1).

As in our prior model, the exposure viral load impacts contagiousness, which is the probability that virus is 
passaged to the exposed person’s airway, as well as infectiousness, the probability of cellular infection given the 
presence of virus in the airway. Each of these properties is associated with a dose response curve (contagious-
ness dose (CD) response curve and infectiousness dose (ID) response curve), the product of which is the TD 
response curve.

In this context, we first establish a baseline probability of transmission given no use of masks on both sides 
of a potential transmission pair (Fig. 2A). The absolute & relative reductions in transmission probability with 
more effective masks vary as VT increases. At lower viral loads (< 107.5 viral RNA copies), a moderate to highly 
effective mask worn by either a transmitter (0.9 > εT ≥ 0.5) or an exposed contact (0.9 > εE ≥ 0.5) is sufficient to 
partially lower the absolute probability of transmission (Fig. 2B, C, Supplementary Fig. 1A). The relative reduc-
tion in transmission probability increases linearly with increasing mask efficacy at 107 viral RNA copies with an 
increasingly concave, curvilinear relationship at higher viral loads (Supplementary Fig. 1B).

At higher transmitter viral load (107.5–109 viral RNA copies), a moderate to highly effective mask worn 
by either a transmitter (0.9 > εT ≥ 0.5) or an exposed contact (0.9 > εE ≥ 0.5) insignificantly lowers the absolute 
probability of transmission (Fig. 2B, C, Supplementary Fig. 1A). At high viral loads, the relative reduction in 
transmission probability increases dramatically with extremely effective masks of efficacy εx ≥ 0.9, when the mask 
is worn by either a transmitter or an exposed contact (Supplementary Fig. 1B).

Predicted impact of dual masking on transmission probability within transmission pairs.  If 
both the transmitter and exposed person wear masks (dual masking), then lower mask efficacies are sufficient 
to significantly lower transmission risk at a wider range of exposure viral loads (Fig. 2D). At viral loads < 108 
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Figure 1.   Schematic of mask impact on SARS-CoV-2 exposure viral load. (A) The viral load emitted by a 
potential transmitter (VT) can be filtered, resulting in lower exposure viral loads due to a single mask worn by 
a transmitter or exposed individual with efficacy εT or εE respectively. Dual masking lowers exposure viral load 
further by filtering virus twice. (B) Dual masking may prevent super-spreader events to a greater extent than a 
masked transmitter or masked exposed individual.

Figure 2.   Impact of masking the transmitter alone, the exposed contact alone or both members of the 
transmission pair, on transmission risk given a single exposure contact. (A–D) Each panel is based on 
simulations of 1000 transmission pairs. (A) No masking, (B) Transmitter is masked, (C) Exposed contact is 
masked, (D) Both members are masked.
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viral RNA copies, masks worn by both transmitter and exposed contact of more than moderate efficacy (εT ≥ 0.5, 
εT ≥ 0.5 resulting in εC ≥ 0.75), is sufficient to partially lower the absolute probability of transmission (Fig. 2D, 
Supplementary Figs. 1C, 2A–C). The relative reduction in transmission probability according to mask efficacy 
increases more rapidly with dual (Supplementary Fig. 1D) compared to single (Supplementary Fig. 1B) mask-
ing. If both transmitter and exposed contacts wear masks with εT = 0.9 and εE = 0.9 (εC = 0.99), then transmission 
probability is reduced to < 5% for viral loads < 108.5 viral RNA copies and to ~ 20% for transmitter viral load of 109 
viral RNA copies (Fig. 2D, Supplementary Figs. 1C, and 2D).

Predicted impact of transmitter and exposure contact masking on effective reproduction 
number (Re) at different levels of implementation.  We next explore the impact of general masking 
adherence rates on population level metrics of infection by simulating 3000 potential transmitters assuming het-
erogeneity in viral load trajectories and exposure contact networks among individuals. Reduction in the effec-
tive reproductive number (Re) depends on both the mask efficacy levels (εT and εE) and the level of adherence to 
masking (Fig. 3). If we assume 25% of people wear masks 25% of the time, where time refers to 24 h in a full day, 
then most variability in results occur due to the stochastic nature of the model (Fig. 3A). If we assume that 50% 
of people wear masks 50% of the time, then the use of masks with high efficacy of ~ 0.9 results in a drop of Re 
from ~ 1.8 to ~ 1.0 (Fig. 3B). With 75% of people wearing masks 75% of the time, a mask efficacy of ~ 0.5 allows 
for a reduction of Re from ~ 1.8 to ~ 1.0 (Fig. 3C). With 100% of people wearing masks 100% of the time, then a 
mask efficacy of ~ 0.3 is sufficient to achieve Re ~ 1.0, and efficacy of 0.5 in both transmitter and exposed contacts 
lowers Re to less than 0.6 (Fig. 3D).

