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Recent experimental observations suggest that cells can show relatively precise and reli-
able responses to external signals even though substantial noise is inevitably involved in
the signals. An intriguing question is the way how cells can manage to do it. One possible
way to realize such response for a cell is to evolutionary develop and optimize its intra-
cellular signaling pathways so as to extract relevant information from the noisy signal. We
recently demonstrated that certain intracellular signaling reactions could actually conduct
statistically optimal information processing. In this paper, we clarify that such optimal reac-
tion operates near bifurcation point.This result suggests that critical-like phenomena in the
single-cell level may be linked to efficient information processing inside a cell. In addition,
improving the performance of response in the single-cell level is not the only way for cells
to realize reliable response. Another possible strategy is to integrate information of indi-
vidual cells by cell-to-cell interaction such as quorum sensing. Since cell-to-cell interaction
is a common phenomenon, it is equally important to investigate how cells can integrate
their information by cell-to-cell interaction to realize efficient information processing in the
population level. In this paper, we consider roles and benefits of cell-to-cell interaction by
considering integrations of obtained information of individuals with the other cells from the
viewpoint of information processing. We also demonstrate that, by introducing cell move-
ment, spatial organizations can spontaneously emerge as a result of efficient responses
of the population to external signals.
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1. INTRODUCTION
A variety of cellular phenomena commonly suffer from substantial
noise in intracellular reactions and their environmental signals.
Recent experimental observations have revealed that the noise
could be strong enough to disturb robust cellular processes and
functions (Shahrezaei and Swain, 2008; Eldar and Elowitz, 2010).
Nonetheless, cells often respond robustly to changing environ-
ments both at individual and population levels. At the individual
level, examples include differentiation, metabolic switch, apopto-
sis, and chemotaxis (Blake et al., 2003, 2006; Ueda and Shibata,
2007; Fraser and Kaern, 2009; Macarthur et al., 2009; Zhang et al.,
2009). They suggest that intracellular kinetics can perform infor-
mation processing to efficiently extract information from noisy
signals. On the problem of intracellular information processing,
theoretical study has been focusing on structures of molecular
networks and their dynamical properties behind these phenom-
ena (Arai et al., 2010). In particular, it has been suggested that
qualitative properties such as bifurcation structures play an impor-
tant role in the information processing (Toyoizumi and Abbott,
2011).

The information processing at population level is also a key
topic as collective behavior is ubiquitous in biological systems. In
addition to intracellular kinetics, cell-to-cell interaction is crucial

to understand mechanisms and benefits of robust responses.
Examples include synchronization and quorum sensing (Pai and
You, 2009; Mehta and Gregor, 2010).

Among various cellular information processing, of particu-
lar importance is information transmission (Cheong et al., 2011;
Tkacik and Walczak, 2011), in which information of environ-
mental change is transferred by multiple steps through molec-
ular and cellular networks, and integrated at the end point to
make responses. In this work, we consider that the process is
simply modeled with three parts as x(t ): environment → y(t ):
observation → z(t ): environmental information. An intriguing
question is how cells can robustly transmit the information
of x(t ) into the end point z(t ) by chemical reactions, even
though inevitable noise comes to the intermediate step y(t ).
Recently, for a binary environment x(t ) ∈ {0, 1}, we showed that
autophosphorylation and autodephosphorylation (aPadP) cycle
is one of the implementations of the Bayesian inference at the
individual level to perform the optimal information transmis-
sion to z(t ) through noisy y(t ) (Kobayashi, 2010; Kobayashi
and Kamimura, 2011). In Kobayashi (2010), the aPadP cycle,
z(t ), was demonstrated to respond ultrasensitively to x(t ). This
fact suggests that the dynamic properties of z(t ) has certain
connection with bifurcation. Nonetheless, the connection between
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FIGURE 1 | Schematic diagram of optimal information transfer by the

aPadP cycle. x (t ) represents the current state of the environment, and y (t )
is the stochastic behavior of receptors in response to the state of
environment. z (t ) is an intracellular dynamics that is driven by the noisy y (t ).

the optimal kinetics and bifurcation structures has not yet been
investigated.

