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Abstract: The ongoing miniaturization of spectrometers creates a perfect synergy with the common
advantages of near-infrared (NIR) spectroscopy, which together provide particularly significant
benefits in the field of food analysis. The combination of portability and direct onsite application
with high throughput and a noninvasive way of analysis is a decisive advantage in the food industry,
which features a diverse production and supply chain. A miniaturized NIR analytical framework is
readily applicable to combat various food safety risks, where compromised quality may result from
an accidental or intentional (i.e., food fraud) origin. In this review, the characteristics of miniaturized
NIR sensors are discussed in comparison to benchtop laboratory spectrometers regarding their perfor-
mance, applicability, and optimization of methodology. Miniaturized NIR spectrometers remarkably
increase the flexibility of analysis; however, various factors affect the performance of these devices
in different analytical scenarios. Currently, it is a focused research direction to perform systematic
evaluation studies of the accuracy and reliability of various miniaturized spectrometers that are
based on different technologies; e.g., Fourier transform (FT)-NIR, micro-optoelectro-mechanical
system (MOEMS)-based Hadamard mask, or linear variable filter (LVF) coupled with an array de-
tector, among others. Progressing technology has been accompanied by innovative data-analysis
methods integrated into the package of a micro-NIR analytical framework to improve its accuracy,
reliability, and applicability. Advanced calibration methods (e.g., artificial neural networks (ANN)
and nonlinear regression) directly improve the performance of miniaturized instruments in chal-
lenging analyses, and balance the accuracy of these instruments toward laboratory spectrometers.
The quantum-mechanical simulation of NIR spectra reveals the wavenumber regions where the
best-correlated spectral information resides and unveils the interactions of the target analyte with the
surrounding matrix, ultimately enhancing the information gathered from the NIR spectra. A data-
fusion framework offers a combination of spectral information from sensors that operate in different
wavelength regions and enables parallelization of spectral pretreatments. This set of methods enables
the intelligent design of future NIR analyses using miniaturized instruments, which is critically
important for samples with a complex matrix typical of food raw material and shelf products.

Keywords: food quality; food fraud; quality control; near-infrared; NIR sensors; miniaturization;
handheld; portable; vibrational spectroscopy

1. Introduction

During the last four decades, near-infrared (NIR) spectroscopy (800–2500 nm;
12,500–4000 cm−1) has become one of the most attractive and used methods for food
analysis and quality control for the following reasons: it represents a nondestructive analyt-
ical tool that allows a fast and simultaneous qualitative and quantitative characterization
of a wide variety of samples with regard to their chemical compositions and physical
attributes [1–3]. NIR spectroscopy is nowadays seen as a critical element to be successfully
integrated into the modern system for food monitoring on its path to sustainability [4]. The
last decade marked a rapid acceleration in the continuing trend of the miniaturization of
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NIR spectrometers. These devices significantly increase the flexibility of analysis; however,
attention needs to be paid to the various factors that affect their performance in different
scenarios [1–6]. Currently, it is a focused and very active research direction to systematically
perform evaluation studies of the analytical accuracy and reliability of various miniaturized
spectrometers available in the market [5,7].

NIR spectroscopy is a particularly potent tool for analyzing whole foods and highly
processed products and their constituents [8–14]. The challenging characteristics of such
analyses are commonly encountered in the agri-food sector [12,15,16] and the medicinal
plant sector of the pharmaceutical industry [17–19], as well as in environmental monitoring
and ecology studies [20–23]. As the result of chemical diversity and often challenging
physical properties as well, such as the specific surface texture, the presence of layers
resulting from biological structure of plant tissue [24] (e.g., husks), and even the presence of
color, miniaturized NIR instruments often face serious challenges in the analysis of chemi-
cally complex, granular, and inhomogeneous samples typical for food items. Therefore,
the applicability and analytical performance of miniaturized NIR spectrometers in such
applications is the topic of extensive feasibility research, a factor of critical importance for
establishing practical applications with high reliability.

It is noteworthy that the development of analytical applications of NIR spectroscopy
originated from the needs of the agri-food sector, and its subsequent evolution was largely
stimulated by the needs of the analyses required therein [11]. The decisive advance of this
technique toward wide adoption was tightly coupled with the progress in the instrumen-
tation, where the appearance of Fourier-transform (FT)-NIR spectrometers in early 1990s
was the first major cornerstone [25,26]. The second breakthrough in technology can be
easily associated with the introduction of portable and handheld instruments in the 2000s.
However, from the conceptual point of view, the step into portability formed a much more
decisive reshaping of the application horizon of this technique, as that breakthrough was
the cornerstone of transiting the analysis from the lab to the site, which brought particular
benefits to the agri-food sector [5].

Applications of miniaturized NIR spectroscopy in food-related scenarios connect to
a variety of problems, in which the design and knowledge-based optimization of an an-
alytical pathway is essential to maximize the practical gain from using this innovative
technology (Figure 1). In this review article, we present an overview of the current research
directions, with a critical inspection of the key elements constituting the advancement of
the micro-NIR analytical framework for modern food analysis, quality control, and safety
risk monitoring. In particular, attention is given to the importance of using combined tools
integrated into the NIR analytical method, which improve its accuracy, reliability, and
applicability. Advanced methods of calibration (e.g., artificial neural networks (ANNs))
directly improve the performance of miniaturized instruments in analyzing complex and
challenging samples, equalizing the accuracy of these instruments with benchtop spectrom-
eters. Two-dimensional correlation spectroscopy (2D-COS) yields insights into the relative
sensitivity observed between different instruments toward specific NIR bands [27]. NIR
spectra are intrinsically very complex with highly convoluted signals, which becomes an
extremely strong feature in the case of complex, multiconstituent samples, such as those of
natural origin [28,29]. Quantum-mechanical simulations of NIR spectra provide deep com-
prehension of the chemical information in the processed spectra. This method unveils the
chemical structures correlated with meaningful features of calibration models [30]. These
simulations also enable the interpretation of the instrumental differences observed between
different handheld sensors in light of the chemical information of a given constituent, and
to the prediction of the performance level of a spectrometer in a similar analysis. With the
comprehension of the chemical information analyzed by each spectrometer, the effective-
ness of the sensor-fusion approach can be further validated. Finally, calibration transfer
enables sharing of the trained calibration models between various NIR sensors, providing a
large practical gain in efficiency. This suite of methods enables a better-informed design of
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future NIR spectroscopic analyses, which is particularly important for most samples with a
complex matrix (Figure 1) [31].
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Figure 1. The workflow of the multiplanar methodology used for understanding the instrumental
performance and increasing the accuracy, flexibility, and applicability of miniaturized NIR spectroscopy.

2. Modern NIR Instrumentation—Toward Sensor Ultraminiaturization and Integration

Much of the specifics of the analytical framework based on miniaturized NIR spectrome-
ters may be better comprehended by highlighting the decisive differences that exist between a
standard laboratory stationary (i.e., benchtop) NIR spectrometer and handheld instruments.
The former is nowadays a fully matured instrument that follows a rather uniform construction
scheme, in which either a Michelson or a polarization interferometer is used, and the spectrum
is acquired based on the Fourier-transform (FT) principle [32]. In contrast, there are numerous
optical and engineering principles implemented in the competing portable and miniaturized
NIR instruments, constituting the diversity in the operational characteristics, price-per-unit
factor, and the ultimate applicability of these devices.

2.1. General Design of an FT-NIR Benchtop Spectrometer

A construction scheme of a benchtop NIR spectrometer does not essentially differ from
that of a generic instrument for optical absorption spectroscopy [33–35]. It comprises a light
source, a wavelength selector, and a detector as the main building/functional blocks, which
are interconnected by optics for the propagation of the beam. While NIR spectrometers can
be straightforwardly configured for transmission measurements, in which case a sample
compartment is typically integrated within the spectrometer’s casing, a diffuse reflection
mode of spectra acquisition is much more popular in analytical applications. This advantage
results from the physical principles of NIR spectroscopy (i.e., high permeability of typical
organic matter against NIR wavelengths), which make it straightforwardly applicable for
obtaining good-quality reflectance spectra of samples without any prior pretreatments,
such as dilution in a nonabsorbing medium (e.g., KBr powder), which is necessary for
measuring mid-infrared (MIR) spectra, with the cost of a destructive method of analysis.
Unlike most other instruments, NIR spectrometers can be readily equipped with fiber
probes for remote scanning in diffuse reflectance mode, further adding to the versatility
and practical usefulness of NIR spectroscopy.

An NIR spectrometer can be implemented using two different concepts of performing the
wavelength selection. In a dispersive spectrometer, at a given time, only a narrow waveband
is passed through a monochromator (e.g., a diffraction grating and optical slit system) and
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subsequently presented to the detector. The motion of the diffraction grating over time selects
a consecutively changing waveband (i.e., narrow fragment of the wavelengths), effectively
scanning the entire spectral region in which the instrument operates. As mentioned in the
introduction, this mode of operation has been made obsolete in benchtop NIR spectroscopy by
a superior FT spectrometer [33,34]. In an FT-NIR instrument, the entire measured wavelength
region (i.e., broadband) is passed to the detector. Using an interferometer, either a Michelson-
type or the less-popular polarization interferometer, an interferogram (i.e., a signal in the time
domain) is registered by the detector. The signal in the frequency domain (i.e., the spectrum)
is reconstructed from the interferogram through a Fourier transform. The primary benefits of
such a solution are the gain in the optical throughput of the spectrometer and a precisely con-
trolled wavelength axis [33]. In contrast to full-scale benchtop spectrometers, miniaturization
introduces several difficulties that effectively reduce the advantage of implementing the FT
principle in the spectrometer [5]. Certain other solutions, including multichannel devices, are
feasible and offer competitive performance and cost-effectiveness. Consequently, the hand-
held instruments available on the market utilize diverse optical principles and engineering
solutions to acquire NIR spectra [5].

2.2. Functional Design Scheme of a Miniaturized NIR Spectrometer
2.2.1. Radiation Source

A tungsten halogen incandescent lamp is almost always used as a light source in
benchtop NIR spectrometers. With a few exceptions, it is also a standard used in minia-
turized devices [14]. The emission profile of this source makes it very well suited for the
NIR region, creating a simple, reliable, bright source with very good stability when thermal
equilibrium is achieved. The tungsten halogen source is also preferred in miniaturized
NIR spectrometers; however, there are additional requirements to make it suitable for such
implementation. Energy efficiency and physical dimensions must be optimized, and the
thermal stability of the source can become a problem in miniaturized devices due to a
limited heat capacity or potential exposure to environmental conditions (e.g., sunlight)
during field operation. For example, the insufficient thermal stability of some of earlier
designs of otherwise very potent miniaturized instruments was found to negatively affect
their analytical performance; as reported in a case study, additional cooling of the entire
instrument with a thermocouple eliminated this shortcoming [36]. The effect of source
heating on the entire miniaturized spectrometer can be minimized by supplying the source
with power only for the duration of the measurement; in some designs, this occurs au-
tomatically. Other solutions include a temperature-correction function implemented in
spectrometer software, such as that for the MicroNIR 1700 ES instrument. Regardless, it
is recommended that the background and dark scan are collected frequently to keep the
background profile up to date during measurements.

On the other hand, a light-emitting diode (LED) is a semiconductor source that offers
an extremely low power consumption and operating voltage, compactness, and durability,
and has an excellent value compared to its cost [37]. However, current technology offers
LEDs that emit in a relatively narrow wavelength range that only partially covers the NIR
region; for example, a gallium arsenide (GaAs) LED has a bandwidth of only 50 nm with a
maximum emission at 870 nm [38]. Consequently, these components are suitable for use in
visible/short-wavelength NIR (Vis/SW-NIR) spectrometers, in which compact dimensions
and cost-effectiveness of the instrument are crucial (e.g., SCiO) [5].

2.2.2. Wavelength Selector

The wavelength-selection principle and its corresponding implementation in hardware
are the most critical characteristics of a spectrometer, and largely determine its overall de-
sign and operating parameters [5]. Furthermore, this element manifests the widest diversity
among the designs present in the market, making it the most essential for the characteriza-
tion of a given instrument. Although interferometer-based designs dominate in benchtop
spectrometers, implementation of a Michelson interferometer in handheld devices involves
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considerable trade-offs resulting from difficulties in miniaturizing this complex element [5].
Consequently, it is no longer far superior to other solutions, and so far no uniformly “best”
concept for wavelength selection has been established for a miniaturized NIR spectrometer.
The currently available portable NIR spectrometers demonstrate far-reaching diversity in
this regard, with wavelength selectors ranging from the Fabry–Pérot interferometer and
the Hadamard mask to multichannel devices that combine a linear variable filter (LVF)
with an array detector. On the other hand, miniaturized dispersive spectrometers have
been proved to be competitive; e.g., those implementing a digital micromirror system
that avoids the use of movable dispersion grating, and thus are well suited to the regime
of miniaturization [5]. Complex wavelength selectors allow the use of single-element
detectors, resulting in the most cost-effective combination; the alternative is the integration
of an expensive array detector with a fairly simple optical filter. Several known types of
wavelength selectors are subject to miniaturization using microelectromechanical system
(MEMS) or micro-optoelectro-mechanical system (MOEMS) technology [39]. These optome-
chanical devices are assembled with silicon using industry-standard technologies for the
production of integrated circuits, and their popularization had a particularly important
role in the development of miniaturized NIR spectrometers [5].

The principle of the Hadamard transform (HT) as the wavelength-selection approach
was implemented in multiple handheld NIR spectrometers [40]. The practical advantages
of Hadamard NIR spectrometers were discussed in detail by Fateley and co-workers [41,42].
In its simplest form of the single-encoded HT spectrometer, the light beam is focused on
a slit, and after passing through the grating and the associated optics, is encoded by a
multiaperture mask (Hadamard mask) and projected onto a single-pixel detector. This
optical configuration results in a Hadamard-encoded signal reaching the detector and the
spectrum being restored through a Hadamard transform. Theoretically, the advantages
of Hadamard spectrometers were demonstrated relatively early, as they shared optical
benefits with FT instruments; namely, the multiplex (Felgett), frequency accuracy (Connes),
and throughput (Jacquinot) advantages, while HT spectrometers do not extensively rely
on moving parts [40]. Importantly, a programmable Hadamard mask proved to be imple-
mentable via MOEMS technology, contributing largely to the success of this solution in
handheld NIR instruments.

A digital micromirror device (DMD) is a wavelength selector in which an array
of microscale mirrors manufactured using MOEMS technology form the wavelength-
scanning element. The implementation of a DMD enables the construction of a dispersive
spectrometer in which this element is accompanied by a fixed dispersive grating instead of
the moving grating characteristic of the canonical optical spectrometer [5]. DMD design
also enables the construction of a Hadamard-transform spectrometer (Figure 2) [43]. In
contrast to that obsolete design, a DMD-based spectrometer has no moving macroparts
and offers advantages in terms of mechanical robustness, size, and cost-effectiveness of
the wavelength selector element itself, while its optical configuration allows the use of an
inexpensive single-pixel detector.
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The Fabry–Pérot interferometer also acts as a miniaturized wavelength selector [5]. Its
scheme of operation is based on two parallel mirrors separated by a constant or variable dis-
tance, forming a Fabry–Pérot cavity. The filter is transparent only for resonant wavelengths
related to the standing wave effect of the electric field generated in the optical resonator and
controlled by the cavity width. Variable filter settings allow incoming polychromatic band
(i.e., broadband) to be successively divided into several narrower wavelength fragments
(i.e., narrow bands). Microfabrication of a programmable Fabry–Pérot interferometer is
also feasible using MEMS technology. It is possible to easily reconfigure the spectrometer
to work in other spectral ranges as a factory setting; for example, in NIRONE sensors.