Estimates of daily mask use (which is equivalent to the product of “percent of people wearing masks” and 
“percent of time wearing masks” in our simulations) in October, 2020 varied between states in the United States 
between 65 and 95%26, though local surveys suggest that masking rates in high risk private environments are 
lower (~ 40%) relative to in public settings27. Re has varied between 0.8 and 1.228. These results suggest that panel 
Fig. 3C, D is likely the closest to recent U.S. epidemic conditions and that εT and εE likely fall roughly between 0.3 
and 0.6 in a real-world setting, if mask efficacy is equivalent between transmitter and exposed contacts. While 
a combined efficacy εC of 0.5–0.85 can be roughly estimated from the model, the possibility of superior efficacy 
of masks in transmitters versus exposed, or vice versa, cannot be excluded.

Proportions of infections attributable to masked and unmasked transmission pairs.  We next 
project the proportion of transmission events attributable to different masking profiles among transmission 
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Figure 3.   Effect of mask utilization and efficacy on mean SARS-CoV-2 effective reproductive number. Heat 
maps (color denotes basic reproductive number) with varying efficacy for both exposed and transmitters. Each 
panel includes simulations of 3000 transmitters with varying daily exposure contacts and (A) low (B) moderate 
(C) high, and (D) perfect mask usage. Specifics of mask use are noted in panel titles.
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pairs assuming equally effective mask (εx) used by both transmitters and exposed contacts. In circumstances 
with low mask utilization (25% of people wearing masks 25% of the time), nearly all transmissions occur from 
an unmasked person to an unmasked person (Fig. 4A). A similar trend is noted for moderate mask utilization 
(50%), particularly as mask efficacy increases (Fig. 4B).

For high (75%) and extremely high (90%) mask utilization scenarios, if mask efficacy is moderate (εx ~ 0.6) 
as is currently believed, then a higher proportion of transmissions occur to or from a person wearing a mask, 
despite the fact that the total number of transmissions dramatically decreases (Fig. 4C, D).

We project that at recent epidemic conditions in the United States, including ~ 50% effective mask use (similar 
to 75% of people wearing masks 75% of the time) and mask efficacy of 0.3–0.6, that fewer than half of ongoing 
transmissions occur within unmasked pairs and that transmission between masked transmitters or masked 
exposed contacts likely contributes significantly to Re (Fig. 4C).

Predicted impact of transmitter and exposure contact masking on super‑spreader events.  We 
next identified that increased mask compliance and efficacy dramatically decreases the proportion of infected 
people who successfully transmit to another person (Supplementary Fig. 3A–D). If 50% of people were to wear 
50% effective masks half of the time, then the likelihood of an individual transmitting decreases from 30 to 20% 
(Supplementary Fig. 3B). If mask compliance is increased to 75% of people 75% of the time, then the likelihood 
of a person transmitting decreases to ~ 15% (Supplementary Fig. 3C).

When masking is applied homogeneously across the population, the proportion of infectors (transmitters 
who infect at least one person) who pass the infection to 5 or more people decreases, as mask utilization and 
efficacy increase (Supplementary Fig. 3E–H). Increased mask utilization and increased mask efficacy leads to 
an even reduction of all types of transmission events, including transmissions to small numbers (1–3) of people, 
or super-spreader events to > 5, > 10, > 20 or > 50 people (Supplementary Fig. 4A–D). Improvements in mask 
efficacy have a larger impact as utilization of mask use increases, including against super-spreader events (Sup-
plementary Fig. 4C, D). Under all simulations, super-spreader events with transmission to > 5 people persist and 
make a nearly equivalent contribution proportionally to overall Re, though their absolute impact is considerably 
lessened with higher mask compliance and efficacy.