In addition, cells do not always behave individually but collec-
tively. Cell-to-cell interactions enable cells to integrate the infor-
mation zj of the environment x(t ) that individual cells obtain.
Therefore, collective information processing is also an important
strategy of cells to realize robust response to the changing envi-
ronment. However, little is known about what kind of cell-to-cell
interaction can improve the information processing, especially
information transmission.

This paper addresses the problem of information processing by
focusing both on individual and population levels. By introducing
non-linearity in feedback loops of the aPadP cycle, we show that
the optimal information transmission dynamics operates near a
bifurcation point at the individual level. At the population level,
we investigate benefits of cell-to-cell interactions. We also demon-
strate the effect of information processing to a collective motion
by introducing a simple model.

2. OPTIMAL INFORMATION TRANSFER BY INTRACELLULAR
DYNAMICS

2.1. IMPLEMENTATION BY aPadP CYCLE
In this subsection, we explain the implementation of optimal
decoding dynamics by the aPadP cycle, which was obtained in
(Kobayashi, 2010). Figure 1 shows a schematic diagram of opti-
mal information transfer by intracellular dynamics in (Kobayashi,
2010). The state of environment x(t ) is binary as x(t ) ∈ {0, 1}.
The transition rates from 0 to 1, and 1 to 0 are denoted by r1 and
r0, respectively. The role of observation is played by N 0 receptors
on the membrane: each receptor stochastically activates by fol-
lowing a Poisson point process in which the intensity parameter
λ(t ) = λ(x(t )) is a function of the state of the environment. Here,
we denote λ1 = λ(x = 1) and λ0 = λ(x = 0).

Given the above parameters, the optimal decoding dynamics
was obtained in (Kobayashi, 2010) by using the theory of Bayesian
inference as

dzi

dt
= zi z̃ i

[
λr y (t ) − λd

]
N0 + r1 z̃ i −r0zi := F

(
zi , y (t )

)
, (1)

where λr = log (λ1/λ0) , λd = λ1 − λ0. The first terms of right-
hand-side of equation (1) are identified as the aPadP cycle, in

which zi and z̃ i = 1 − zi correspond to the ratio of phospho-
rylated and unphosphorylated molecules, respectively. The input
from the observation is y(t ) = N (t )/N 0τ , where N (t ) is the total
number of activated receptors at t and τ is the duration a receptor
being active. In the first terms, zi z̃ i λr y (t ) N0 and −zi z̃ i λd N0 can
be regarded as phosphorylation and dephosphorylation reactions
with autoregulatory feedback loops, respectively. The phosphory-
lation is induced by the noisy y(t ). The second and third terms of
equation (1) represent spontaneous phosphorylation and dephos-
phorylation reactions, respectively. Even though the formalism
is valid for arbitrary positive values of r0 and r1, we assume
r0 = r1 = r for the sake of simplicity in this paper.

As demonstrated in Figure 2, zi in the aPadP cycle efficiently
identifies the changes in x(t ) even though the input y(t ) is very
noisy (see top and the fourth panel (n = 1) in Figure 2).

2.2. NON-LINEAR MODEL
In order to evaluate the underlying dynamical properties of the
aPadP cycle, we extend equation (1) by introducing parameters
that control non-linearity of autoregulatory feedback loops as

dzi

dt
= v (n1, n2)

[
zn1

i z̃ i λr y (t ) − zi z̃ i
n2 λd

]
N0 + r1 z̃ i −r0zi , (2)

where n1 and n2 control the non-linearity of the feedbacks and
v(n1, n2) is the time scale parameter. When n1 = n2 = 1 and v(n1,
n2) = 1, then this model is reduced to the original aPadP cycle. For
simplicity of comparison, we consider the case that n1 = n2 = n.
In addition, the time scale is adjusted for comparison such that

max
0≤zi≤1

zi z̃ i
[
λr 2y0 − λd

] = max
0≤zi≤1

v(n, n)
[
zn

i z̃ i λr 2y0 − zi z̃ i
n λd

]

holds approximately for 0.8 ≤ n ≤ 1.2. Here, y0 is the threshold
value that satisfies F(1/2, y0) = 0.