Furthermore, while not being clearly superior in miniaturized form, the Michelson
interferometer has been implemented in a number of compact NIR instruments, including
those that achieved considerable commercial success; e.g., NeoSpectra sensors [5]. No-
tably, a more recent generation of miniaturized FT-NIR spectrometers has emerged; for
example, the Hefei SouthNest spectrometer. This design implements a relatively large
mirror with a diameter of 3 cm in the interferometer, resulting in much improved optical
throughput of the spectrometer compared with earlier generations of miniaturized FT-NIR
devices. Michelson-interferometer-based sensors offer a wide operational spectral region
and superior resolution, comparable to those offered by benchtop FT-NIR spectrometers.

In addition to the above examples, one alternative concept for a spectrometer con-
stitutes an array detector with multiple independent photosensitive elements [5]. While
expensive, such a detector only needs to be combined with a relatively simple optical
filter to work efficiently as a multichannel spectrometer that measures all wavelengths in
the spectrum simultaneously without any scanning principle involved. This solution is
particularly beneficial for miniaturized instruments, as it involves no moving parts even at
the microscale, a high mechanical resistance, and very compact dimensions. Among the
solutions implemented in the current miniaturized NIR instruments, multichannel sensors
based on a linear variable filter (LVF) deserve particular attention. An LVF works as a
wedge-shaped optical filter with an optical coating of a different thickness, which creates a
linear variation in the transparency of the filter at different wavelengths. Designs based
on an array detector and an LVF, unlike those based on MOEMS, do not have the high
initial investment costs that are characteristic of semiconductor manufacturing. An LVF
element is very thin itself, allowing the construction of instruments with a very short path
length, further improving the properties of the multichannel spectrometer with high optical
performance. Since there is no movement in the operation of the spectrometer, acquisition
of a single spectrum is possible with an integration time of less than 10 ns, resulting in the
ability to average a large number of spectra in an overall short collection time [5].

2.2.3. Detector

Miniaturized NIR spectrometers are usually equipped with an indium gallium ar-
senide (InGaAs) or “extended” InGaAs detector, although some instruments also contain
silicon (Si) photovoltaic diodes [5,34,44]. The size constraint seen in miniaturized spec-
trometers limits their optical performance. Therefore, in order to maintain an adequate
signal-to-noise (S/N) ratio, the InGaAs detector is more desirable due to its high sensitivity,
especially in the range of the longer wavelengths of the NIR region (Figure 3) [14]. The
typical wavelength range for its optimal performance is around 1000–1600 nm (10,000–6250
cm−1); however, in practice, several InGaAs-based NIR spectrometers offer good perfor-
mance at adjacent wavelengths as well. Compared to other types of detectors, InGaAs
detectors offer a fast response time, good quantum efficiency, and low dark current, allow-
ing a short scan time while maintaining a good S/N [5]. The extended InGaAs detector is
suitable for instruments operating at shorter wavelengths of ca. 1700 nm. However, this
type of detector has a lower sensitivity, and may require integrated cooling solutions [44].
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Photovoltaic Si detectors maintain a reasonable sensitivity in the wavelength range
from the visible region to ca. 1100 nm (9100 cm−1), which makes them suitable for cost-
effective, compact spectrometers operating only in the visible and SW-NIR regions, as
presented in Figure 3 [5,44]. Photodiodes used in portable spectrometers require the use of
a wavelength-blocking filter to mask the detector from sunlight. The favorable affordability
of this type of detector makes it particularly suitable for spectrometers oriented toward the
consumer market [5,44].

2.2.4. Other Elements

Optics. NIR spectrometers are compatible with glass optics because this material does
not absorb in the visible and most of the NIR region [5,34]. This enables the use of cheap
mechanically and chemically resistant optical materials for the construction of portable NIR
spectrometers [5,44]. However, the best performance in the long-wavelength part of the NIR
region may require high-quality optics made from fused silica; i.e., without O-H impurities.
To ensure reliable operation in direct contact with the sample, the optical window at the
sample interface made from a scratch-resistant material is preferred. For example, some
designs employ sapphire for this role, as it is a mechanically resilient material with the
required transparency in the NIR wavelength range. However, it features a rather high
refractive index (greater than 1.7 in the visible and NIR regions) that increases optical loss
from reflection, making it more suitable for instruments with good optical throughput,
such as MicroNIR multichannel spectrometers.

Connectivity, user interface, and power delivery. Modern electronics have achieved
high levels of energy efficiency, which is a great advantage for portable spectrometers.
These instruments follow one of two power delivery concepts: either the power supply
is provided by an external source, or the unit is equipped with its own battery. For many
spectrometers, the first solution is practically implemented with a universal serial bus (USB)
connection, which is also used for spectrometer control and data transfer (for example, the
standard version of the MicroNIR spectrometer). However, this is only possible if the total
power consumption of the instrument does not exceed the capacity of the USB interface.
In addition, the use of the instrument is limited by a permanent connection to the main
computer (PC) via a USB cable. The second solution is needed for completely autonomous
spectrometers (e.g., microPHAZIR) and those compatible with smartphone applications
(e.g., Tellspec Enterprise sensor and SCiO). With this latest type of device, the data interface
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for transferring measured spectra and associated data can be maintained via USB as well
(e.g., microPHAZIR) or via a cloud service (e.g., Tellspec Enterprise sensor and SCiO).

Closely related to the above, the user control over the instrument can also be achieved
in several ways. The fully autonomous instruments feature their own user interface with
a display screen and a user-input device (e.g., a keyboard), as in the case of, for exam-
ple, microPHAZIR. Spectrometers that require continuous external power are typically
controlled by a PC-installed application with the data interface and power delivery con-
veniently handled by a wired USB interface; examples include MicroNIR instruments [5].
Many devices aimed at the consumer market are operated through an application installed
on a smartphone with continuous communication with a user device over a wireless
connection; i.e., Wi-Fi or a low-power Bluetooth interface.

2.3. Brief Overview of Selected Representative Miniaturized NIR Spectrometers

The principle of the Hadamard spectrometer was implemented in one of the first
handheld NIR instruments introduced to the wide market by Polychromix, now the intel-
lectual property of Thermo Fisher Scientific Inc. The instrument employed a programmable
microscale MEMS-based Hadamard mask, a low-power tungsten lamp source, and an
InGaAs single-element detector. These solutions enabled a robust, reliable, and reasonably
compact instrument, given its fully autonomous operation. The device was fitted with its
own power source—a lithium-ion battery—that was swappable for continued operation, a
display screen, and a user interface; i.e., a keyboard.

Several successful products on the market are based on the NIRscan Digital Light
Processor (DLP) module from Texas Instruments. This solution is based on a digital
micromirror device (DMD) manufactured using MEMS technology, and is available as
two evaluation modules (EVMs): a high-performance (HP) EVM with a DLP NIRscan
sensor and a mobile sensing (MS) EVM with a DLP NIRscan Nano. The latter, more com-
pact one is primarily suitable for cost-efficient portable spectrometers. It is implemented
in the NIR-S-G1 instrument from InnoSpectra [46], available as a customized product
from, e.g., SphereOptics [47], Sagitto [48], Allied Scientific [49] and Tellspec [50]. The NIR-
S-G1 spectrometer is extremely compact (82 mm × 63 mm × 43 mm; weight less than 145 g);
it is equipped with li-ion battery, is operated through a mobile app, and communicates
with a smartphone via a power-efficient Bluetooth interface.

A Fabry–Pérot interferometer was implemented by Spectral Engines in a miniaturized
NIR spectrometer NIRONE S sensor [51], with several variants preconfigured for different
operational wavelength-range, S/N ratio, and resolution parameters (Table 1) while main-
taining very compact dimensions (25 × 25 × 17.5 mm; weight 15 g). The implementation
of the Fabry–Pérot interferometer created an optical configuration of the sensor suitable
for detection in a relatively large area of either the InGaAs or extended InGaAs type. The
Sensor X is a compact version of the instrument optimized for cost-effectiveness and ease
of production. Notably, the latest advances in Fabry–Pérot interferometer technology show
promise for ultraminiaturization. For instance, Hamamatsu recently unveiled a series
of ultracompact NIR sensors, differing mostly in their operational spectral regions that,
however, are quite narrow and depend on the variant, ranging from 1350 to 2150 nm
(7407–4651 cm−1) [52].

An alternative approach to a multichannel spectrometer is offered by the VIAVI
MicroNIR series of instruments. These devices combine a multielement array detector
(InGaAs) coupled with an LVF, enabling a very compact, mechanically robust spectrometer
with superior optical performance for its size. Newer versions of the MicroNIR; e.g., the
1700 ES, improve the operational stability over time thanks to a temperature-correction
function, effectively recalibrating the detector’s response depending on its temperature
to mitigate the thermal capacity imposed by the compact dimensions of the device. The
standard MicroNIR instrument is powered and controlled via a wired USB connection
with a host PC, while the dedicated OnSite-W variant, intended for in-field operation, is
equipped with battery power source and a waterproof and dustproof housing [53].
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Table 1. The operational characteristics of selected miniaturized NIR spectrometers available on the
market in comparison with two exemplary benchtop FT-NIR devices.

Spectrom.
(Vendor)

Key
Components

Operational
Wavelength Region Optical Performance

Control/
Data

Transfer/
Power

Delivery

Weight
(g)

Src. Wavelength
Selector Detector (nm) (cm−1)

Resolution
(at l) (a)

(nm)
S/N

B
en

ch
to

p

NIRFlex
N-500

(Büchi)

TH
(×2)

Polarization
interferome-

ter
(FT)

InGaAs
(TE-

cooled)
800–2500 12,500–

4000 Avg. 1 10,000:1
PC/

LAN/
230 V

15,000

Spectrum
Two

(PerkinElmer)
TH

Michelson
interferometer

(FT)

InGaAs
(air-

cooled)
680–4800 14,700–

3800
0.8–6.4

(at 1000) N/A

PC/
LAN or

USB/
230 V

13,000

M
in

ia
tu

ri
ze

d

microPHAZIR
(Thermo

Fisher
Scientific)

TH
MOEMS

Hadamard
mask (HT)

InGaAs 1596–
2396

6267–
4173 11 N/A

Autonomous/
USB/

Li-ion cell
1250

MicroNIR
1700 ES
(VIAVI)

TH
(×2) LVF

InGaAs
(array;

128
elements)

908–1676 11,013–
5967

12.5 (at
1000) 25
(at 2000)

23,000:1
PC/

USB/
USB

58

SCiO
(Con-
sumer

Physics)

LED Bandpass
filter

Si photo-
diode

(array, 12
elements)

740–1070 13,514–
9346 N/A (b) N/A

Smartphone
(Blue-

tooth)/
cloud/

Li-ion cell

35

NIR-S-G1
(In-

noSpec-
tra)

TH
(×2)

stationary
dispersive

grating
and

MOEMS
DMD

InGaAs 900–1700 11,111–
5882 10 6000:1

Smartphone
(Blue-

tooth)/
cloud/

Li-ion cell

136

NIRONE
Sensor S
(Spectral
Engines)

TH
(×2)

MOEMS
Fabry–Pérot
interferome-

ter

S1.4:
InGaAs

S1.7–S2.5:
‘extended’

InGaAs

1100–
1350 (S1.4)
1350–1650

(S1.7)
1550–1950

(S2.0)
1750–2150

(S2.2)
2000–
2450
(S2.5)

9090–
7407
7407–
6060
6451–
5128

5714–4651
5000–
4081

12–16
13–17
15–21
16–22
18–28

15,000:1–
1500:1
(S1.4–
S2.5)

Smartphone
(Blue-

tooth)/
cloud/

Li-ion cell

15

NeoSpectra-
Scanner
(Si-Ware
Systems)

TH

MEMS
Michelson

interferometer
(FT)

InGaAs 1350–
2500

7407–
4000

16 (at
1550) N/A

Smartphone
(Blue-

tooth)/
cloud/

Li-ion cell

1000

nanoFTIR
NIR

(SouthNest
Technol-

ogy)

TH

Michelson
interferometer
(large mirror;

FT)

InGaAs 800–2600 12,500–
3846

2.5 (at
1000)

6 (at 1600)
13 (at
2400)

9000:1
PC/

USB/
USB

220
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Table 1. Cont.

LabSpec4
(ASD Inc.,

Yoko-
hama,
Japan)

TH

Dispersive
(reflective

holographic
diffraction

grating)

3
detectors:
Vis-NIR

(350–1000
nm): Si

(array, 512
elements)
SW-NIR:
InGaAs
(1001–

1800 nm)
and (1801–
2500 nm)

TE-cooled

350–2500 28,571–
4000

3 (at 700)
10 (at

1400/2100)

9000:1
(700 nm)

9000:1
(1400 nm)

4000:1
(2100 nm)

PC/USB
/acid-gel
battery or

230 V

5440

(a) “At wavelength” parameter listed if available in the data sheet provided by the vendor; (b) SCiO presents
interpolated spectra to the operator with 1 nm data spacing, but the real resolution is considerably lower.
Abbreviations: Src.—source; TH—tungsten halogen; TE—thermo-electric; ×2—duplicated element; N/A—not
available. Unless stated otherwise, single-element detectors are used in the listed instruments. Multiple entries
listed for some instruments correspond to different variants of the same model with specific factory settings.

Miniaturized FT-NIR spectrometers equipped with a Michelson interferometer are
offered by, e.g., Si-Ware Systems with a NeoSpectra device (Table 1, Figure 4) [54]. Recently,
a new generation of FT-NIR minispectrometers appeared. For example, Hefei SouthNest
Technology introduced the nanoFTIR NIR spectrometer, which operates in the full NIR
range of 800–2600 nm (12,500–3846 cm−1) while maintaining a relatively high spectral
resolution of 6 nm at 1600 nm. The device has compact dimensions (14.3 × 4.9 × 2.8 cm)
and is light (220 g), and can be equipped with an external light source and a fiber-optic probe
compliant with the industry standard, making it suitable for online analysis. Furthermore,
recently another MEMS-based FT-NIR spectrometer from Hamamatsu appeared, equipped
with a large mirror (3 mm diameter) interferometer, enabling a good S/N ratio with a
wide spectral range of 1100–250 nm (9090–4000 cm−1). On the other hand, regardless of
the underlying technology, many of the spectrometers are offered in a specialized variant
sold as “turn-key” analyzers to be operated by personnel not trained in spectroscopy.
Such analyzers are preconfigured for the intended analyses, with a specialized software
suite containing spectra-processing algorithms and precalibrated models for quantitative
and qualitative analyses typically performed in a given area of application. For example,
several analyzers based on the microPHAZIR spectrometer appeared that are intended to
be operated under minimal supervision [55]. Exemplary configurations include, e.g., the
microPHAZIR AG Handheld Analyzer, which is intended for animal feed analysis, and
is preconfigured to predict major quality parameters and ingredients in these products,
such as moisture, protein, fiber, starch, etc., [56]. The other turn-key configurations of
the microPHAZIR include, e.g., the microPHAZIR PC analyzer, which is intended for
plastics analysis in recycling [57]; the microPHAZIR RX analyzer, which is preconfigured
for pharmaceuticals [58]; or the microPHAZIR AS, which fulfills the role of an asbestos
analyzer [59]. Mini-NIR analyzers in particular are growing in popularity in the agri-food
industry, with several examples of specialized devices; e.g., the NIR4 Farm spectrometer
from AB Vista, which is intended for the analysis of feed and forage [60]; as well as
analyzers that are preconfigured for grain assessment, such as AURA’s Handheld NIR [61]
or the X-NIR Analyzer [62].
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Figure 4. Principles of wavelength selectors built into different handheld NIR spectrometers:
(a) MEMS Michelson interferometer—NeoSpectra, Si-Ware, Cairo, Egypt; (b) MEMS Michelson
interferometer with a large mirror—nanoFTIR NIR, SouthNest Technology, Hefei, China; (c) MEMS
Hadamard mask—microPHAZIR, Thermo Fisher Scientific, Waltham, MA, USA; (d) MEMS DMD—
implementation of DLP NIRscan module, Texas Instruments, Dallas, TX, USA; (e) MEMS Fabry–Pérot
interferometer—NIRONE Sensor S, Spectral Engines, Helsinki, Finland; (f) LVF—MicroNIR Pro ES
1700, VIAVI, Santa Rosa, CA, USA. Adopted (CC-BY 4.0 license) from [7].