Our results suggest that with current levels of masking in the United States (Supplementary Fig. 4C, 
εx = 0.3–0.6), most of the contribution to Re still comes from super-spreader events involving > 5 secondary 
infections. We therefore simulated masking applied to 100% of people with > 10 exposure contacts per day 
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Figure 4.   Effect of mask utilization and efficacy on proportion of masked transmissions contributing to total 
R0. Each panel includes simulations of 3000 transmitters with varying daily exposure contacts and (A) low (B) 
moderate (C) high, and (D) near-perfect mask usage. Specifics of mask use are noted in panel titles.
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(Supplementary Fig. 5A–D) and found that even modest uptake of moderately effective masks (ε ~ 0.5) in the 
remainder of the population appeared to maintain Re < 1.

Predicted impact of transmitter and exposure contact masking on viral inoculum at time of 
infection.  Another theoretical benefit of masks is reduction in exposure viral load which in animal models 
of SARS-CoV-1 and MERS, leads to less severe infection29–31. Simulating under the assumption that 75% of 
people wear masks 75% of the time (i.e., a situation representing recent levels of masking in the United States), 
we identified that transmitter viral load required to generate secondary infections increases slightly with higher 
implementation of more efficacious masks, particularly with dual masking of transmitters and exposed contacts 
(Fig. 5A). Exposure viral load at the time of a successful transmission decreased according to efficacy of mask, 
particularly if both transmitters and exposed contacts are masked (Fig. 5B). With dual masking in place with 
efficacies of 0.6, exposure viral load decreased by ~ 1 log (Fig. 5B). With dual masking in place with efficacies of 
0.9, exposure viral load decreased by ~ 2 logs (Fig. 5B).

Model validation using data from King County, Washington.  We next used mobility data from 
Google32 (Fig. 6A), data documenting mask use over time from the greater Seattle Coronavirus Assessment Net-
work (SCAN)33 (Fig. 6B) and estimates of the effective reproductive number in King County, Washington state34 
(Fig. 6C) all through September 2020, to estimate the reduction in Re due to mask wearing. Using a loglinear 
regression of Re versus mobility, mask usage, and random effects in time, we estimated the reduction in Re due 
to reduced mobility alone and the additional impact of mask usage. On August 30, 2020, from epidemiological 
data (i.e. observed COVID-19 cases, hospital admissions, and mortality) alone, we estimate that Re was 0.8 (95% 
CI [0.5, 1.2]). In a counterfactual scenario with only the observed mobility reduction from the pre-COVID base-
line, Re would have been 1.48 (95% CI [1.38, 1.58]). Adding surveyed mask usage to the mobility impact further 
reduces Re to 1.08 (95% CI [1.03, 1.13]), an absolute reduction of 0.4 and relative reduction of 27%. The residual 
reveals additional variation not explained by mobility or masking, likely due to unmeasured, focal, high-risk 
social gathering and workplace behavior (Supplementary Fig. 6). These data are most consistent with the low 
efficacy (εx ~ 0.3–0.6), high coverage scenario for masks described in Fig. 3C, D above.

This inference of relatively low efficacy from a county-level analysis depends on both the physical properties 
of masks and how they are used. For example, a survey data (n = 4273) in Whatcom county, Washington showed 
that while 92% surveyed reported usually or always wearing masks in public spaces, only ~ 40% did so in “private” 
situations amongst friends and family who live in separate households27. Low mask usage in high-contact settings 
likely strongly attenuates the average effectiveness of masks at the county-level.

Predicted impact of antiviral therapy during early symptomatic infection on Re.  Treatment as 
prevention is a highly effective means for reducing person-to-person transmission of HIV35,36. Our models pre-
dict that initiation of potent antiviral therapy within ~ 0.5–5 days of the symptoms onset (i.e., early symptomatic 
therapy) is likely to have therapeutic benefit37. We therefore tested whether early symptomatic therapy (before 
peak viremia, within ~ 5 days after exposure) which rapidly eliminates shedding might also decrease second-
ary transmissions. Owing to the fact that symptomatic therapy would usually occur after peak viral shedding 
(Supplementary Fig. 7A), our simulations suggest that even widespread implementation of early symptomatic 
therapy would not lower Re (Fig. 7A), percentage of infected people who transmit to at least one other person 
(Fig. 7B) or percentage of infected people who transmit to at least 5 other people (Fig. 7C).