3. OPTIMAL INFORMATION PROCESSING NEAR A
BIFURCATION POINT

The aPadP cycle is an implementation for the information trans-
mission dynamics that can efficiently extract information of input
even with noisy y(t ). As clarified in (Kobayashi,2010),equation (1)
has only single stationary state for a fixed y, and does not show any
phase transition or bifurcation for all values of y. Nonetheless, the
stationary state z as a function of y has highly non-linear depen-
dency on y when r0 and r1 are small, suggesting that equation (1)
is operating near bifurcation points. In fact, we can easily induce a
deterministic bifurcation in equation (2) if we change the parame-
ters, n1 and n2. For n1 = n2 = n, equation (2) shows deterministic
saddle-node or pitchfork bifurcation when n is sufficiently greater
than 1 as shown in the bottom panel of Figure 3. By numerically
evaluating the performance of equation (2) to extract information
from noisy y(t ) by error rate (ER), we find that the performance
is actually maximized when n is close to 1, indicating that the
optimal information processing is achieved near the bifurcation
point. To further clarify the relation between optimal information
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FIGURE 2 | Sample trajectories of N 0y(t ) (top) and zi for different values of n. The yellow-shaded region indicates the period when x (t ) = 1, and the white
region indicates x (t ) = 0. The parameters are N0 = 100, λ1 = 0.13, λ0 = 0.1, and r 0 = r 1 = 0.03.

processing of noisy signal and the underlying dynamics, we trans-
form equation (1) into the following equation by a coordinate
transformation as ξ = log z

z̃ ∈ (−∞, ∞):

dξ

dt
= [

λr y (t ) − λd
]

N0 − (
1 + eξ

) (
r0 − r1e−ξ

)
. (3)

The first term including y(t ) clearly demonstrates that y(t ) is
integrated on the coordinate ξ with a neutral dynamics. In other
words, weights of integrating y(t ) do not depend on the values
of ξ , and thereby, ξ(t ) = ξ0 + ∫ t

0

[
λr y

(
t ′) − λd

]
N0dt ′ when

r0 = r1 = 0. The second terms including r0 and r1 introduces a
single-well potential on ξ whose contribution is linearly depen-
dent on r0 and r1 as shown in Figure 4. Thus, when r0 and r1 are
small, the dynamics of ξ is dominated by the integration of noisy
signal y(t ) over an almost neutrally stable manifold.

In addition, we consider the coordinate transformation dξ =
dzi

zn
i z̃ i

for a general n, and thus equation (2) is written in the form,

dξ

dt
= v (n)

[
λr y (t ) − λd

]
N0 − dV (ξ)

dξ
. (4)

Although the term − dV
dξ

cannot be obtained analytically with

respect to ξ , we numerically calculate the term and its integral
V as a function of ξ as in Figure 4. V clarifies that the dynam-
ics become most neutral near the bifurcation point n = 1 because
derivatives of V up to second order do not depend on ξ in the
vicinity of ξ = 0.

4. CELL-TO-CELL INTERACTIONS
In the population of cells, cell-to-cell interactions can bring a
mechanism to integrate the information zj of individual cells.
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FIGURE 3 | (Top) Error rate (ER) defined by 1
T

∫ T

0
dtId(|x(t ) − zi(t )| > 1

2
)

as a function of n, where Id (u) = 1 when u is true and Id (u) = 0

otherwise. (Bottom) Bifurcation diagram of equation (1). All the parameters
other than n are the same as those in Figure 2.

To investigate the role and benefit of cell-to-cell interaction, we
consider NC cells under the identical environment x(t ). Each cell
has N 0 receptors and the aPadP cycle as its intracellular dynamics.
We assume the i-th cell (i ∈ {1, . . ., NC}) receives information on
x(t ), zj(j �= i), from the other cells by cell-to-cell interaction. In
order to represent the interaction, Gi(z) is introduced in addition
to F(zi, y(t )) in equation (1).