In the context of food analysis, attention should be given to specialized, consumer-
oriented NIR spectrometers designed to accept somewhat limited overall performance
with the greatest benefit of cost-effectiveness. These are the necessary trade-offs to fit the
instruments into their specific niche of the market, where they are offered as “pocket food
analyzers” for use by the general public [63]. The sensor hardware is tailored to provide a
sufficient optical performance, while the primary value for the intended operators origi-
nates from the associated software. These instruments offer an easy-to-use cloud service, in
which the results of the analysis are displayed to the end user in a “black-box”, with underly-
ing predictions based on precalibrated models stored in the cloud service. A good example
of such a device is the Consumer Physics SCiO NIR microspectrometer [64]. Marketed as
the first “pocket” spectrometer, the unit measures 67.7 × 40.2 × 8.8 mm, weighs 35 g, and
is intended primarily for everyday consumer assessment of food quality and nutritional
value. The necessary economical affordability is achieved by using an LED light source
and a simple 12-element Si photodiode detector, with an array of a 4 × 3 configuration,
combined with optical filters across each pixel to form a 12-channel spectrometer. However,
in this design, noticeable penalties in terms of optical performance were inevitable, mani-
fested primarily in the low number of measured wavelengths. Below-average S/N levels
and a narrow wavelength range covering only a fragment of the visible/SW-NIR range
(740–1070 nm; 13,514–9346 cm−1) seem sufficient for the intended applications of this de-
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vice, as a number of essential quality parameters of foods can be effectively predicted from
these spectra. In connection with the ultraminiaturized, consumer-oriented instruments
described above, the much-anticipated NIR sensor fully integrated with a smartphone
has remained a vivid concept in the past decade [65]. While the initial prototype revealed
highly promising characteristics [66,67], so far, no such solution has appeared on the mar-
ket. However, more recent advances into ultraminiaturization; e.g., as demonstrated by
Hamamatsu MEMS-FPI spectrum sensors [65], suggest that NIR spectrometers integrated
with smartphones may become commercially available in the next few years.

3. Methods and Techniques for Spectral Acquisition, Data Analysis, and Interpretation
3.1. Techniques for Spectra Acquisition

Miniaturized spectrometers, in general, can be adopted to perform well in all modes
of spectral acquisition established in NIR spectroscopy; i.e., diffuse reflectance (Figure 5a)
and transmittance (Figure 5b), as well as the mode effectively combining both of these;
i.e., transflectance (Figure 5c) [68]. Furthermore, the interactance mode (Figure 5d) can be
distinguished, which is based on a geometrical arrangement of the sensor vs. the sample
surface, rather than a distinct optical phenomenon. This configuration reduces optical
losses at the path to the sample surface; i.e., a higher portion of the incident beam effectively
reaches the sample. Additionally, in the case of the transmittance measurement of materials
in which strong scattering occurs (e.g., dense solid samples), a distorted behavior of the
NIR beam when propagating through the sample may occur (Figure 5e).
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That being said, most miniaturized NIR spectrometers are factory-configured to oper-
ate in diffuse reflectance mode, and some of them are offered with additional accessories for
transflectance measurements, as in the case of, e.g., the VIAVI MicroNIR. Typically, spectral
acquisition in this mode is performed by using an external reflector and holder designed



Foods 2022, 11, 1465 13 of 53

for maximizing the optical gain of a specific instrument. Such an accessory may be also
custom-made; e.g., a gold-plated surface with a geometrical shape tailored to a specific
analysis [36]. On the other hand, to perform conventional transmittance measurements,
which are preferable for reliability in the analysis of suitable samples such as liquids, minia-
turized instruments require an accessory with its own radiation source. A transmittance
accessory is therefore less common in miniaturized NIR spectroscopy, but is offered again
by, for example, VIAVI, to fit their MicroNIR spectrometer. The interactance principle is
typically implemented through a fiber probe accessory. Different architectures of optical
probes are possible: either the illumination and collection path use the same light fiber,
resulting in a single-fiber probe (SFP) configuration, or two independent fiber probes are
dedicated to each beam, resulting in a multiple-fiber probe (MFP) configuration. While
intensively used in industrial environments, only certain general-oriented miniaturized
NIR spectrometers are solely designed to operate via a fiber probe; e.g., the Hefei SouthNest
FT-NIR instrument.

MVA groups various mathematical methods capable of correlating many variables at
one time [69]. Every spectral point carries information about the sample, and effectively,
the correlation function binds the property of a multicomponent sample with its vibrational
spectrum in a many-parameter function. The machine-learning methods in the variants
applied in chemistry are commonly known as chemometrics, and these are the main tools
for quantitative and discriminant (i.e., qualitative) analysis in applied spectroscopy [69,70].
These methods may be roughly divided into the following categories.

Exploratory data analysis (EDA) groups techniques for data mining (i.e., cluster
analysis and principal component analysis (PCA)) used to gain a general overview of the
variance in the dataset and explore the statistical properties (i.e., distribution in multi-
variate space) of high volume, complex data; e.g., sets of spectra.

Pattern-recognition (classification) techniques are used for separation (grouping) of the
samples according to the statistical specificity of the sample set. Supervised classification
methods include, e.g., linear discriminant analysis (LDA) or support vector machine
(SVM) classification [71]. Clustering methods [72]; e.g., hierarchical cluster analysis or
k-means clustering, are archetypical unsupervised machine-learning algorithms that are
frequently used in the determination of the similarities between samples by grouping
unlabelled datasets. Artificial neural networks (ANNs) are very potent supervised methods
for performing classifications, particularly in challenging cases; e.g., those affected by
instrumental noise and other perturbations.

Regression analysis groups the methods used for quantitative prediction of a sample’s
properties; e.g., quantification of chemical content (either one or a group of constituents)
present in the sample. The most popular techniques include multiple linear regression
(MLR), principal component regression (PCR), and partial least-squares regression (PLSR).
Nonlinear regression methods (e.g., Gaussian process regression (GPR)) and ANNs can
perform very well and improve the analytical performance of miniaturized sensors, in
which a lower resolution and spectral region limit the amount of information available for
the analysis [31,73].

The statistical parameters of trained classification or regression models need to be
evaluated to assess their validity (i.e., ability to describe the variance not only in the
calibration set, but also in general population) and predictive performance. The coefficient
of determination (R2), root-mean-square of calibration (RMSEC), and root-mean-square
error of cross-validation (RMSECV) describe the robustness of the model. The ultimate
prediction power of the model is best assessed by evaluating the root-mean-square error
of prediction (RMSEP) on the basis of an independent one, or preferably more test sets
of samples. Finally, the level of detection (LOD) and level of quantification (LOQ) are
essential parameters that indicate a sensor’s performance (in a specific analysis) toward
low-concentrated constituents, which often receive most focus in certain applications.
Furthermore, statistical parameters can be used to directly compared different approaches
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or various instruments being used; e.g., to describe the performance of the sensing device
in different conditions (for example, configuration of the sensing interface).

Advancements in chemometrics, or even more broadly understood data science, are
naturally beneficial to the applications of miniaturized NIR spectrometers, although this is
a generally oriented trend that brings merit to analytical spectroscopy, rather than focused
research oriented strictly at providing gains only for miniaturized sensors. Certain aspects
of this progress, however, might be linked with proportionally greater benefits offered by
this specific technology. Data-fusion concepts are useful to combine spectral information
from several sensors operating in narrow wavelength regions, as well as to provide the
possibility of performing parallelized spectral pretreatments (Section 5.2). Development
and validation of precalibrated models stored in cloud services should be mentioned, where
the robustness (i.e., universality) of the models is a critical factor; however, this develop-
ment remains mostly the proprietary intellectual property of instrument vendors. On the
other hand, recent attention in NIR spectroscopy has been increasingly directed toward
the application of deep neural networks (i.e., deep learning or “deep chemometrics”) for
prediction and classification purposes [74–76]. However, to date, only scarce literature has
appeared that studied the potential benefits of applying deep-learning methods to reinforce
the analytical framework of miniaturized NIR sensors [75]. However, it seems plausible
that deep networks could provide benefits in processing challenging data sets; e.g., those
of complex samples measured by ultraminiaturized NIR spectrometers. On the other hand,
recent critical evaluations of the current state of data science related to the applications
of miniaturized NIR spectrometers indicate urgent problems yet to be comprehensively
studied [77]. Giusanni et al. pointed out the attention to the issue of the possible dete-
rioration of miniaturized sensors over time, and the connected problem of the validity
of the respective calibration models. Other concerns expressed in that study included
the transferability of the models to future generations of sensors, which seems entirely
legitimate as we approach the era in which the effort invested in the training and validation
of models may outweigh the unit cost of inexpensive sensors. Furthermore, issues related
to the automatization of the data transfer from the instrument to the user device were
pointed out as well [77]. Therefore, there appear to be specific challenges and problems to
be solved by data scientists and chemometricians that are directly related to the widespread
use of miniaturized NIR spectrometers by nonexpert personnel.

3.2. Methods for Interpretation of NIR Spectra

While conventional methods of spectral interpretation provide generalized tables of assign-
ments of the NIR bands representative of chemical constituents typically present in foodstuffs
(Table 2; limited to the major classes of chemical compounds only), the identification of specific
markers in NIR spectra is much less straightforward than it is, for example, in MIR or Raman
spectroscopy [78]. This is the consequence of the intrinsic complexity of NIR spectra and the
resulting difficulty in their direct interpretation, which remains a limiting factor regardless of
the application. In contrast to MIR and Raman techniques, NIR spectroscopy has been hindered
in forming a practically accessible synergy with computational chemistry [79]. In recent years,
however, advances in the tools used in computational chemistry have created an opportunity to
take a step beyond this barrier [28,80–82].

This led to considerable advances in the applicability of the methods of theoretical
chemistry to NIR spectroscopy [83]. The accurate simulation of NIR spectra of reasonably
large molecules largely improves our comprehension of NIR spectra, and offers an oppor-
tunity to take a step beyond this barrier. Quantum-mechanical simulations of NIR spectra
of a variety of compounds are significant from the point of view of physiochemical and
analytical spectroscopy. The examples range from basic molecules (alcohols, nitriles, car-
boxylic acids) [84–87] to complex molecules with importance in biophysical science (fatty
acids, nucleobases) [88,89], materials science and industry [90], and analytical chemistry
(vitamins, natural drugs, polyphenols, alkaloids, food adulterants) [91–95]. The simulated
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NIR spectra largely increase the level of detail in the band assignments compared to the
one available in conventional methods of spectral analysis (Table 2).

Table 2. Approximate positions of NIR bands of the major classes of chemical compounds commonly
present in foodstuffs (excluding water). Reproduced (CC-BY 4.0 license) from [29].

Wavenumber in cm−1 Wavelength
in nm

Vibrational Mode Assignment and the Associated Most
Characteristic Compounds (a)

8250 1210 3 C–H str. (C-H rich compounds; e.g., carbohydrates, lipids)

7375–7150 1355–1400 2 C–H str. + C–H def. (carbohydrates, lipids)

6980 1435 2 N–H str. (proteins)

6750 1480 2 O–H str. (carbohydrates, alcohols, polyphenols)

6660 1500 2 N–H str. (proteins)

6500 1540 2 O–H str. (carbohydrates, alcohols, polyphenols upon
matrix effects; e.g., hydrogen-bonded OH groups)

6400 1565 2 N–H str. (proteins)

6200–5800 1610–1725 2 C–H str. (carbohydrates, lipids)

5625 1780 2 C–H str. (C-H rich compounds; e.g., carbohydrates, lipids)

5500 1820 O–H str. + 2 C–O str. (carbohydrates)

5120 1955 3 C–O str. (carbohydrates)

4880 2050 N–H sym. str. + amide II (proteins)

4825 2075 O–H str. + O–H def. (alcohols, polyphenols)

4645 2155 Amide I + amide III (proteins)

4440 2255 O–H str. + O–H def. (carbohydrates, alcohols, polyphenols)

4360 2295 N–H str. + CO str. (proteins)
(a) The numbers 2 and 3 denote the first and second overtones, respectively; a plus sign (+) denotes combination bands.

A remarkable potential arises from the growing applicability of anharmonic computa-
tions in solving the problems that arise in both basic and analytical NIR spectroscopy [96].
The highly convoluted, overlapping nature of NIR spectra can be successfully dissected
in theoretical spectra, as presented in the example of a caffeine molecule (Figure 6) [93].
The elucidated rich information stemming from numerous NIR bands can subsequently
be used to improve the basic understanding of NIR spectroscopy, as well as to advance
its applications. In silico simulations of NIR spectra yield highly detailed and accurate
chemical interpretations of the NIR bands. This information opens up new possibilities
of performing a deep examination of the performance profile of handheld NIR spectrome-
ters (Sections 2.2 and 2.3). The calibration models constructed for different spectrometers
capture chemical information on the analyzed constituent in clearly distinct ways, with
the benchtop high-resolution spectrometer being able to capture individual vibrational
bands much more accurately. This results in consequences to the ability of a spectrometer
to acquire fine intensity changes in a specific task. The detailed comprehension of NIR
bands from an accurate simulation of the spectra enables the knowledge-based design and
optimization of analytical applications of NIR spectroscopy.

This detailed information on the chemical origin of each NIR band enables new
approaches to the support of analytical applications. For example, one may select the
best-suited sensor for the intended analysis by assessing its suitability in measuring the
characteristic absorption regions of the targeted constituent. Miniaturized NIR spectrom-
eters most often can only measure fragments of the NIR spectrum (Figure 7), and hence,
only selective chemical information can be acquired by these devices. An accurate spectral
simulation, such as the example for caffeine presented above (Figure 6), enable a full under-
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standing of which NIR vibrations a specific sensor can acquire, and thus, the best-suited
instrument for the targeted analysis can be selected.
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Furthermore, a detailed interpretation of PLS regression factors becomes possible
as well, providing deep insights into the critically important connections between the
chemical information present in the sample and the analytical framework [97]. In this way,
the interpretation, in a chemical sense, of the meaningful variables in chemometric models
becomes possible [98–100].

These three essential pillars, each of which takes advantage of a detailed understanding of
the chemical information in the processed spectra, enable a “‘smart”, knowledge-based design
and the optimization of an analytical approach in modern miniaturized NIR spectroscopy.
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4. Overview of Applications of Miniaturized NIR Spectrometers in the Agri-Food Sector

NIR spectroscopy is one of the most versatile methods with great utility, and is highly
valued as an analytical and quality-control tool for foods [101,102]. Miniaturized NIR
spectrometers have particularly rich applications in agricultural and foodstuff areas, as
their portability greatly enhances the common conventional strengths of the NIR ana-
lytical framework, and the miniaturized instruments meet the challenges and specifics
of food-related analysis very well [11]. The complex nature of the food production and
delivery chains, as well as the susceptibility of foods to quality loss, promote the need for
a flexible analytical tool [103]. Similarly, onsite NIR spectroscopy is an excellent tool for
monitoring the quality and growth conditions of crops, and the advent of this technology
revolutionized certain aspects of agriculture [104]. For these reasons, mobile NIR spectrom-
eters attracted relatively early attention in the area of food analysis [104,105]. Ellis and
colleagues previously provided a perspective view on the specific capabilities of portable
NIR devices and their applications in food supply chains [106].