A) B)

From unmasked transmitter
to unmasked contact
From unmasked transmitter
to masked contact
From masked transmitter
to unmasked contact
From masked transmitter
to masked contact

Figure 5.   Effect of mask efficacy on exposure viral load during successful transmissions. Viral loads of the 
transmitter plotted against mask efficacy. Colors indicate masking conditions (see legend). Each boxplot in 
each panel is based on simulations of 3000 transmitters with varying daily exposure contacts. (A) Viral load of 
transmitters and (B) viral load exposure in infected individuals.
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Predicted impact of post‑exposure prophylaxis (PEP) on Re.  PEP is also a potential method for 
lowering SARS-CoV-2 transmissions. Because PEP is given in the pre-symptomatic phase and would usually 
fall before or near peak viral shedding (Supplementary Fig. 7B), our simulations suggest an inverse linear rela-
tionship between uptake of PEP and Re (Fig. 7D), percentage of infected people who transmit to at least one 
other person (Fig. 7E) or percentage of infectors who transmit to at least 5 other people (Fig. 7F). To achieve 
Re < 1 would require PEP efficacy of 50% and ~ 75% uptake in the population, which would in turn require 75% 
of SARS-CoV-2 cases to be contact traced. Increases in PEP efficacy beyond 0.5 would provide minimal to no 
enhancement of this benefit (Fig. 7D).

We further determine that the timing of PEP is critical for success. If PEP is initiated within 2 days of expo-
sure, then the percent of people receiving effective treatment is highly predictive of Re (Fig. 7G). However, from 
day 3 onwards, the impact of effective PEP diminishes (Fig. 7G).

Overall, these results highlight the fact that masking is likely to have more of an impact on Re than any form 
of licensed antiviral therapy that emerges during the course of the pandemic.

Discussion
Relative to other barrier methods for preventing the spread of infectious diseases such as condoms, masks are 
imperfect38. Surgical and cloth masks, which are now used commonly by members of the public, do not com-
pletely eliminate droplet and airborne emission of viral particles by a transmitter1. Nor do they prevent viral 
exposure to airway cells among exposed contacts. Their effectiveness in real world settings is further limited 
by intermittent compliance and improper masking technique. As a result, masks only prevent a proportion of 
person-to-person transmissions.

Figure 6.   Empirical estimated impact of mask usage in King County, Washington. Regression model estimates 
of reduction in effective reproductive number (Re) explained by human mobility and mask wearing. (A) Percent 
of devices at home above baseline using smoothed Google mobility data between March and August 2020. (B) 
From the greater Seattle Coronavirus Assessment Network (SCAN), fraction self-reporting they always wear 
a mask when in public. Data and best fit line with associated 95% confidence interval (CI). (C) Estimated Re 
from epidemiological data (red), modeled reduction in Re due to reduced mobility and masking (solid black), 
and counterfactual scenario without masks (dashed black). Each line is bounded by 95% CI. Dates marking 
important events and local policy changes that affected gathering behavior and masking are overlaid.
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Nevertheless, our results demonstrate that in the absence of a licensed vaccine, based on moderate efficacy, low 
cost, high availability, and ease of use, masks are the most effective currently available biomedical intervention. If 
implemented widely and strategically, on top of baseline levels of physical distancing, masking would be sufficient 
to suppress ongoing spread of SARS-CoV-2 until widespread deployment of a vaccine is possible. More specifi-
cally, our model suggests that increased masking would lower the effective reproduction number (Re), lower 
the percentage of infected people who transmit the virus, decrease the total number of super-spreader events, 
and lower the exposure viral loads among infected people, possibly leading to less severe infections overall29.

We also used a regression/mixed effects model that incorporates mobility and masking data in Washington 
state to estimate the reductions in Re due to mask wearing and simulate a counterfactual in which masks were 
not worn. The results provide a real-world example of our viral load model predictions, suggesting that masking 
prevented exponential growth of infections for 4 months in Washington state. Without a major increase in mask 
wearing over the summer, we surmise that a substantial increase in cases and deaths would have occurred and 
reinstitution of significant physical distancing would have been required.

Importantly, there appears to be a critical threshold of compliance. We predict massive additional benefits 
accrued with an increase in masking compliance from 75% of people masking 75% of the time to 90% of people 
masking 90% of the time. Masking also highlights the critical nature of suppressing super-spreader events. If 
nearly 100% compliance could be achieved among persons with 10 or more exposure contacts per day, then this 
would be sufficient for maintaining Re less than one. This result highlights that policies mandating the proper 
use of masks at all times by all persons at sites of known super-spreader events including high risk work environ-
ments, locker rooms, weddings, social gatherings, and schools should be considered.