4.1. GLOBAL INTERACTION CASE
While there are several ways to realize cell-to-cell interaction, we
assume in this paper that the i-th cell uses zj(t ) from j-th cell in the
same way as the optimal dynamics uses the noisy signals y(t ). As
clarified in (Kobayashi, 2010), the optimal kinetics updates zi by
the log-likelihoods of receptors’ activations. In the same manner,
zi and zj are fused to update zi as follows. For t ′ = t + �t,

logzi
(
t ′) ∼ (1 − �t ) logzi (t ) + �t logzj (t ) (5)

= logzi (t )
(
zj (t ) /zi(t )

)�t
.

By the normalization condition for zi(t ′), equation (5) is written
as

zi
(
t ′) = zi (t )

(
zj (t ) /zi (t )

)�t

zi (t )
(
zj (t ) /zi (t )

)�t + z̃ i (t )
(
z̃ j (t ) / z̃ i (t )

)�t
, (6)

where z̃ i = 1 − zi .

For sufficiently small �t, equation (6) can be written in the
form of a differential equation as,

dzi

dt
= zi z̃ i log

(
zj

z̃ j

z̃ i

zi

)
. (7)

For the interaction term Gi(z), we consider a mean field of the
other cells to study the effect on the cell i, thus, we make a sum for
all the other cells j �= i as

Gi (z) = D

NC − 1
zi z̃ i

∑
j �=i

log

(
zj

z̃ j

z̃ i

zi

)
, (8)

where D is the coupling strength and NC − 1 is the total number
of cells with which the i-th cell interacts. A cell updates its zi as
dzi
dt = F(zi , y(t )) + Gi(z).

The interaction term equation (7) has effects of averaging zi

and zj because it is positive when zj > zi, and negative when zj < zi.
This averaging effect results in less variances among cells. Figure 5
shows typical trajectories of N 0y(t ), and zi. Even though we show
the trajectories of two cells in each panel for zi, they are indistin-
guishable when the interaction is sufficiently strong (second and
third panels). In addition, the trajectories with interactions run
rather in the vicinity of zi = 0.5 than zi = 0 and 1, in comparison
with no interaction case (bottom panel). Actually, as shown in
Figure 6, the distribution of zi become consolidated to the vicin-
ity of zi = 0.5 and bimodal as D increases. The bimodality in zi

suggests the improvement of estimating the binary x(t ). In order
to investigate if the interaction improves the estimation of x(t ),
we calculate error rates, ER. Figure 7 shows the error rates as a
function of D and NC. For the parameter ranges examined, the
error rates decrease as D and NC increase, meaning that detec-
tion of environmental state becomes efficient when more cells are
involved with stronger interaction.

Even though the interaction decreases error rates of each cell,
it does not outperform the case in which all the receptors’ input
is introduced into one aPadP cycle. In Figure 8, we simultane-
ously change NC and N 0 with the total number of receptors
N T

R = N0NC fixed. The case of NC = 1 gives a minimum error rate
and also has most distinct distribution of zi. This result indicates
that when the total information input is constant as N T

R = const,
it is better to process in one cell rather than dividing them into
parallel cells.

In addition to the original aPadP cycle, we also examine in
Figure 9 the behavior of the non-linear model with cell-to-cell
interactions. As shown in Figure 9A, the error rates decrease with
NC for n = 0.8 and 1 while it remains constant at 0.5 for n = 1.2.
In Figure 9B for n = 1.2, the time trajectory of zi stays near zi = 0,
irrespective of the state of x(t ). For different samples, it stays near
zi = 1, although it is not shown in the figure. These stationary
states, respectively, correspond to those of the bifurcation diagram
in Figure 3. Once the system bifurcates to have two stable station-
ary states as n increases, the stationary states show less dependency
on y. Thereby, the cell cannot efficiently detect the change of the
environment via y(t ).

On the other hand, the cell-to-cell interactions improve the
behavior of the non-linear model for n = 0.8, and the error rates
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FIGURE 4 | (A) −dV /dξ and (B) V (ξ ) as functions of ξ and n in equation (4). Here, v (n) = 1. All the parameters other than n are the same as those in Figure 2.

become smaller than those in the case of n = 1 as NC increases.
This result suggests that the optimality at the population level
can be different, depending on the interaction, from that at the
individual level.