The current state of the art of miniaturized NIR spectroscopy in food analysis shows
that handheld instruments can be used successfully for a wide variety of problems, but
the applicability potential and relative performance may vary from instrument to instru-
ment [73,77,99,100,107–195]. In such applications, the instrumental difference can be pro-
foundly manifested. For example, affordable visible/SW-NIR spectrometers can perform
well in the analysis of macronutrients, but their applications in other scenarios may be
limited [112,118]. This makes it difficult to predict the performance of a given spectrometer
without performing systematic feasibility studies. Such attempts have been made, and it
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should be briefly mentioned that recent studies were aimed at obtaining a wider perspec-
tive on the instrumental differences manifested in the ability to acquire the characteristic
signal of a specific constituent present in the sample [100]. Most of the recent research has
focused on developing effective methods for determining the quality of shelf products. The
challenges faced in this scenario result from several factors. Firstly, the chemical variety of
foodstuffs, often further complicated by the complex matrix and high moisture content, are
of note. Hence, for example, the accessibility to the spectral footprint of food adulterants in
a specific spectral region may vary [94]. Next, the physical properties of these products,
such as surface texture, may frequently interfere with the analysis. Finally, it is often
desirable to perform a nondestructive analysis of an originally packaged product; i.e., the
influence of the packaging material needs to be addressed. Consequently, the feasibility of
miniaturized NIR spectrometers may greatly vary from case to case. Nevertheless, portable
NIR spectroscopy has been introduced with remarkable success in the food industry. Ap-
plication development remains an active direction of research in this area, and numerous
reports appeared in the current literature, as summarized in the following sections.

4.1. Milk

Miniaturized NIR spectroscopy finds particularly widespread use in the analysis of
dairy products, with a considerable research effort oriented directly at developing analytical
methods for the analysis of milk, as evidenced by the recent literature [107–115]. Table 3
presents summarized and tabularized key information provided in the reviewed studies.
Investigations toward the qualitative assessment of milk have attracted the main attention,
where examples of discrimination between organic and conventional milk, authenticity
checks and detection of milk adulteration, or discrimination between regular and lactose-
free milk directly in the field should be noted. However, studies demonstrating the full
capacity of miniaturized NIR spectroscopy to perform rapid quantitative predictions of the
key quality parameters of milk, such as fat and protein content or fatty-acid composition,
have been conducted as well.

Table 3. Recent research activity oriented toward miniaturized NIR spectroscopy for analysis of milk.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[107]

Performance
evaluation of
portable NIR
spectrometer in
authentication of
organic milk

87 samples (full-fat,
pasteurized retail
milk) including 7
organic retail milks
and 50 nonorganic
retail milks

MicroNIR 1700 PCA, PLS-DA

Accurate discrimination
between organic and
conventional milk;
less-successful class assignment
of pasture milk samples;
however, in both cases
MicroNIR was noninferior to
the benchtop NIR spectrometer

[108]

Goat milk authentica-
tion/detection of
adulteration by cow
milk

200 samples (54 pure
goat milk samples
and 146 adulterated
samples)

NIRscan Nano OC-PLS, PLS-DA,
iSPA-PLS-DA

Miniaturized spectrometer
successfully determined the
authenticity of goat milk
(adulteration with cow milk as
risk scenario); all pure goat milk
samples were correctly
identified, with one adulterated
sample misclassified in the
test-set validation
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Table 3. Cont.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[109]
Authentication of
organic milk from
other types of milk

37 organic retail
milks and 50
nonorganic retail
milks

SCiO PLS-DA

Miniaturized NIR spectrometer
was successful in distinguishing
organic milk from conventional
milk

[110]

Method development
for handheld NIR
spectrometer to
collect raw milk
spectra; analysis of
protein, fat, and
solids-nonfat (SNF)
of raw milk; transfer
of calibration models
to another portable
unit

542 fresh milk
samples microPHAZIR MPLS

Successful calibration transfer
demonstrated; sharing
calibration models among
several units indicated as
essential for implementation of
portable instruments for in situ
analysis to provide indicators of
milk composition at the farm
level

[111]

Classification of milk
samples according to
their quality for
improved monitoring
in dairy facilities

903 fresh cow milk
samples microPHAZIR PLSR,

ANN

Miniaturized NIR spectroscopy
provided considerable
advantages at the milking stage
using real-time monitoring of
the quality-control parameters
for each cow milk sample
individually

[112]

Evaluation the
capabilities of two
portable NIR
instruments (SCiO
and NeoSpectra) in
rapid, simple, and
low-cost quantitative
determination of
macronutrients in
commercial milk

45 commercial milks SCiO, NeoSpectra PCA, PLSR

Both SCiO and NeoSpectra
could provide a fast and reliable
analysis of fats in commercial
milk; correct classification of
milk according to fat level
feasible; SCiO able to predict
protein content and detect the
presence or absence of lactose

[113]

Discrimination
between regular and
lactose-free ultrahigh-
temperature (UHT)
milks using benchtop
FT-NIR and
miniaturized NIR
spectrometers,
aiming at in-field
analysis

71 samples; 41
lactose-free
UHT milk and 30
regular UHT milk

MicroNIR 1700 PLS-DA, GA-LDA,
SPA-LDA

Miniaturized NIR spectroscopy
deemed feasible in
discrimination between regular
and lactose-free milk directly in
the field

[114]

Development of
miniaturized NIRS
method for quick and
simple on-site
monitoring of the
fatty-acid profile in
raw milk at the farm
level

108 raw milk samples microPHAZIR PLSR

Accurate classification of milk
by miniaturized NIR
spectroscopy at the farm level
by fatty-acid-composition
labeling; successful
quantification of fatty-acid
sums and healthy indices in
individual cow’s milk;
prediction of individual fatty
acids, and saturated fatty acids
in particular, deemed feasible as
well

[115]

Development of NIR
analytical method for
onsite, contactless
monitoring of milk
quality

17 milk specimens
(commercially
available in Italian
markets)

MicroNIR OnSite PCA, PLSR

Accurate differentiation of milk
as a function of the distribution
of fatty acids in a rapid and
nondestructive manner using
the MicroNIR spectrometer

(a) Abbreviations: ANN—artificial neural network; GA-LDA—genetic algorithm linear discriminant analysis;
MPLS—modified partial least squares; OC-PLS—one-class partial least squares; PCA—principal component
analysis; PLSR—partial-least-squares regression; PLS-DA—partial-least-squares discriminant analysis; iSPA-
PLS-DA—successive projections algorithm for interval selection in PLS-DA; SPA-LDA—successive projection
algorithm–linear discriminant analysis.
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Very often, the prediction performance offered by miniaturized NIR sensors in the
established analytical framework was deemed comparable to that of benchtop NIR spec-
trometers, enabling the real-time monitoring of quality-control parameters of cow milk
for each specimen. Furthermore, while primary attention is given here to bovine milk,
examples of goat milk analysis can also be found in the recent literature as well [108].
In the area of methodology, it should be pointed out that there has been development
toward an effective calibration transfer in order to share calibration models among several
portable instruments, which provided decisive gains in efficient in situ analysis at the farm
level [110].

4.2. Other Dairy Products

Dairy products other than milk also have been extensively examined by miniaturized
NIR spectrometers, with numerous feasibility studies and practical applications of the
developed methods. In this area, the analysis of cheese quality predominates, while
examples of successful examinations of yogurts and milk/dairy powders can be provided
in this category as well [116,117], as summarized in Table 4. Notably, good analytical figures
of merit were accomplished in these feasibility studies; even in the cases of extremely
cost-effective NIR sensors intended for the consumer market; the prediction performance
remained acceptable even when cloud-based “black-box” calibration integrated with the
consumer-aimed software was used for the analysis. Furthermore, the literature suggests
that improved control of the cheese-making process is permissible with miniaturized NIR
sensors, as these devices enable the early detection of deviations from the target quality
directly in the production process, as well as the aging of cheese. On the other hand, the
relevance of the visible/SW-NIR region to provide information correlated with the quality
parameters of dairy products emerged from the reviewed studies. This seems to explain
why these ultra-cost-effective sensors, which operate in the visible/SW-NIR region as the
result of their constructional principles (i.e., Si photodetectors and LED sources), generally
present very good performance in these applications when compared to benchtop NIR
spectrometers that operate in the conventional NIR spectral range.

Table 4. Recent research activity oriented toward miniaturized NIR spectroscopy in the area of
dairy-product applications.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[118]

Performance
comparison of
benchtop vs.
miniaturized NIR
spectrometer in
determining
quality parameters
of cheese

46 cheese samples
(20 of hard cheese,
26 samples of
semihard cheese,
respective to water
content)

SCiO PLSR

Good accuracy of a
miniaturized, extremely
cost-effective NIR
spectrometer in analyzing
quality parameters of
cheese; acceptable
performance even when
using consumer-aimed
software

[119]

Three different
NIR instruments
for online
determination of
fat and dry matter
in cheese blocks

160 cheeses from
10 production
batches

MicroNIR 1700 PLSR

Miniaturized NIR
spectroscopy enables
improved control of the
cheese-making process
through early detection of
the deviations from the
target quality during the
production process
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Table 4. Cont.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[120]

Development and
validation of rapid
quantification
technique for
intact casein and
total protein in
cheddar cheese

49 white and
yellow cheddar
cheese samples

SCiO PLSR, iPLSR

Successful quantification of
intact casein and total
protein in cheddar cheese by
a miniaturized,
ultra-cost-effective NIR
spectrometer; method can
be implemented in
manufacturing facilities as a
low-cost quality-control tool
for cheddar cheese and
processed cheese

[121]

To develop a rapid
analytical method
for determination
of the content of
key cheese quality
and ripening
indicator
compounds;
vibrational
spectroscopic
characterization of
biochemical
changes occurring
during the
ripening process of
cheese

36 white cheese
cubes were
produced in 2
batches, forming
72 cubes for
analysis, and each
of them weighed
approximately 400
g

NeoSpectra PLSR

Handheld NIR spectrometer
deemed suitable for rapid,
simple, in situ monitoring of
the quality of cheese during
aging; real-time monitoring
of the deviations in the
manufacturing process
indicated as feasible

[122]

Feasibility study
for a low-cost NIR
spectrometer to
predict total
nitrogen, soluble
nitrogen, ripening
index, major
minerals, and fatty
acids in cheese

104 ground cheese
samples SCiO MPLS

Miniaturized,
ultra-cost-effective NIR
spectrometer provided an
accuracy in the prediction of
the targeted traits similar to
benchtop devices

[123]

Prediction of dry
matter, fat, fat/dry
matter, proteins,
and proteins/dry
matter in Grana
Padano cheese;
feasibility study
for screening
operations of
production batches
in the
fire-branding step,
in warehouses and
at the packaging
step, on cheese
paste

195 samples of
Grana Padano

XNIRTM
(Dinamica
Generale)

PLSR

Portable NIR spectrometer
demonstrated satisfactory
predictive performance of
the chemical composition of
Grana Padano cheese, with
performance metrics
comparable to a benchtop
FT-NIR instrument
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Table 4. Cont.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[124]

Prediction of
chemical contents
(5 traits), pH,
texture (2 traits),
and color (5 traits)
of 37 categories of
cheese;
comparison of 3
NIR instruments (2
benchtop) in
reflectance and
transmittance
mode; different
wavelength
intervals

1050 different
cheeses from 104
cheese factories

LabSpec2500 (ASD
Inc.) PLSR

The predictive performance
of the visible/NIR portable
spectrometer operating in
diffuse reflectance mode
was indicated as generally
better than the 2 laboratory
NIR instruments, both when
the entire spectrum or
selected intervals were
considered and with the
reflectance and
transmittance modes
examined; the portable
instrument was suitable for
analyzing the chemical
composition of cheese in
real time, without the need
for sample uptake and
processing

[125]
Rapid analysis of
main compounds
in milk powder

350 milk powders FieldSpec Pro FR
(ASD Inc.) LS-SVM, PLSR

Handheld SW-NIR
spectrometer was
determined to be an
excellent detector for the
milk powder analysis,
suiting the needs of
industrial application

[126]

Feasibility study
for visible and NIR
spectroscopy to
perform
quantitative
detection of the
irradiation dose
(0–6.0 kGy) in milk
powder;
irradiation by 60Co
γ-rays

150 samples of
milk powder

FieldSpec
(ASD Inc.) RC, PLSR, LS-SVM

Miniaturized NIR
instrument fully suitable for
performing the rapid online
detection of irradiation
doses of milk powder in a
food-safety-monitoring
scenario

[127]

differentiation of
pure vs.
adulterated milk
powder

35 milk powder
samples microPHAZIR PCA

Miniaturized NIR
spectrometer was
determined to be successful
in the differentiation of pure
vs. adulterated milk
powder;
the specificity of the
nontargeted method was
dependent on the type of
adulterant; the use of
complementary techniques
(e.g., Raman spectroscopy)
should be investigated to
fully cover the adulterant
classes

(a) Abbreviations: iPLSR—interval partial-least-squares regression; MPLS—modified partial least squares; PCA—
principal component analysis; PLSR—partial-least-squares regression; LS-SVM—least-squares support vector
machine; RC—regression coefficients.
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4.3. Meat

An inspection of the current literature found intensive development of meat analysis
using miniaturized NIR spectroscopy (Table 5). Predominantly, attention is drawn toward
the rapid, nondestructive analysis of freshness, which is a major concern in the everyday
consumption of meat, as well as the authenticity check and the detection of adulteration,
following several episodes of the mislabeling of meat that occurred in the past [9,11,13,128].

Table 5. Recent research activity oriented toward miniaturized NIR spectroscopy in the area of
meat application.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[129]

Performance
comparison of
benchtop vs.
miniaturized NIR
spectrometer in
detecting meat fraud

63 samples of
different meat types
(beef: 9, chicken: 10,
mutton: 10, turkey:
10, pork: 10, horse
meat: 14)

microPHAZIR PCA, PLSR

High-level meat adulterations
(>10%): fully feasible with
benchtop spectroscopy,
improvements required for
miniaturized instrument (e.g.,
larger sample set); low-level
meat adulterations (<10%):
improvements were needed for
both types of instrumentation

[130]

Performance
assessment of a
miniaturized NIR
spectrometer
(NIRscan) for
prediction of
intramuscular fat in
comparison with two
portable and one
visible/SW-NIR
spectrometers

Lamb meat: frozen
(609 samples), fresh
(60 samples)

Labspec5000 Trek
(ASD Inc.), LabSpec4,
NIRscan Nano

PLSR, VIP

Prediction performance not
affected by sample
temperature-equilibration time;
frozen samples: good
performance of LabSpec5000,
LabSpec4, and Trek instruments;
bias (measurement timewise)
observed for NIRscan Nano
(instrumental variations); fresh
meat: NIRscan Nano performed
well and was a good alternative
to other benchtop and handheld
spectrophotometers for rapid
and real-time classification of
fresh lamb meat

[131]

Authentication of
chicken meat by
miniaturized NIR
spectrometer

153 fresh chicken
fillet samples MicroNIR 1700

PLS-DA, CP-ANN,
SVM,
RSDE

Miniaturized NIR spectroscopy
provided cost-efficient, rapid
(<20 s for complete analysis),
and reliable tool for monitoring
meat authenticity (and quality)
directly in the field

[132]

Feasibility study and
method development
for miniaturized NIR
spectroscopy used as
onsite tool for
analyzing
microbiological
status of pork meat

252 samples of pork
meat slices microPHAZIR PCA,

PLSR, MPLS

Miniaturized NIR spectroscopy
feasible for onsite prediction of
microbiological status of pork
meat with good accuracy;
modified packaging
atmosphere had no influence on
performance

[133]

Miniaturized NIR
spectrometer
evaluated as onsite
analyzer of meat
quality traits in
Iberian pig

Samples of
Longissimus dorsi
muscles were
collected from 524
carcasses of Iberian
pigs from “Sánchez
Romero Carvajal
Jabugo S.A.”