Figure 7.   Projected impact of antiviral therapy on SARS-CoV-2 effective reproductive number (Re). Each 
line in each panel is based on simulations of 3000 transmitters with varying daily exposure contacts. Panels 
(A–C) assume early symptomatic therapy (before peak viremia, within ~ 5 days after exposure) with 100% 
efficacy. Panels (D–F) assume post-exposure prophylaxis given during pre-symptomatic infection with different 
efficacies (colored lines). (A and D) Projected Re given different amounts of antiviral uptake in the population, 
(B and E) Projected percent of infected people who infect at least one person given different amounts of antiviral 
uptake in the population. (C and F) Projected percent of infected people who infect at least 5 people given 
different amounts of antiviral uptake in the population. (G) Projected impact of post-exposure prophylaxis 
on SARS-CoV-2 reproductive number according to the day of treatment relative to exposure with different 
percentages of infected individuals receiving antiviral therapy.
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Slight increases in mask efficacy could also drive Re to much lower levels. We believe that different types of 
masks should be comparatively tested with the same scientific rigor applied to clinical trials of small molecular 
agents and vaccines.

An important artifact of widespread masking is that while the total number of incident cases is expected to 
decrease dramatically, the proportion of transmissions in which at least one member of the transmission pair is 
masked will be higher. Therefore, anecdotal documentation of successful infections between masked individu-
als, or even super-spreader events in which many infected people were masked, should not be misinterpreted 
as failure of masking policy. The counterfactual, that masks limited the severity of these events, is likely to be 
true. Only longitudinal incidence data, along with shifts in level of masking in a given region, are appropriate 
for inferring the effectiveness of masks.

It is unlikely that antiviral therapy will prove nearly as useful as widespread masking for preventing transmis-
sions. We previously demonstrated that antiviral therapy given during the early symptomatic phase of infection 
has the potential to limit duration of shedding and infection associated inflammation and is likely to be more 
efficacious than therapy given later during COVID-19 to hospitalized patients37. Unfortunately, early sympto-
matic therapy would likely occur after peak viral load in a majority of cases. Our simulations suggest that even 
100% penetrance of extremely potent antiviral therapies would have a negligible impact on population level 
spread of the virus. Therefore, while treatment as a prevention is a vital piece of HIV public health policy36, it is 
unlikely to impact the COVID-19 pandemic.

On the other hand, treatment in the earliest pre-symptomatic phase of infection, which could only realistically 
occur in the setting of PEP, happens prior to peak viral load and therefore could limit secondary transmissions. 
However, the gains from this approach diminish with each day following exposure. In order to meaningfully 
impact Re, over 50% of exposed contacts would need to receive fully effective therapy within 3 days of an expo-
sure. Given that no available agent yet achieves this level of efficacy and that identifying 50% of post-exposure 
contacts is unrealistic in most countries, it is clear that relative to masking, PEP will only have an adjunctive 
role in managing the pandemic. Potential areas of implementation are among high-risk populations such as 
skilled nursing facility residents or cancer center patients and among populations where masking is difficult or 
impossible.

Our prior work strongly suggests the presence of a transmission dose response curve in which exposure viral 
load is a key determinant of transmission risk39,40. Our current analysis is built upon this assumption. We project 
that masks will lead to a lower exposure viral load among newly infected people, particularly if both the transmit-
ter and exposed individual are successfully masked. Animal models of SARS-CoV-1 and MERS30,31,41, as well as 
challenge studies with influenza H1N1 in humans42, all demonstrate that lower exposure dose is associated with 
less severe disease, and human data from the SARS-CoV-1 outbreak in Hong Kong suggest a similar trend43. 
While data for SARS-CoV-2 in humans is lacking, it is notable that age-adjusted hospitalization and death rates 
may be decreasing since more widespread utilization of masks. A mask related reduction in exposure viral load 
is a plausible but unproven reason for this observation.