4.2. LOCAL INTERACTION AND CELLULAR MOVEMENTS
In addition to the global interaction, local one is relevant to a
variety of cellular activities, particularly in spatially distributed
systems. In fact, the aPadP cycle can be identified as a model
of chemotaxis in one-dimensional space (Kobayashi, 2011). In
chemotaxis, cells detect gradient of chemoattractants and make
actions by their movements. In the model, the binary environment

x corresponds to the direction of the gradient where x(t ) = 0 and
1 correspond to left and right, respectively. The input y(t ) corre-
sponds to the difference of external signals between the two sides
of the one-dimensional cell. zi corresponds to a ratio of polarized
protein between the two sides, which plays the role of detecting
the gradient.

As an example of actions that each cell makes based on zi,
we consider a simple model of cell movements to investigate the
effect of local interaction on behavior of spatial organizations.
As shown in Figure 10, cells are in a one-dimensional discrete
space, and make actions by hopping to one of the two near-
est grids. Periodic boundary conditions are imposed, and the
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initial condition is that cells are randomly distributed over the
grids. Each grid can be occupied by any number of cells, and
each cell interacts with the other cells in the same grid as in
equation (8). We assume that the preferred direction for cells
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FIGURE 5 | Sample trajectories of N 0y(t ) (top) and zi for (NC, D) = (10, 5),

(2, 5), and (10, 0). (NC, D) = (10, 0) corresponds to no interaction. For zi,
the values of two cells in the system are shown with different colors. The
green-shaded region is x (t ) = 1, otherwise x (t ) = 0. Parameters are
λ1 = 0.11, λ0 = 0.1, and r 0 = r 1 = 0.03.

such as a gradient of chemoattractants changes over time with
rates r0 and r1, respectively. For every τm, all cells hop simul-
taneously to one of the nearest grids based on zi: the i-th cell
(i ∈ {1, . . ., NC}), at l, hops to l − 1 if zi < 0.5, otherwise hops to
l + 1.

Figure 11 compares sample trajectories of the movements of
several cells when the interaction is either present or absent. We
can clearly see that the moving direction is almost the same among
cells when the interaction is present, while the direction can be dif-
ferent among cells when absent. In fact, as shown in Figure 12A,
the interaction improves the probability of correct movement of
all cells to the preferred directions and reduces variances among
cells. The improvement itself is rather expected because, as shown
in Figure 7, the interaction reduces error rates, ER where the prob-
ability of correct movement corresponds to 1 − ER. However, the
improvement is better than expected if we consider the average
number of cells in each grid. In case of λ1 = 0.11 of Figure 12A,
the probability increases from around 0.65 to 0.79 so that the
improvement of the probability is around 0.14. In order to inves-
tigate the number of cells with which a cell needs to interact for
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achieving this improvement, we plot 1 − ER of global interaction
case as a function of NC in Figure 12B. This can be achieved
when a cell interacts globally with more than 10 cells, while the
average number of cells in each grid is N T

C /Lx = 2 for local
interaction.

This result indicates spontaneous emergences of spatial aggre-
gation of cells, in which the cells tend to occupy the same grids.
In fact, Figure 13 shows time evolution of the number of cells
in grids from randomly distributed initial condition for the cases
D = 10 and 0. From the initial condition, the interaction results in
the emergence of grids occupied by a large number of cells, while
no such spatial structure appears without interaction (D = 0). In
addition, the grids move in either of the directions, maintaining
the number of cells. These results indicate the interaction causes
not only the aggregation of cells into the same grids, but also col-
lective movements of cells, even though the interaction does not
explicitly implement it.

Figure 14 shows the probability distribution of the number of
cells in one grid. We clearly see that the interaction leads to the
emergence of grids occupied by a large number of cells. In addi-
tion, the systems with small values of λ1 tend to produce grids
with large number of cells.