MicroNIR 1700 MPLS

Good accuracy of the method
based on a handheld NIR
device in analyzing intact pork
loins directly at the industrial
plant
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Table 5. Cont.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[134]

Self-developed
portable and low-cost
isible/NIR detection
device for predicting
total volatile basic
nitrogen (TVB-N)
content analysis and
assessing pork meat
freshness

58 pork samples with
different freshness
attributes

Self-developed
LED-based portable
visible/NIR
spectrometer
(400–1100 nm)

MLR,
PLSR

Nondestructive detection of
TVB-N content in pork meat
using a cost-effective,
custom-designed miniaturized
NIR spectrometer; streamlined
instrument design with
simplified structure and
increased cost-effectiveness was
indicated as feasible for further
development

[135]

Analysis of color and
pH value in pork
meat using a new
self-developed
portable and low-cost
visible/NIR detection

42 pork samples with
different attributes of
freshness

Self-developed
LED-based portable
visible/NIR
spectrometer
(400–1100 nm)

MLR

Nondestructive detection of
pork freshness attributes,
including color parameters and
pH value, with the
cost-effective, custom-designed
miniaturized low-cost
visible/NIR spectrometer

[136]

Feasibility study for
using miniaturized
NIR spectroscopy at
the point of need to
estimate the
freshness of various
foods including: beef
sirloin, beef
eyeround, pork
sirloin, bass, salmon,
corvina, tomato, and
watermelon

8 food items: meat
(beef sirloin, beef
eyeround, pork
sirloin), fish (salmon,
bass, corvina),
vegetable (tomato),
and fruit
(watermelon)

SCiO SVM

Miniaturized,
ultra-cost-effective NIR
spectrometer successful in
classification of foods by the
aging day and by the
chemical/microbial indicators
(i.e., thiobarbituric acid and
volatile basic nitrogen and
bacteria levels); high accuracy,
concluded to be fully
satisfactory for point-of-need
freshness assessment of meat,
fish, vegetables, and fruits

[137]

Feasibility study for
using miniaturized
NIR spectroscopy to
predict chemical
parameters,
technological and
quality traits, fatty
acids, and minerals
in intact Longissimus
thoracis and
Trapezius obtained
from the ribs of
Charolais cattle

40 rib cuts taken at
the level of the 5th rib
were collected from
40 Charolais beef
cattle

SCiO MPLS

Miniaturized,
ultra-cost-effective NIR
spectrometer feasible in the
online prediction of targeted
beef quality traits; eliminated
the need for commercial cuts,
sampling, carcass deterioration,
or grinding, thus avoiding
product expenditures

[138]

Classifying chicken
parts (breasts, thighs,
and drumstick) using
a portable NIR
spectrometer;
analysis of physical
and chemical
attributes (pH and
color features) and
chemical composition
(protein, fat,
moisture, and ash)

137 chicken samples
(52 breasts, 40 thighs,
and 45 drumsticks)
and 90 samples
obtained by grinding
the chicken parts (30
breasts, 30 thighs,
and 30 drumsticks)

DLN NIRscan Nano
LDA,
RF,
SVM

Portable NIR spectroscopy
achieved good accuracy of
classification of chicken meat, in
which identification of different
parts of chicken in the
processing line was
accomplished; authentication of
shelf samples in the market for
processed products was equally
feasible

[139]

Feasibility study for
using miniaturized
NIR spectroscopy to
detect adulteration in
ground meat

Cuts of cow, pig, and
chicken breast
(undisclosed number
of samples)

MicroNIR 1700 PLSR, SVR

Portable NIR spectrometer
showed satisfactory
performance in the
quantification of beef in ground
meat blends (chicken/beef,
pork/beef, and
chicken/beef/pork)
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Table 5. Cont.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[140]

Feasibility study for
miniaturized NIR
spectroscopy to
discriminate between
different muscle
types within each
species of selected
game animals, and to
classify species
regardless of the
muscle

42 animal (12 impala
(Aepyceros
melampus), 15 eland
(Taurotragus oryx)
and 15 ostrich
(Struthio camelus)

MicroNIR OnSite PCA, PLS-DA

Miniaturized NIR spectroscopy
successfully authenticated
game meat, specifically impala,
eland, and ostrich;
discrimination between species
(regardless of the muscle type
under examination) was less
challenging than identification
of different muscles within each
species

[141]

Feasibility study for
miniaturized NIR
spectroscopy to
combat deliberate
adulteration or
accidental
contamination of a
pure veal product
with pork and pork
fat in a case study of
a regional sausage
product

84 samples of pure
veal sausage product
(30 samples (6
subsamples for each
adulteration level)
with an adulterated
fat part, 30 samples (6
subsamples for each
adulteration level)
with an adulterated
meat part, and 12
samples as genuine
reference samples
with no adulteration)

microPHAZIR PCA,
SVM

Meat adulteration: successful
detection of adulteration down
to 10% level (calc. for meat part
only in the total composition of
sausage), and down to 20%
with through-package (polymer,
double layer) scanning; fat
adulteration: successful
detection down to 20% (fat part
only; i.e., 2.8% of the alteration
of the total sausage
composition)

[142]

Transfer (benchtop to
handheld NIR
instrument) of
quantitative models
for prediction of fat,
moisture, and protein
composition in
ground pork samples

342 Iberian
pork-muscle samples microPHAZIR PDS,

MPLS, SDW, DS

Successful transfer of
quantitative models for the
prediction of fat, moisture, and
protein composition in ground
pork samples from benchtop to
handheld NIR instrument; eight
standardization samples
deemed sufficient for
standardization purposes

[143]

Feasibility study for
visible/NIR
spectrometer to
discriminate
enhanced quality
pork; spectra were
collected using intact
chops from pork
carcasses

148 pork carcasses LabSpec4 PLS2-DA, PLSR

Portable visible/NIR
spectrometer could not
differentiate pork samples
based on preslaughter diet or
postslaughter carcass-chilling
process; however, it was
possible to segregate enhanced
quality pork according to
production factors and
postmortem strategies such as
pig breed, moisture enhancing,
and ageing period

[144]

Performance
comparison of three
NIR instruments
differing in size and
characteristics: a
transportable
visible/NIR, a
portable NIR, and a
handheld NIR in the
prediction of beef
characteristics

178 beef samples
(Longissimus
thoracis muscle)

MicroNIR Aurora
NIR, LabSpec 2500 PLSR, LMS

For the targeted 13 parameters
of beef quality, three portable
NIR spectrometers presented
similar accuracies in prediction
defined via external validation,
with the most compact
instrument (MicroNIR) tending
to be the most precise;
data-redundancy problems
resulting from wideness of the
spectrum and the number of
data points suggested as a
meaningful technical factor that
affected the analytical
performance of the different
instruments
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Table 5. Cont.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[145]

Feasibility study of a
miniaturized NIR
spectrometer to
rapidly assess pork
freshness

80 samples with four
groups of 20 (storage
in 4 ◦C for 2, 4, and 8
days)

MicroNIR 2200 PLSR,
MLR, SPA, RC

Good performance of the
miniaturized NIR spectrometer;
suitable for nondestructive
monitoring of
thiobarbituric-acid-reactive
substances in minced pork

[146]

Development of a
method for handheld
NIR instrument to
predict fatty-acid (FA)
composition and
iodine value (IV) of
pig subcutaneous fat

357 pigs LabSpec4 PLSR

Portable NIR spectrometer was
concluded to be suitable for
predicting pig fat quality;
successful implementation of
the miniaturized sensor
technology in a research
abattoir, with spectra collected
directly on the carcass, which
enabled carcass sorting based
on fat composition or hardness
for marketing purposes

[147]

Feasibility study of a
miniaturized NIR
spectrometer to
perform classification
of individual Iberian
pig carcasses into the
four official quality
categories

763 samples of
Iberian pigs microPHAZIR PCA,

PLS2-DA

Portable NIR spectroscopy
successful in supporting the
control of official
quality-category assignment in
Iberian pig carcasses, in
commercial abattoirs while
using subcutaneous fat samples

(a) Abbreviations: CP-ANN—counter-propagation artificial neural network; DS—direct standardization; MLR—
multilinear regression; MPLS—modified partial least squares; PCA—principal component analysis; PDS—
piecewise direct standardization; PLSR—partial-least-squares regression; PLS-DA—partial-least-squares dis-
criminant analysis; PLS2-DA—polynomial order of 2 partial-least-squares discriminant analysis; PLSR—partial-
least-squares regression; RC—regression coefficients; RF—random forest; RSDE—random subspace discriminant
ensemble; LDA—linear discriminant analysis; LSM—least-squares means; SDW—spectral difference by wave-
lengths; SPA—successive projection algorithm; SVM—support vector machine; SVR—support vector machine
regression; VIP—variable importance in projection.

Notably, it was demonstrated that, in the case of the former concern, the aging day
and levels of chemical/microbial indicators (i.e., thiobarbituric acid, volatile basic nitrogen,
and bacteria levels) could be successfully analyzed using miniaturized NIR instruments in
a rapid manner with no need for destructive sampling procedures [135]. On the other hand,
classification of chicken meat by a portable NIR spectrometer while also discriminating
between different parts of the chicken could be performed directly in the processing line.

Quantitative predictions often focus on the analysis of the fat content in meat, as
well as the microbiological status, or the quantitative prediction of the level of fat adul-
teration [140]. Furthermore, quantification of a specific type of meat in a ground meat
blend; e.g., the beef content in chicken/beef, pork/beef, and chicken/beef/pork blends,
was successfully accomplished with miniaturized NIR spectroscopy as well [138]. In a num-
ber of investigations, the applicability of miniaturized NIR spectrometers in tackling the
challenging problem of the quality control of meat was evaluated not only in comparison
with benchtop NIR spectroscopy, but also in comparison with other analytical techniques,
including optical spectroscopy (e.g., visible spectroscopy) [142,143].

4.4. Fish

Countering seafood mislabeling is receiving increased attention, as numerous cases
of food fraud involving fish and seafood products were reported lately [148–150]. The
scale of the problem can be well highlighted by economic-driven fraud reaching the entire
fish supply chain, where on several occasions, a substitution for valuable fish with a
cheaper species occurred [148]. Therefore, considerable research efforts have recently been
directed at developing effective and reliable miniaturized NIR methods in this area of
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application. Miniaturized spectrometers were concluded to be feasible to provide accurate
discrimination between fish species, as well as to quantitatively predict the main chemical
contents in fish flesh; for example, fat composition, protein, or lipids (Table 6).

Table 6. Recent research activity oriented toward miniaturized NIR spectroscopy in the area of
fish analysis.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[151]

Performance
evaluation for a
handheld NIR
device (in
comparison with a
FT-NIR benchtop
spectrometer) in
distinguishing
fillets and patties
of Atlantic cod
from those of
haddock

170 fresh fillets of
Gadus morhua (n =
80) and
Melanogrammus
aeglefinus (n = 90)

MicroNIR OnSite LDA

Handheld NIR device
formed a simple,
cost-effective, and reliable
alternative to benchtop
spectrometers for
authentication of fish fillets
and patties; the method was
suitable for application in
the fight against commercial
fraud, and also was
extended to authentication
of fish species in processed
products

[152]

Investigations of
whole fish and fish
fillets with a
miniaturized NIR
spectrometer;
discriminating
between
high-quality fish
from inexpensive
lower-quality
substitutes

30 fresh fish (3 red
mullet, 6 mullet, 3
winter cod, 7 cod,
6 samlet, 5 salmon
trout)

MicroNIR 1700 PCA, SIMCA

SIMCA analysis of the
spectra measured by
MicroNIR on the skin or
flesh of whole fish or fish
fillets provided correct
authentication of the fish
sample

[153]

Pocket-sized NIR
sensor used for
species
identification in
fish fillets

150 fish samples (9
fish species:
Merluccius
merluccius,
Pollachius virens,
Epinephelus costae,
Gadus morhua,
Pleuronectes
platessa, Sebastes
norvegicus, Scomber
scombrus,
Chelidonichthys
lucerna, and
Synaptura cadenati)

SCiO

Pretreatment and
analysis of spectra
performed using
the functions built
into the
proprietary cloud
service

Fish species were correctly
identified with a global
accuracy of 93.97–96.58%
(validated by a method
based on genetic marker);
the method was concluded
to be a good screening
approach to counter
fish-species fraud
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Table 6. Cont.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[154]

Prediction of fat
content in frozen
skipjack by
portable and
benchtop NIR
spectrometers

60 skipjack
Euthynnus pelamis
samples

FT 20 (Fantec
Research Institute,
Kosai, Japan)

PLSR

Portable NIR succeeded in
the rapid determination of
fat content by scanning the
abdominal part of the fish
body; for both instruments,
the accuracy (determined
via the RPD value) was
higher at the abdominal part
than at the central part of
the body; the portable
instrument was superior in
analyzing the abdominal
part

[155]

Prediction of
nutritional values
(protein, lipids,
and moisture), and
discrimination
between sources
(farmed vs. wild
fish) and
conditions (fresh or
defrosted fish)

805 fish samples
(133 Alaskan
pollock
(Gadus
chalcogrammu), 204
Atlantic cod
(G. morhua), 22
European plaice
(Pleuronectes
platessa), 264
common sole (Solea
solea), and 182
turbot (Psetta
maxima)

Tellspec
Enterprise Sensor

PCA, LDA,
PLSR, RF, LR,
SVM, XGB

Good to excellent
performance of the Tellspec
sensor in both the prediction
of nutritional values
(protein, lipids, and
moisture) and in
authenticating the source
and condition of all the
studied fish species

[156]

Onsite
determination of
the fatty-acid
composition
of industrial fish
oils from fish
byproducts

269 different
mixtures of 8 fish
oil samples

MicroNIR OnSite PLSR

The miniaturized NIR
spectrometer successfully
determined fish oil fat
composition onsite in a fast
and nondestructive way;
attractive alternative to
inefficient conventional
ways of analysis

[157]

Performance of
three NIR
instruments in
identifying storage
conditions of fish
products

50 fresh specimens
of cuttlefish (Sepia
officinalis) and
musky octopus
(Eledone spp.)

MicroNIR 1700,
SCiO PCA, PLS-DA

Very good classification
accuracy of the miniaturized
sensors; great practical gains
were emphasized in the
specifics of direct
application on the
production line

(a) Abbreviations: PCA—principal component analysis; PLS-DA—partial-least-squares discriminant analysis;
PLSR—partial-least-squares regression; RF—random forest; LDA—linear discriminant analysis; LR—logistic
regression; SVM—support vector machine; XGB—extreme gradient boosting.

To reflect state-of-the-art and currently undertaken research directions, Pennisi et al. [157]
recently demonstrated highly accurate results using handheld NIR spectrometers for direct
screening of a production line of cuttlefish and musky octopus. The authors emphasized the
decisive practical gain from using miniaturized NIR instrumentation, with a greatly reduced
complexity and the execution of the analysis that make it much more practical for successfully
adoption in the challenging conditions commonly found at fish and seafood production sites.
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4.5. Fruits and Vegetables

Fruits and vegetables are also among the most-studied items in the development
of analytical miniaturized NIR spectroscopy, with equal interests in both the food and
agriculture sectors. Most often, the aim of the analyses was directed towards the prediction
of the quality parameters of fruits and vegetables (Table 7). Several canonical types of
analysis were used; i.e., moisture level, protein content, and total sugar content (i.e., BRIX
index), as well as the metrics of fruit maturity, content of soluble solid, titratable acidity
and ascorbic acid, extractable polyphenols, etc. Often, more than one property of interest
could be simultaneously predicted from a single spectrum. Importantly, in most cases, the
full feasibility of miniaturized NIR spectrometers to perform those analyses directly under
field conditions and/or during fruit ripening was demonstrated. Other than those, the
qualitative assessments of relevant properties also included identification of the variety
and/or geographical origin, assessment of the refrigerated-storage duration, and authentic-
ity checks. Notably, there were studies demonstrating the potential for rapid discrimination
of fraud due to the mislabeling of conventionally produced fruits as organic ones; e.g., in
the case of pineapples [150]. A similar potential can be concluded for vegetable analysis,
with the example of the examination of spinach leaves in situ, directly on the plant, in
which a green color, the texture, and dry matter were detected using a miniaturized NIR
instrument [158–161]. Such a capacity can be effectively used in the optimization process of
cultural practices, such as fertilization and irrigation and to assess the quality of a vegetable
when harvested.

