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The transcriptional regulation underlying biological processes
is mostly controlled by transcription factors (TFs) and co-
factors (trans-factors) that bind specific sequences in the
promoter regions (cis-elements) to activate or repress gene
expression (see Figure). Natural variation in promoter
regions contributes to the diversity of expression patterns
seen in nature. Modifications within regulatory regions can
also generate novel alleles that alter crop traits; for example,
CRISPR/Cas9-induced mutations in the promoters of key
regulators of meristematic activity led to enhanced inflores-
cence branching and increased locule number and fruit size
in tomato (Rodr�ıguez-Leal et al., 2017).

In this issue of The Plant Cell, work by Takashi Akagi,
Kanae Masuda, Eriko Kuwada, and colleagues (Akagi
et al., 2022) advances our understanding of the precise con-
trol of gene expression during tomato fruit development.
Artificial intelligence methods (including deep learning) al-
low the analysis of massive amounts of data to find patterns
and connections between variables. In plant biology, a re-
cent example of using these algorithms involves the study of
gene expression patterns in response to wounding (Moore
et al., 2022). Here, Akagi et al. used an “explainable” deep
learning framework to identify cis-regulatory elements
(CREs) that can predict gene expression during tomato fruit
ripening.

The first step was to determine sequence patterns under-
lying TF binding. The authors used the so-called cistrome
datasets that include data from DNA-affinity purification
and sequencing (DAP-seq) (O’Malley et al., 2016), which de-
scribe DNA sequences associated with TF binding, and used
only high-confidence binding motifs for 370 TFs from this
dataset. The deep learning models allowed the authors to
identify known motifs that have been extensively biologically

characterized, and also motifs with minor sequence varia-
tions. One advantage of such variant discovery is that it can
be applied to study gene regulation in other related
genomes. In this study, the authors looked for TF-binding
sites identified from the 370 TFs in the 1-kb promoter
regions of the 34,066 genes encoded in the tomato genome
to predict potential CREs for each TF.

The next step was to identify key CREs underlying tran-
scriptional changes during tomato ripening (transition from
green to red fruits) and to then use these CREs to predict
gene expression patterns. The authors used a previously
reported dataset of tomato gene expression (Shinozaki et al.,
2018), which characterizes gene expression in the pericarp at
different ripening stages. With these data, they identified
genes significantly upregulated or downregulated during the
transition from the mature green to the breaker develop-
mental stage. The classification model associated with signifi-
cantly upregulated genes during the transition to the
breaker stage of tomato fruit development yielded the best
prediction accuracy, and therefore CREs were only predicted
for this set of genes. The promoters of upregulated genes
displayed enrichment in binding sites for NAC, C2H2,
MADS-box, G2-like, and ERF TF families. Some of the well-
described regulators of tomato fruit ripening (i.e., NON-
RIPENING, SlZFP2, or RIPENING INHIBITOR) belong to those
families.

The authors chose a subset of genes to verify the
relevance of CREs predicted to control their expression. For
instance, the promoter region of Aminocyclopropane-1-car-
boxylic Acid Synthase 2 (ACS2), a key enzyme in the ethylene
biosynthesis pathway, contained relevant binding sites for
NAC and MADS-box TFs (see Figure). The functional valida-
tion of these motifs was determined by analyzing a mutated
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promoter sequence (pACS2mut) and assessing the probabil-
ity of up-regulation in silico using their reported deep learn-
ing algorithms. Then, the same “pACS2mut” and wild-type
sequences were tested for their ability to bind cognate TFs
in vitro using an electrophoretic mobility shift assay and the
capacity for transcriptional regulation using two transient re-
porter assays, with either luciferase or GFP. The NON-
RIPENING TF, a putative regulator of ACS2 gene expression,
did not bind pACS2mut; additionally, the expression of
ACS2 was significantly reduced, revealing the contribution of
the CREs to the control of gene expression.

The deep learning framework described by Akagi et al. is
similar to a novel approach that uses “transformer modules”

(Avsec et al., 2021). Akagi et al. used a more limited set of
transcriptional data to mine predictive relationships but has
the advantage of using a less “species-specific” DAPseq data-
set. Further advances in predictive ability could be gained by
integrating these new deep learning frameworks and using
more comprehensive “omic” datasets. Additionally, some ex-
tra layers of regulation could be addressed, such as indirect
binding of TFs via protein interactions and modifications at
the chromatin level. Integrating these diverse regulatory ele-
ments will allow the design of novel alleles with specific ex-
pression patterns.
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Figure TFs bind regulatory elements in promoter regions (CREs) to regu-
late gene expression and modify expression levels. In this work, CREs were
analyzed to understand expression patterns at the genome-wide level in
tomato. Adapted from Akagi et al. (2022), Figure 1.
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