The emergence of the spatial organization can be explained
as a by-product of the effect that values of zi in a group of
interacting cells are almost synchronized and have little vari-
ances as the number of cells increases. Once a cell hops to a
grid with several cells, the little variances in zi cause the same
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movements for cells in the grid. This leads to the collective move-
ments of the cells in which cells in the same grid tend to move
in the same direction. Unless the preferred direction changes,
most cells improve their precision of the movement by sharing
the grid with other cells, so that the spatial structure gradually
approach to the steady state (see the behavior around time 100 in
Figure 13).

The change of the preferred direction causes redistribution of
the cells. During a transient period for cells to change the direc-
tions, the output zi of cells in each grid can be different so that
combinations and separations of cells in grids can occur. In case
of small values of λ1, i.e., λ1 = 0.11, movements of cells which
share the grids with no or a few cells are rather random. On the
other hand, cells with large values of λ1 can estimate the direction
with relatively high precision even without interactions so that
the movements are less random. Therefore, cells with small values

of λ1 would have more probabilities to encounter cells in other
grids, which explains the result that systems with small values of
λ1 produce large groups.

Our result demonstrates that the local interactions can sponta-
neously organize a spatial structure for effectively utilizing infor-
mation in multicellular systems. In particular, the effect appears
more robustly when an individual cell cannot obtain sufficient
information of environment.

5. DISCUSSION AND CONCLUSION
In this paper, we have investigated cellular information processing
by focusing on two points: intracellular dynamics and cell-to-cell
interactions.

The optimal dynamics implemented by aPadP cycle obtained in
(Kobayashi, 2010) is clarified to operate near a bifurcation point
by introducing non-linearity of autoregulatory feedback loops.
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By the coordinate transformation from z(t ) to ξ(t ), we demon-
strate that the external noisy signal, y(t ), is integrated with almost
neutral dynamics as equation (3). The bias from the completely
neutral dynamics is attributed to the second term in equation
(3) that reflects the transition of environmental state x(t ). From
the information-theoretical viewpoint, the second term enables
the aPadP cycle to forget the estimated state of the environment
that changes randomly. The second term disappears and the opti-
mal dynamics becomes completely neutral with respect to ξ if
the environment is not changing, i.e., r0 = r1 = 0. Therefore, the
neutrality of dynamics is a natural consequence of statistically

optimal information processing. As we clarified, the almost neu-
tral dynamics is dynamically implemented in equation (3) by
the saddle-node or pitchfork bifurcation. While the aPadP cycle
is optimal only for binary environmental changes, we expect
that optimal dynamics for other types of external signals can
be dynamically implemented by different bifurcation phenom-
ena. We also expect that the connection of optimal information
processing and bifurcation of underlying dynamical systems may
have more mathematically fundamental structure than mere coin-
cidence (Wu and Amari, 2005). Even though the bifurcation
point can be different from the second order phase transition
with which one usually associates critical phenomena, our results
share a general concept that the optimal point is located near
a boundary of regimes of qualitatively distinct behavior in the
parameter space. In the present paper, we focused on the opti-
mality in information processing and its realization in reaction
kinetics with optimized parameters. It remains to understand
how the optimal kinetics is evolutionarily achieved, including
optimizing values of parameters, based on physical organizing
principles.

By scaling up from a single-cell level to a multicellular level,
we show that the cell-to-cell interactions can improve outputs of
individual cells, and the extent of the benefits depends on the intra-
cellular dynamics. Specifically, we find that less neutral dynam-
ics of individual cell is more efficient for collective information
processing. This result reflects the fact that individually optimal
dynamics is not always efficient when they operate cooperatively.
However, it is biologically common that the same cells behave
both individually and collectively depending on their biological
context (Mehta and Gregor, 2010). More investigation is required
for the connection between individual and collective information
processing and their underlying dynamics. Finally, we consider cel-
lular movements as an action based on the integrated information
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and demonstrate a spontaneous spatial aggregation and its benefits
in information integration. Even though aggregation is observed
in many physical systems as collective behavior of components,
our result is rather a consequence of information integration than
direct physical interactions to trend to aggregation in the aligned
motions.

Our results suggest that the viewpoint of efficient informa-
tion processing, in addition to physical point of view, can con-
nect the performances at the individual and population lev-
els, and explain synchronous behavior at different levels consis-
tently.
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