Table 7. Recent research activity oriented toward miniaturized NIR spectroscopy in the area of fruit
and vegetable applications.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[158]

Method
development for
onsite analyses of
apples;
detection of total
antioxidant
capacity and total
soluble solids
content

92 apples of seven
cultivars microPHAZIR PCA, PLSR

Successful prediction of the
total sugar content of apples
of different varieties and the
concentration of
polyphenolic compounds in
the peel of the fruits in
nondestructive onsite
analysis

[159]

Prediction of
external and
internal quality
parameters of
strawberries at
harvest and during
postharvest
refrigerated
storage using a
handheld NIR
spectrometer

189 strawberry
punnets microPHAZIR MPLS,

PLS-DA

Accurate prediction of
internal quality parameters
in strawberries using a
handheld NIR instrument;
however, room for further
improvements and method
tailoring to variety
classification was indicated
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Table 7. Cont.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[160]

Performance
evaluation of
different regression
algorithms for the
prediction of major
physical-quality
parameters in all
citrus fruits using a
handheld NIR
spectrometer

611 samples
belonging to the
genus Citrus: 378
oranges (Citrus
sinensis L. cv.
‘Powell Summer
Navel’) (191
harvested in 2010
and 187 in 2011)
and 233 mandarins
(Citrus reticulata
Blanco cv.
‘Clemevilla’)

microPHAZIR MPLS

Miniaturized NIR
spectroscopy combined
with large databases and
local regression algorithms
provided robust on-tree
prediction of citrus fruit
quality

[161]

Method
development for a
portable NIR
spectrometer to
perform
simultaneous
discrimination
between
organically
produced
pineapple fruits
and conventionally
produced ones (i.e.,
organic vs.
inorganic);
prediction of total
soluble solids

90 intact pineapple
fruits SCiO

KNN,
PCA,
LDA,
PLSR,
MSC-PCA-LDA

Portable NIR spectrometer
coupled with the
appropriate chemometric
tools was suitable for rapid
nondestructive examination
of pineapple quality;
successful detection of
pineapple fraud-mislabeling
of conventionally produced
fruits as organic ones

[162]

Feasibility study
for using a
miniaturized and
benchtop NIR
instrument to
predict
quality-related
parameters
(soluble solid
content, firmness,
variety and
postharvest
storage duration
under
refrigeration) in
intact plums

264 plums (Prunus
salicina L.) cv.
‘Black Diamond’,
‘Golden Globe’,
‘Golden Japan’,
‘Fortune’, ‘Friar’,
and ‘Santa Rosa’

microPHAZIR,
Perten DA-7000 MPLS, PLSR, PCR

Similar levels of accuracy
for miniaturized and
benchtop NIR for the
measurements of soluble
solid content, variety, and
refrigerated-storage
duration; the prediction
model developed using the
diode-array
spectrophotometer
provided better results for
the prediction of firmness

[163]

Development of
in-field
nondestructive
analysis of
titratable acidity
and ascorbic acid
content in acerola
fruit during
ripening

117 acerola fruit MicroNIR 1700 PLSR,
SVM

Fully satisfactory prediction
ability of thw MicroNIR
instrument during in-field
monitoring of chemical
parameters of interest in
acerola fruits
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Table 7. Cont.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[164]

Feasibility study
for a miniaturized
NIR instrument to
perform “in
vineyard”
screening of
extractable
polyphenols in red
grape skins

400 grape samples MicroNIR 1700 PCA,
LDA, MPLS, DPLS

MicroNIR instrument was
successfully used for “in
vineyard” screening of
extractable polyphenols in
red grape skins; however,
challenges identified as
environmental and
physiological conditions
interfered with sorting the
berries according to their
extractable polyphenol
contents

[165]

Performance
evaluation of
handheld
visible/NIR
spectrometer in
rapid
nondestructive
moisture content
analysis in
mangoes during
solar drying

240 mango
samples

F750, Felix
Instruments PLSR

Handheld visible/NIR
spectroscopy was found to
be a robust and effective
method for rapid
nondestructive monitoring
of moisture during solar
drying of mangoes

[166]

Feasibility study
for portable NIR
spectroscopy to be
used in-field to
assess the water
status in diverse
varieties (grown
under different
environmental
conditions) of
grapevine

160 individual
primary adult
leaves (20 leaves
per cultivar) of the
mid-upper part of
the shoot

microPHAZIR PCA,
MPLS

Nondestructive, onsite NIR
spectroscopic analysis
reliably assessed the
grapevine water status
under field conditions

[167]

Quantification of
water, protein, and
soluble sugar in
mulberry leaves
using a
miniaturized NIR
spectrometer

83 mulberry leaves MicroNIR 1700 PLSR

Handheld NIR
spectrometers combined
with wavelength
optimization could rapidly
predict water content in
fresh mulberry leaves and
crude protein in dried
mulberry leaves; however,
predictive performance was
identified for the prediction
of soluble sugar in mulberry
leaves

[168]

Authentication of
fengdous and
quantitative
analysis of
mulberry fruits
using a
miniaturized NIR
spectrometer

434 mulberry fruits MicroNIR 1700 GA,
CARS, PLSR

Several successful
qualitative and quantitative
plant analytical case studies
were demonstrated for the
handheld NIR instrument;
several nutritional
parameters were
successfully determined
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Table 7. Cont.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[169]

Development of a
nondestructive
and in situ quality
evaluation of
spinach plants
using a
miniaturized NIR
spectrometer;
assessment of
spinach suitability
for different uses
once harvested

128 samples of
spinach plants microPHAZIR MPLS,

PLS-DA

Capability of miniaturized
NIR spectroscopy to
monitor important safety
and quality parameters
during the production of
spinach was demonstrated

[170]

In situ monitoring
of quality
parameters in
intact spinach
using a
miniaturized NIR
spectrometer

149 spinach plants
(Spinacia oleracea L,
cv. ‘Solomon’,
‘Novico’, ‘Meerkat’,
and ‘Gorilla’),

microPHAZIR MPLS

Miniaturized NIR
spectroscopy could perform
an analysis of green color,
the texture, and dry matter
in spinach leaves in situ, on
the plant; predicted
properties were applicable
in optimization of the
fertilization and irrigation
strategies

[171]

Development of a
method for
assessing tomato
quality attributes
nondestructively
using a
miniaturized NIR
spectrometer

319 fresh market
tomato samples NeoSpectra PLSR

Handheld NIR spectrometer
could simultaneously
determine several quality
attributes of different types
of tomatoes in a practical
and rapid manner

[172]

Feasibility study
for using a using
miniaturized NIR
spectrometer to
determine quality
attributes of
tomato fruits

300 tomato fruits
of the San
Marzano variety

MicroNIR 1700 PLSR

Miniaturized NIR
spectroscopy was indicated
as a very potent tool and a
real-time, cost-efficient
measure to maintain the
quality of the product, as
demonstrated in a case
study of the San Marzano
tomato

(a) Abbreviations: CARS—competitive adaptive reweighted sampling; DPLS—discriminant partial-least-squares
analysis; GA—genetic algorithm; KNN—k-nearest neighbors; MPLS—modified partial least squares; PCA—
principal component analysis; PLS-DA—partial-least-squares discriminant analysis; PLSR—partial-least-squares
regression; LDA—linear discriminant analysis; SVM—support vector machine; NIPALS—nonlinear iterative
partial least squares.

4.6. Beverages and Syrups

Considering the success of miniaturized NIR spectroscopy in predicting critical quali-
tative and quantitative properties of foods that feature considerable complexity, such as
meat, fresh fruits, or vegetables, one should expect that the analysis of beverages or syrups
should be within reach of this technology as well. An inspection of the recent literature
indicated that miniaturized NIR sensors can provide the rapid assessment of sugar content
in such samples in a wide range of concentrations, and in a robust manner (Table 8). The
prediction of other chemical contents, such as polyphenols, amino acids, caffeine, and thea-
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nine, as well as the quantitative assessment of the adulteration level, could be concluded in
the available literature.

Table 8. Recent research activity oriented toward miniaturized NIR spectroscopy in the area of
beverage and syrup applications.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[173]

Performance
evaluation of
benchtop vs.
portable NIR in
qualitative and
quantitative
analysis
of main sugars in
syrup formulations

116 samples (53
standard and 63
reformulated
syrups)

microPHAZIR
PCA, PCR,
SVMR,
PLSR

Good performance of the
microPHAZIR in a wide
range of sugar
concentrations; suitable for
practical use in quality
control in industry

[174]

Feasibility study
for a miniaturized
NIR spectrometer
in prediction of the
main carbohydrate
content in syrup;
evaluation of the
potential for
consumer use

116 syrups
consisting of
different flavor
types

microPHAZIR PLSR

Reliable and accessible use
of miniaturized NIR
spectrometers by consumers
requires further
development of robust
spectral-processing methods
that require no/minimal
supervision

[175]

Feasibility study
for miniaturized
NIR spectroscopy
in analyzing the
quality index of
matcha tea

105 samples of
matcha tea of
different grades

NIRscan Nano
PLSR, Si-PLS,
GA-PLS,
CARS-PLS, RF-PLS

A model strategy based on
portable NIR spectroscopy
was successfully developed,
with a promising potential
for predicting and
classifying the content of
polyphenols and amino
acids in matcha tea

[176]

Feasibility study
for miniaturized
NIR spectroscopy
to predict catechins
and caffeine
content in green
and black tea

270 tea samples
(135 of black tea
and 135 of green
tea)

NIR-S-R2;
(InnoSpectra) SVR

Successful analysis of tea
quality using a
miniaturized, cost-effective
NIR spectrometer

[100]

Evaluation of the
analytical
performance of
two miniaturized
NIR spectrometers
(compared with a
benchtop one) in
the analysis of
caffeine
and theanine
content
in black tea

65 samples (milled
and ground) of
black tea

microPHAZIR,
MicroNIR 2200 PLSR

Differences in the prediction
performance of caffeine and
theanine when using the
two instruments were
associated with their
sensitivity toward the
characteristic absorption
bands of these two
constituents
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Table 8. Cont.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[177]

Quality control of
Arabica coffee
using
miniaturized NIR
spectrometer

125 blends of
coffee MicroNIR 1700 PCA,

PLSR

The MicroNIR spectrometer
was deemed successful in
the prediction of
adulterations with
minimum quantification
levels; suitability to perform
real-time quality control of
commercial coffee samples
suggested

[178]

Analysis of sugar
(sucrose) contents
in everyday drinks
using miniaturized
NIR spectroscopy

25 sucrose
solutions NIRScan Nano OLS, SLR, MLR,

SVM, RF, MPL

Successful analysis of
sucrose content, with a
reasonable performance by
the miniaturized NIR
spectrometer

[179]

Distinguishing
between beers
using miniaturized
NIR spectroscopy

38 beers
Systems
Engineering
PlaScan-SH

PCA, MLR

NIR spectroscopy was
promising for beer quality
evaluation, both in
identifying multifarious
beers, including Akita beers,
using PCA; and for rapid
inline quality control and
inspection in beer
production using the
quantitative MLR analysis

[180]

Miniaturized NIR
spectrometers
were used for
classification of
Japanese saké

428 different
varieties of
Japanese saké

Systems
Engineering
PlaScan-SH

PCA

The miniaturized
spectrometer was
demonstrated as useful in
classification of Japanese
saké varieties

[181]

Development of a
method for
miniaturized NIR
spectroscopy for
prediction of the
concentrations of
cianidanol, ferulic
acid, gallic acid,
L-epicatechin,
phloridzin, and
rutin in congou
black tea

140 samples of
black tea from 7
batches

NIRQuest512
(Ocean Optics)

PLSR,
CARS-PLS

The results indicated that
the portable NIR, combined
successfully with
multivariate chemometrics,
offered a nondestructive
technique for the rapid
screening of the phenolic
compounds in congou black
tea

(a) Abbreviations: CARS-PLS—competitive adaptive reweighted sampling–partial least squares; GA-PLS—genetic
algorithm–partial least squares; MLR—multilinear regression; OLS—ordinary least squares; PCA—principal
component analysis; PCR—principal component regression; PLSR—partial-least-squares regression; RF—random
forest; RF-PLS—random frog partial least squares; SLR—single linear regression; Si-PLS—synergy-interval partial
least squares; SVM—support vector machine; SVMR—support vector machine regression; SVR—support vector
regression; MPL—multilayer perceptron.

Noteworthy classification examples that included discrimination between different
beer brands or sake varieties using miniaturized NIR spectroscopy should be mentioned as
well [179,180].
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4.7. Miscellaneous

Other examples of recent food-analysis studies should also be noted that further
demonstrated the versatility of miniaturized NIR spectrometers, in which they were suc-
cessfully applied to qualitative and quantitative analyses in a variety of cases, from whole
foods to highly processed products (Table 9). Content analysis included, e.g., carbohy-
drates, fats and oils, fiber, proteins, and sugar as well as general energetic/nutritional
value. Specific chemical constituents could be successfully analyzed; for instance, piperine
in black pepper, or insect proteins in fitness bars [73,99]. Detection of adulterants; for
example, in palm oil [176], as well as the quantitative analysis of adulteration was feasible
using miniaturized NIR spectroscopy. Examples of successful authentication or classifi-
cation/identification of various food products included the different quality grades and
geographical origins of rice, as well as of basic food powders such as sugar, salt, cream,
flour, corn, rice, bean, and potato powders [177]. The prediction of other quality parameters
of more general nature; e.g., egg storage time assessment, was permissible as well [174].