Our work has key limitations. First, based on available data, it is impossible to know the true average efficacy 
of a mask worn by a transmitter or an exposed contact. Many epidemics at the state level have demonstrated 
a reduction in the effective reproductive number ranging from 0.2–0.5 when more widespread masking was 
implemented, even as physical distancing levels waxed and waned. Our model suggests that if 75–90% of people 
wear masks 75–90% of the time, which is roughly in accordance with state level observations of mask compliance, 
then a broad estimate for real world mask efficacy is ~ 0.3–0.6, assuming that efficacy is equal between transmit-
ters and exposed contact, and that masks are properly used to optimize their efficacy. If transmitter masking is 
more efficacious, while exposed contact masking is proportionally less efficacious, then similar results can be 
expected. The real-world estimate is inclusive of multiple factors including variability in mask type, masking 
technique and consistency of individual use across different settings. Regardless of the precise estimate, it is clear 
that wider implementation would yield significant reductions in spread of SARS-CoV-2 at the population level.

Second, our generalized model is not region-specific for the current pandemic. For example, different sam-
pling techniques and PCR assays are employed to measure SARS-CoV-2 viral loads, giving rise to different peak 
viral loads in different studies, which might affect our estimates of TD50. The relative impact of super-spreader 
events, intensity of transmission and proportion of symptomatic cases may also vary from region to region based 
on contact network structure and age demographics. Nevertheless, the general qualitative conclusions about 
masking are insensitive to these differences and are likely to be generalizable across the globe.

Third, our model does not include a standard SIR format and therefore does not capture other dynamic 
features that might alter the force of infection such as herd immunity or time-variant shifts in degree of physical 
distancing. Another missing feature that could be captured with an SIR modeling framework is the possibility of 
an assortative mixing pattern, in which individuals with lower adherence to masking might preferentially interact 
with others who have low adherence to masking12. Such an effect could allow persistence of SARS-CoV-2 within 
this sub-population, even if masking is sufficient for containment in the rest of the population.

Fourth, our model assumes that the viral dynamics that is coughed/exteriorized has a similar profile as 
nasopharyngeal viral loads in a transmitter. The validity of this assumption needs to be verified with carefully 
designed experiments, which might affect our estimates of TD50. However, the general qualitative conclusions 
about masking will remain unaffected.

Finally, the low dose inoculum transmitted to the secondary infected person as a result of masking might or 
might not have an impact on the viral dynamic profile including viral peak in the secondary infected individual. 
Due to the lack of availability of such data on SARS-CoV-2, we operated under the assumption that viral dynamic 
profiles are insignificantly altered due to the change in dose inoculum. Hypothetically, if we assume that viral 
dynamic profiles are significantly changed such that viral peak is decreased due to low inoculum like in the case 
of influenza44, we would expect an even more significant decrease in the effective reproduction number than we 
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projected in this manuscript. Therefore, it is possible that we might be underestimating the impact of the mask 
use and only projecting the lower bound. In the future, these assumptions can be adequately addressed but will 
require investigation of the inoculum effect on viral dynamics.

In conclusion, we developed a mechanistic model to demonstrate how masks reduce exposure SARS-CoV-2 
viral load and transmission probability. Widespread use of even modestly effective masks is predicted to severely 
limit epidemic spread and represents the key available intervention along with physical distancing, to mitigate the 
number of infections, and perhaps the proportion of infections that are severe, while the world awaits a widely 
available and effective vaccine.

Materials and methods
SARS‑CoV‑2 within‑host model.  To generate viral loads for transmission, we used the within-host model 
describing the SARS-CoV-2 infection from our previous study18. A detailed description is in the Supplement.

Dose–response model.  We employed our previously developed dose–response model19, to estimate the 
probability of virus entering the airway given a transmitter viral load (i.e., contagiousness) and the probability 
of cellular infection given a transmitter viral load, (i.e., infectiousness) Pt[V(t)] (response) based on viral loads 
V(t) (dose) as described in the Supplement.

Transmission model and reproduction number.  Our methods for describing number of heterogene-
ous values for individual effective reproductive number is also previously described19, and is detailed in the Sup-
plement. Briefly, based on exposure viral load and number of exposure contacts within a certain time frame, we 
summed up the number of secondary infections over 30 days since the time of exposure to obtain the individual 
reproduction number and did this under each parameter scenario for 3000 people. Key parameter values are also 
in the Supplement20–23,25.

Modeling mask and antiviral use.  Reductions in exposure viral load, transmission risk and effective 
reproductive number based of masking and antivirals are detailed in the Supplement.

Epidemiological modeling and analysis.  Our modeling of COVID-19 epidemiology is described in the 
Supplement.
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