Table 9. Recent research activity oriented toward miniaturized NIR spectroscopy in the area of
various miscellaneous applications.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[182]

Feasibility study of a
miniaturized NIR
spectrometer in the
rapid authentication
of adulterated
paprika powder

3 types of paprika
(sweet, smoked, and
spicy): 315 samples;
spiked with potato
starch and acacia
gum (0–36% w/w)
and annatto (0–18%
w/w)

NIRscan Nano PLS-DA, PLSR

Good accuracy of NIRscan
Nano in detecting adulterated
samples and in differentiating
types of adulterations (lower
only for annatto, yet still
adequate for screening
purposes)

[73]

Development of the
onsite quantitative
analysis of protein
content in
handcrafted
insect-contaning bars
using miniaturized
NIR spectrometers;
low-level data fusion
for the simultaneous
use of visible/NIR
and NIR
cost-effective sensors

Insect-protein-
enhanced fitness 40
bars, 8 of each flavor
(peanut-cranberry,
hazelnut-cocoa,
macadamia-salted
caramel and cashew,
blueberry, and
“Omas Apfelstrudel”

MicroNIR 1700,
Tellspec Enterprise,
SCiO

PCA,
PLSR,
GPR

The GPR method used for the
calibration hyphenated enabled
the handheld instruments to
quantify protein content with a
good accuracy; the MicroNIR
performed on par with the
benchtop instrument, with the
Tellspec and SCiO sensors being
only moderately inferior, and as
evidenced by independent
test-set validation; further gains
in the prediction performance
for consumer-graded “pocket
food analyzers” were achieved
by data fusion

[183]

Prediction of egg
storage time at room
temperature using an
ultra-cost-efficient
miniaturized NIR
spectrometer

30 shell-intact brown
poultry eggs SCiO PLSR,

ANN

The smartphone-connected,
ultra-cost-efficient NIR
spectrometer was successfully
validated in egg storage time
assessment;
the long-term reliability was
optimal when combined with
traditional destructive
techniques
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Table 9. Cont.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[184]

Performance
evaluation of
miniaturized (in
comparison with a
benchtop) NIR
spectrometer in
classifying
high-oleic-acid
peanuts (HOPs) and
quantitation of major
fatty acids

150 different peanut
varieties and strains
from 10 main
planting provinces

MicroNIR 1700
PCA,
QDA,
LDA, PLS-DA

Successful distinction of the
HOPs from others, as well as
for the prediction of the
contents of its main fatty acids
using miniaturized NIR sensors;
the performance was
comparable with benchtop
instruments

[185]

Development of a
MicroNIR-based
analytical method to
detect the presence of
lard adulteration in
palm oil;
transmittance mode
compared to
transflectance

Pure and adulterated
palm oil samples
(undisclosed sample
count)

MicroNIR 2200 PCA,
PLSR

Successful classification and
quantification analysis using the
MicroNIR instrument; effective
discrimination between the
pure and adulterated palm oils;
transmittance mode yielded a
better prediction model
compared to transflectance

[99]

Performance
evaluation of three
miniaturized NIR
instruments in the
quantification of
piperine in black
pepper

66 samples; whole
and milled seeds of
black pepper

MicroNIR 2200,
microPHAZIR PLSR

Reliable prediction in whole
seeds only using MicroNIR
2200; miniaturized
spectrometers operating in a
narrow spectral region had
limited performance in the
quantification of piperine in
black pepper; the
microPHAZIR acquired only
the C–H stretching bands of
piperine (first overtones and
binary combinations), which
reduced its applicability; the
MicroNIR acquired more
meaningful absorption bands of
piperine and offered a
prediction performance
comparable to the benchtop
instrument

[186]

Performance
evaluation of a
miniaturized NIR
spectrometer in the
classification of food
powders

8 visually
indistinguishable
food powders: sugar,
salt, cream, flour,
corn, rice, bean, and
potato powders

Link Square (Stratio,
Inc., San Jose, CA,
USA)

KNN, RF,
SVM

Successful classification of food
powders using miniaturized
NIR spectroscopy

[187]

Feasibility study of a
miniaturized NIR
spectrometer in
determining the
nutritional
parameters of
pasta/sauce blends

Commercial
products: 5 pasta
products, 5 sauce
products; for each, 5
different
pasta/sauce-type
blend combinations
(0–100% (w/w) sauce
addition)

MicroNIR 1700 PLSR

Satisfactory prediction accuracy
for quantifying energy,
carbohydrates, fat, fiber, protein,
and sugar in the pasta/sauce
meal via miniaturized NIR
spectroscopy in a realistic
analytical scenario



Foods 2022, 11, 1465 37 of 53

Table 9. Cont.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[188]

Evaluation of two
handheld NIR
spectrometers for
onsite and real-time
analysis of nutritive
parameters in raw
compound feed

100 samples of intact
compound feeds
(feed for dairy cows,
piglets, laying hens,
chicken, sheep,
rabbits, horses, and
lambs using different
presentation forms
(crumbs, pellets, and
meals))

microPHAZIR,
MicroNIR 1700 PLSR

The handheld NIR instruments
were successful in estimating
the changes in the individual
compound feeds’ compositions
at the farm level in
instantaneous manner,
eliminating the largely
inefficient transport of the
samples from the farm to the
lab; similar performances by the
two popular miniaturized NIR
instruments

[189]

Feasibility study and
performance
comparison of two
distinctively different
miniatur-
ized/handheld NIR
spectrometers in the
quantitative analysis
of crude protein (CP)
content in mixed
forage and feedstuff
composed of sweet
bran, distiller’s
grains, corn silage,
and corn stalk

147 total—sweet
bran, corn silage,
corn stalks, and three
types of corn
distillers grains: wet
distillers grain with
solubles, modified
distillers grain with
solubles, and dry
distillers grain with
solubles

Tellspec Enterprise,
ASD QualitySpec
Trek

PCA,
PLSR

Both evaluated handheld NIR
instruments accurately
measured forage and feed CP;
suitable in screening, quality,
and process-control scenarios

[190]

Study of the
feasibility of using an
ultra-cost-efficient
miniaturized NIR
spectrometer to
identify cultivars of
barley, chickpea, and
sorghum in the
context of Ethiopia

2650 grains of barley,
chickpea, and
sorghum cultivars

SCiO SVM,
PLS-DA

Barley, chickpea, and sorghum
cultivars were identified with
perfect accuracy using
miniaturized NIR spectrometers
in a low-cost, rapid analysis

[191]

Estimation of rice
authenticity and
quality in real time
using an
ultra-cost-efficient
miniaturized NIR
spectrometer

520 rice samples from
different quality
grades

SCiO PCA,
KNN, SVM

Rapid and nondestructive
classification of rice samples
according to different quality
grades, geographical origins,
and imported versus locally
produced rice using an
ultra-cost-efficient miniaturized
NIR spectrometer

[192]

Investigation of
coriander seed
authenticity using
two miniaturized
NIR spectrometers

290 coriander seed
samples Flame-NIR, SCiO PLS-DA, OPLS-DA,

RF

Inferior accuracy in the case of
the miniaturized (Flame-NIR
and SCiO) vs. benchtop (iS50)
NIR spectrometer in
quantitative analysis; however,
portable sensors were
suggested as viable for
screening purposes

[193]

Determination of
several quality
parameters of canola
seed using a
miniaturized NIR
spectrometer

181 intact whole
canola seeds MicroNIR OnSite-W PLSR

Successful prediction of several
quality parameters of canola
seed (e.g., oil, protein, oleic acid,
iodine);
however, chlorophyll content
could not be accurately
predicted using the handheld
instrument
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Table 9. Cont.

Ref. Scope Sample Miniaturized NIR
Instr.

Data-Analytical
Framework (a)

General Remarks
(Applicability/
Performance)

[194]

Analysis of total
antioxidant capacity
using
Folin–Ciocalteu and
NIR spectroscopy;
the performances of
3 miniaturized NIR
instruments were
evaluated and
compared with a
benchtop FT-NIR
spectrometer

77 samples
comprising
buckwheat, millet,
and oat

microPHAZIR,
MicroNIR 2200, SCiO PLSR, OSC

All examined instruments
predicted total antioxidant
capacity; however, with varying
accuracy

[195]

Development and
optimization of
different measuring
strategies for two
miniaturized NIR
instruments in order
to find the best
measuring conditions
for the rapid and
low-cost analysis of
olive oils

66 samples of
commercial oils SCiO, NeoSpectra LDA, PCA, PLS-DA

Without any sample
pre-treatment, olive oils proved
to be challenging samples,
especially using the NeoSpectra;
successful classification of olive
oil categories and olive oil vs.
sunflower oil

(a) Abbreviations: ANN—artificial neural network; GPR—Gaussian process regression; KNN—k-nearest neigh-
bors; OPLS-DA—orthogonal partial-least-squares discriminant analysis; OSC—orthogonal signal correction;
PCA—principal component analysis; PLS-DA—partial-least-squares discriminant analysis; PLSR—partial-least-
squares regression; RF—random forest; LDA—linear discriminant analysis; SVM—support vector machine;
QDA—quadratic discriminant analysis.

An inspection of the available literature well demonstrated the versatility and superior
utility of miniaturized NIR spectrometers in the diverse realm of food analysis and quality
control. On the other hand, attention should be also given to some of the limitations in the
applicability of handheld NIR instruments; for example, chlorophyll content could not be
accurately predicted in canola seed, as determined by Barthet et al. [186].

5. Current Trends in Method Development
5.1. Systematic Evaluation of Calibration Methods

In parallel to their revolutionary practical advantages, miniaturized technologies
also impose inevitable limitations on the optical/spectral capabilities of the very compact
NIR instruments. Spectra measured in narrow wavenumber regions with a relatively low
resolution and an often-inferior S/N ratio, as compared with benchtop spectrometers,
place a particular need on performing systematic feasibility studies of miniaturized NIR
spectrometers in given analytical scenarios. In this case, the evaluation of numerous spectral
pretreatments and calibration algorithms, including artificial neural networks (ANNs) and
nonlinear regression methods (e.g., Gaussian process regression (GPR)) is recommended
to establish the best data-analytical approach for a given sensor in a specific analytical
scenario. As demonstrated, this may result in a sizeable improvement in the predictive
performance of portable NIR spectrometers, surpassing PLSR with minimal or no penalties
to the prediction performance of handheld vs. benchtop spectroscopy in difficult analyses
(e.g., moisture analysis in a plant matrix). Advanced calibration enables miniaturized
spectrometers to nearly match the performance of benchtop instruments.

As shown by Mayr et al. [31], the analytical performance of miniaturized spectrometers
in a challenging scenario of the quantitative analysis of the moisture in chemically complex
plant matrices could be significantly improved by carefully evaluating several different
spectral pretreatments and calibration methods, which were systematically evaluated for
each of the considered benchtop and miniaturized NIR spectrometers. In that study, two
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benchtop instruments (NIRFlex N-500 and MPA I) and three miniaturized instruments
(microPHAZIR, MicroNIR 2200, and MicroNIR 1700 ES) were used, while the analysis of the
moisture content was performed for 192 samples of dried plant extracts, consisting of five
different plants of different geographical origins harvested at different times over two years.
The samples included extracts laced with a drying agent, as well as unpretreated samples
that presented a less-stable matrix that was prone to variations in the moisture content. The
reference moisture analysis for calibration was performed using an industry standard; i.e.,
the Karl Fischer titration method. Moisture content is one of the most important quality
parameters of numerous food products, including spices, teas, fruits, and vegetables, as
well as in herbal medicines. It is decisive for the product stability and shelf life, and requires
close monitoring. In the analyzed scenario, for the calibration/prediction procedure, in
addition to the standard PLSR method, GPR and ANN models also were constructed for
the spectral sets of each instrument. For each spectral set, a systematic evaluation of the
best pretreatment combination was conducted as well. The prediction performances of
those calibration models were evaluated through the root-mean-square error of prediction
(RMSEP) determined for an independent test set (Table 10). The nonlinear GPR and ANN
methods were noted to offer substantially improved performances in the case of poorer
quality of the spectra from certain instruments, as well as in the case of the more challenging
analysis of unpretreated samples. In this case, the miniaturized spectrometers offered a
prediction performance at the level of the benchtop instruments (Table 10). Moreover,
the samples in their native states proved to be more difficult to analyze for all evaluated
instruments when using PLSR calibration [31]. That study demonstrated the potential of
improving the analytical figure of merit of micro-NIR analysis for less-than-ideal data-sets;
e.g., resulting from the difficult nature of the analyzed sample (i.e., chemically complex
plant matrix) and the reduced quality of the spectra (i.e., narrow spectral region, lower
resolution, and poorer S/N ratio typically accepted for the miniaturized spectrometers).
This suggested that through systematic evaluation and selection of the data-analytical
scheme, the penalty to the accuracy resulting from the hardware miniaturization can be
compensated by using GPR or ANN calibration.

Table 10. RMSEP values for validation of an independent test set resulting from PLSR, GPR, and
ANN. The best performance levels are highlighted. Reproduced (CC-BY 4.0 license) from [31].

NIR Spectrometer
Regression ANN

PLSR GPR
Number of Hidden Neurons

1 2 3 4

D
ri

ed

NIRFlex N-500 0.27 0.31 0.35 0.36 0.32 0.39
MPA I 0.27 0.32 0.39 0.35 0.39 0.33

microPHAZIR 0.37 0.30 0.27 0.30 0.31 0.48
MicroNIR 2200 0.32 0.30 0.33 0.29 0.33 0.33

MicroNIR 1700 ES 0.28 0.28 0.25 0.33 0.30 0.34

N
at

iv
e

NIRFlex N-500 0.45 0.36 0.73 0.55 0.41 0.43
MPA I 0.47 0.44 0.54 0.68 0.56 0.59

microPHAZIR 0.54 0.60 0.59 0.53 0.58 0.48
MicroNIR 2200 0.43 0.38 0.32 0.35 0.44 0.44

MicroNIR 1700 ES 0.50 0.43 0.46 0.70 0.67 0.72

5.2. NIR Sensor Fusion

Data-fusion methodologies offer considerable potential, effectively combining strengths
of different analytical techniques. The opportunities stemming from this concept for food
and beverage authentication and quality assessment were discussed in detail by Borràs
et al. [196]. However, relatively greater attention was paid to using conventional benchtop
NIR spectroscopy as the component of the fused approaches.
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For example, an integrated analytical framework using fused physicochemical analy-
ses, benchtop NIR spectroscopy, and melissopalynology (pH, electrical conductivity, and
humidity) was recently presented by Bodor et al. [197]. An analytical method was devel-
oped to check the authenticity of Hungarian honey, with PCA-LDA models built to classify
the different botanical and geographic sources using individual and fused data at a low
level (i.e., low-level data fusion). Optimization of the number of principal components
(PCs) and external validation were applied to all models. The botanical origin classification
models demonstrated >90% and >55% accuracy levels for the melissopalynology and NIR
methods when used separately. Improved results were obtained by combining physico-
chemical, melissopalynology, and NIR techniques, resulting in >99% and >81% accuracy
of the botanical and geographic origin classification models developed for the fused data,
respectively. Although a benchtop NIR spectrometer was used in that study, a similar
method can likely be designed to include miniaturized/portable NIR instruments as well.

On the other hand, a direct improvement of the performance of NIR sensors with
mutually exclusive operational spectral regions can be accomplished by data fusion as
well. Several cost-effective miniaturized NIR sensors appeared on the market that were
specifically intended for food analysis [5–7,77]. These devices are potentially very inter-
esting for the small-scale manufacturing of food, which is becoming increasingly popular.
Efficient quality control in such production poses considerable difficulties, and the final
product quality depends on the supplied ingredients. Miniaturized NIR spectrometers
are particularly promising in such scenarios, but often manifest inferior performances
compared to benchtop NIR spectrometers; in certain cases, no successful calibration by
PLSR could be obtained for some sensors in particularly challenging analyses [31,99]. As
discussed in the previous section, advanced calibration methods offer promising potential
in such cases. Further gains can be obtained with sensor fusion, which offers a convenient
uplift in performance by combining spectra measured in different wavenumber regions for
extended access to chemical information for more reliable calibration.

Although still relatively scarce, studies of effective data-fusion strategies that inte-
grated miniaturized NIR spectrometers have begun to attract growing attention in the fields
of food and agriculture. In the study of Bec et al. [73], a benchtop (Buchi NIRFlex N-500)
and three miniaturized (MicroNIR 1700 ES, Tellspec Enterprise sensor, and SCiO sensor)
NIR spectrometers were evaluated and optimized within a calibration framework based on
the PLSR and GPR methods for prediction of the protein content in fitness bars containing
edible insect material. The analyzed protein content in the calibration series was between
19.3 and 23.0% (Table 11). In the nondestructive analysis of intact bars, the RMSEP values
from the PLSR prediction were determined to be 0.611% for the benchtop, and remained
in the range of 0.545 to 0.659% for the miniaturized spectrometers. The predictions by
GPR models were 0.506% (benchtop) and 0.482–0.580% (miniaturized). When taking into
account the milled samples, the corresponding RMSEP values for the PLSR prediction were
improved to 0.210% for the benchtop spectrometer, but remained in the inferior range of
0.525–0.571% for the miniaturized devices. However, the RMSEP values for GPR prediction
for the miniaturized spectrometers were noticeably improved to 0.230% (MicroNIR 1700
ES), 0.326% (Tellspec), and 0.338% (SCiO). In combination with the PLSR method, the
portable instruments showed a significantly lower predictive performance as measured by
the RMSEP values determined for the data from an independent test set. Using a nonlinear
GPR calibration method significantly improved the accuracy of prediction of the miniatur-
ized spectrometers, with the MicroNIR achieving a performance equal to the stationary
instrument, while only a slightly worse performance was achieved by the Tellspec and
SCiO sensors.
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Table 11. The parameters of the regression models constructed for the fused spectral data from the
two cost-effective miniaturized NIR spectrometers (Tellspec Enterprise sensor and SCiO sensor) for
the analysis of protein content in intact and milled bars. Analyzed protein concentration range:
19.3–23.0 % (w/w). Reproduced (CC-BY 4.0 license) from [73].

Intact Milled

PLSR GPR PLSR GPR

Pretreatment SNV, SG2 (25 SP) SNV, SG2 (25 SP) SG1 (11 SP) SG1 (11 SP)
R2 (Cal) 0.41 0.9 0.53 0.99
R2 (CV) 0.28 0.55 0.48 0.9
RMSEC (%) 0.654 0.272 0.580 0.0002
RMSECV (%) 0.723 0.574 0.620 0.263
R2 (TSV) 0.38 0.64 0.51 0.89
RMSEP (%) 0.671 0.517 0.596 0.295

A further increase in the reliability of the analysis can be achieved by low-level fusion
of the spectra from spectrometers measuring largely different, only partially overlapping
fragments of NIR spectrum, such as the SCiO and Tellspec instruments considered in that
study (Figure 8). The Tellspec and SCiO sensors cover highly complementary VIS/SW-
NIR and NIR wavelength ranges, with only a narrow overlap of the spectral regions
measured by these two devices (Figure 8). Therefore, an attempt was made to aggregate (i.e.,
concatenate) the data from these sensors to effectively provide the calibration model with
an extended spectral region compared to any of these two spectrometers used separately. In
the GPR calibration and test-set validation performed on the fused data (Tellspec + SCiO),
the RMSEP values were improved to 0.517% (for intact samples) and 0.295% (for milled
samples). Because the Tellspec and SCiO sensors are consumer-oriented devices with
superior affordability, it is still a cost-effective and economical option to use them together
to increase the accuracy and reliability of an analysis. Fused-sensor NIR spectroscopy, with
the combined strengths of multiple miniaturized portable instruments, can be successfully
used for rapid, nondestructive analysis of total protein content with better performance
than the sensors used separately.
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Figure 8. Unpretreated NIR spectra of exemplary intact insect protein fitness bar samples measured
by a benchtop NIRFlex N-500 and three miniaturized (MicroNIR 1700 ES, Tellspec Enterprise sensor,
and SCiO sensor) spectrometers. The two latter sensors are cost-effective designs specifically intended
for food analysis by consumers. Reproduced (CC-BY 4.0 license) from [73].

Furthermore, Cavallini et al. [198] recently explored a midlevel data-fusion approach for
three different NIR spectrometers: SCiO, MicroNIR, and a benchtop instrument (Bruker MPA).
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Additionally, covariance selection (CovSel) [199] and common dimensions (ComDim) [200]
approaches were applied as well to establish a robust approach for distinguishing between fresh
and frozen cephalopods. Interestingly, the authors noted that the similarities and differences
among the datasets measured by these three instruments reflected their design characteristics.

The conclusions that might be drawn from the data-fusion studies involving miniatur-
ized NIR sensors suggest that the profound instrumental differences often observed for
these devices create a particular opportunity for fusion approaches to provide direct gains
in analytical performance.

On the other hand, a different approach to reinforcing an analytical framework using
miniaturized NIR spectrometers through a data-fusion approach stems from parallelization
of spectra pretreatments. As concluded in numerous case studies, and as outlined in other
sections of this review, miniaturized sensors often provide spectra of inferior quality, in
various terms, compared to full-scale benchtop instruments. Often, most of the resulting
distortions of the spectra (e.g., scattering profile, noise) can be corrected or suppressed by
separately applied algorithms. However, a promising alternative is provided by applying
the pretreatments in parallel and fusing the resulting datasets for further calibration and
prediction. The methodological background of this concept was recently exhaustively
presented by Mishra et al. [201]. Given the importance of the pretreatment step in process-
ing the challenging spectral datasets often encountered in agri-food NIR analysis using
miniaturized spectrometers, it should be expected that parallelized spectra pretreatment
via data fusion will attract increasing attention in the development of analytical methods in
the reviewed area of application.

5.3. Chemical Interpretation of Calibration Models and Instrumental Differences

With the recently provided availability of in silico simulated NIR spectra, it has become
feasible to elucidate in detail the sensor sensitivity to specific chemical information, and
thus gain a deeper insight into the critical factors that affect its prediction performance
in a given analytical application. Accordingly, the differences in the prediction power
of caffeine and L-theanine content in black tea using the microPHAZIR and MicroNIR
instruments were analyzed in detail in a recent investigation by Mayr et al. [100]. The
authors concluded that the sensitivities of these two miniaturized spectrometers to the
characteristic absorption bands of these two components were distinct. This resulted from
the observed substantial differences in the way the different NIR instruments recorded
the chemical information of caffeine compared to theanine. Handheld spectrometers have
shown a limited suitability for assessing theanine, as the meaningful absorption of this
constituent falls outside the spectral region measured by these devices. On the contrary,
the most characteristic absorption of caffeine is acquired by these handhelds, and as a
consequence, their performance in analyzing caffeine content is comparable to that of a
benchtop device. These observations suggest that the application of both spectrometers in
the analysis of compounds structurally similar to caffeine may be successful, while in the
chemicals structurally similar to theanine, it may be challenging for both instruments [100].
Similar conclusions have been drawn from the combined interpretation of the simulated
spectrum of piperine and the chemometric models calibrated for the prediction of that
chemical in the plant matrix of black pepper from the spectral datasets acquired by the
same set of miniaturized spectrometers [99]. The noticeably different spectral regions that
these devices measured illustrated a clear distinction between their abilities to acquire the
meaningful absorption of a given constituent; in that case, piperine [99].

Another good example of how the comprehension of chemical information can be used
in such scenario was provided by the further investigation by Grabska et al. into the patterns
unveiled in the above-discussed studies [97]. In that study, the detailed band assignments
of piperine offered insights into the correspondence of the PLS factors in the models
describing piperine content in black pepper samples. The NIR vibrational contributions of
piperine could be roughly established. The analysis using a benchtop spectrometer NIRFlex
N-500 (Figure 9A) and a handheld microPHAZIR (Figure 9B) was dissected. The narrow
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spectral region in which the microPHAZIR operates (6266–4173 cm−1) was just enough to
acquire the most meaningful absorption of piperine, with only weak second overtones and
ternary combination bands populating the spectrum above 6150 cm−1. Firstly, as expected,
the structure of the loading plots for all factors indicated a clear correspondence with the
absorption features of piperine. Interestingly, exclusion of the region between 5550 and
4950 cm−1 improved the performance of the prediction for the microPHAZIR. Comparing
this information with the determined vibrational assignments, one may conclude that
the contributions from weak CH combination bands of piperine to the NIR spectrum of
black pepper were not acquired to a satisfactory degree by the microPHAZIR. The model
constructed for the microPHAZIR required four factors to obtain the maximum predictive
performance, while for the dataset from the benchtop spectrometer, the optimal number
of factors was three. The structures of the first factors for both cases are quite similar, and
these seem to capture the most intense bands of piperine. Note, the structure of the third
factor in the case of benchtop spectrometer clearly stands out from the remaining ones,
e.g., above 6000 cm−1 and in the region of 5300–4900 cm−1. At these wavenumbers, one
may see, standing out from the rest as well, the contributions from the combination bands
involving CH and, to lesser extent, the ring deformation bands of piperine. The presence of
the combinations involving ring deformation were also viable in the second factor for the
benchtop spectrometer, where a distinct structure was observed near 4750–4500 cm−1.
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Figure 9. Panel (I): simulated spectrum elucidates vibrational contributions to NIR spectrum of
piperine. Panel (II): this information enables the interpretation of the chemical information in the
loading plots for the PLSR model of piperine content in black pepper developed for the NIR spectral
sets measured with (A) a benchtop Büchi NIRFlex N-500; and (B) a miniaturized microPHAZIR
spectrometer. Reproduced (CC-BY 4.0 license) from [97].

The conclusions drawn in this study indicated that the laboratory spectrometer ap-
peared to be more sensitive to the specific vibrations of piperine in black pepper. As shown,
for example, by the factor 3 corresponding to νCH combination bands of piperine that
was clearly distinct from the others (i.e., F-1 and F-2). There was also a significant part of
the ring-deformation bands that contributed to the second and third factors in the PLSR
model calibrated for the spectral set measured by the benchtop NIRFlex N-500 spectrom-
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eter. Therefore, in this case, a more accurate association between the distinct chemical
information and the particular factors in the regression model was recorded.

In contrast, the factors in the PLSR model constructed for the spectral set from the mi-
croPHAZIR appeared to be less specific to individual vibrations of piperine. Consequently,
the microPHAZIR was less capable of following fine spectral variations representing inten-
sity changes in the spectrum related to a specific chemical constituent.

It is likely that the poorer spectral resolution of the miniaturized spectrometer also
played a role here. It remains to be seen whether this observation can explain, at least in
part, the poorer performance of the microPHAZIR spectrometer compared to the laboratory
spectrometer in the analysis under discussion (root-mean-square of prediction; i.e., RMSEP
of 0.30 and 0.18% w/w, respectively) [97].

5.4. Calibration Transfer

A calibration model, regardless of whether the intended problem to solve concerns
classification (e.g., food authentication, identification of variety, brand, origin, etc.) or quan-
tification (i.e., prediction of concentration of a targeted constituent, age of product, etc.) is
generally valid only if the spectra used for predicting the property of interest is measured
by the same spectrometer by which the calibration set was obtained. The critical difference
here results from the disparity between two or more instruments with respect to key optical
performance parameters such as the operating spectral region, wavelength accuracy, dynamic
range, distance between sample and optics, the photometric response of the detector, etc.
These differences are very likely to invalidate the prediction model when used with a different
instrument, thus necessitating time-consuming calibration and validation for each specific
spectrometer. On the other hand, in practical routines, often more than one NIR instrument;
e.g., benchtop and miniaturized, or several miniaturized ones, are available at the site. Con-
siderable gains in the efficiency of the analytical framework can be provided by the ability
to perform calibration procedure on just one master instrument, which is then subsequently
used for predictions from the spectra collected by the other sensors.

Various mathematical algorithms known as calibration-transfer or standardization
strategies help convert models or data measured by a particular instrument for use by
other instruments [202]. For this purpose, the following frameworks are widely used for
eliminating the need for full recalibration: standardization of model coefficients, spectral
responses, direct standardization (DS), segmental direct standardization (PDS), and spectral
variations at each wavelength [202].

Examples demonstrating the utility value of calibration transfer in food analysis and
quality control appeared in literature shortly after the first miniaturized spectrometers were
popularized on the market. For example, the aim of the study of Pierna et al. [203] was to
assess the possibility of transferring the calibration from the benchtop Foss NIRSystem 6500
instrument to the miniaturized microPHAZIR. In that case, good calibration models were
obtained for the various feed properties (fat, fiber, protein, and starch) that were developed
on the Foss NIRSystem 6500 on the basis of the spectral database of 9164 samples, and
these were subsequently successfully transferred to the handheld spectrometer.

In another example, Zamora-Rojaset et al. [142] evaluated the performance of a minia-
turized handheld NIRS instrument for assembling a meat-quality database from a high-
performance benchtop NIR spectrometer. The authors showed that large databases of
spectra of important samples collected over several years could be successfully transferred
to a miniaturized, handheld NIR instrument, which is possibly better suited for in situ
analysis on an industrial scale. The successful transfer of the database to the miniaturized
NIR instrument provided considerable gains in efficiency and throughput of the analysis,
particularly in a large-scale, low-cost online in situ analysis, a scenario that is commonly
found in food industries.
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6. Summary of Current Trends and Future Prospects

NIR spectroscopy is a powerful tool for qualitative and quantitative analyses involving
different types of samples used in various industries. The canonical advantages of NIR
spectroscopy; i.e., nondestructive analysis, high-throughput capacity, cost-effectiveness,
and its “green” nature (i.e., no chemical solvent used, no expenditure of the product for the
needs of analysis), form a perfect synergy with the novel, miniaturized sensor technology.
With the advent of portable spectrometers, decisive enhancement of NIR spectroscopy
in its utility in the agri-food sector was offered. The unique value of miniaturized NIR
spectroscopy is best manifested in this sector, on which the analysis of complex, chemically
and physically diverse samples of natural origin is focused; i.e., raw food materials, whole
and highly processed foods, and agricultural crops. Importantly, this technology permits
the persistent monitoring of food quality at every stage of its complex production and
supply chain, from the farm to the shelf. In these applications, the revolutionary advantage
of miniaturized sensors is manifested by the capacity to perform rapid, high-throughput
analyses with no need for sample preparation directly onsite.

Accompanying progress in technology, recent breakthroughs in spectral-analysis
methods and fundamental science have decisively changed our understanding of NIR
spectra and largely expanded the potential for new applications. Comprehension of
chemical information enables the interpretation of calibration models, while sensor fusion
enhances the availability of the information correlated with food-quality parameters. The
progress in data-analytical methods and the fundamental science underlying NIR spectra
permit the knowledge-based design and optimization of the analytical application of NIR
spectroscopy. These qualities have directly translated to a thriving development of new
applications of miniaturized NIR spectroscopy, as it is readily available to combat food-
safety risks resulting from the globalization of the food market. Hence, it has become
widely adopted in this critically important sector of public interest.

While immensely successful and widespread, the technology and applications of
miniaturized NIR spectroscopy still face certain challenges that should be considered in
the future. Unexplored areas such as sensor deterioration and transferability of the models
to new generations of instruments have been signaled by recent reviews published in
the field. On the other hand, ultraminiaturization and the trend aiming at providing
ordinary consumers with a spectrometer in their pocket urge the reinforced reliability
of precalibrated models, as well as the user-friendliness and accessibility of cloud-based
services that are intended for the processing and analysis of the spectra from such sensors.
The reliable and fail-proof operation of NIR spectrometers integrated with smartphones
by nonexpert personnel and ordinary consumers would mark the next cornerstone of
this technology in food analysis, provided that the outlined challenges are successfully
addressed.

Author Contributions: Conceptualization, K.B.B. and J.G.; investigation, K.B.B. and J.G.; writing—
original draft preparation, K.B.B. and J.G.; writing—review and editing, K.B.B., J.G. and C.W.H.;
visualization, K.B.B. and J.G.; supervision, C.W.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Austrian Science Fund (FWF) (P32004-N28).

Acknowledgments: Open Access Funding by the Austrian Science Fund (FWF).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ozaki, Y.; Huck, C.W.; Tsuchikawa, S.; Engelsen, S.B. (Eds.) Near-Infrared Spectroscopy; Springer: Singapore, 2021.
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89. Beć, K.B.; Grabska, J.; Ozaki, Y.; Czarnecki, M.A.; Huck, C.W. Simulated NIR spectra as sensitive markers of the structure and
interactions in nucleobases. Sci. Rep. 2019, 9, 17398. [CrossRef] [PubMed]

https://www.spectroscopyeurope.com/news/nir-pocket-size-food-scanner
https://www.spectroscopyeurope.com/news/nir-pocket-size-food-scanner
https://www.consumerphysics.com/technology/
http://doi.org/10.3390/s18010223
https://www.spectroscopyeurope.com/news/smartphone-nir
https://www.spectroscopyeurope.com/news/smartphone-nir
http://doi.org/10.1117/12.2289931
http://doi.org/10.1590/S0103-50532003000200006
http://doi.org/10.1002/9783527612666.ch07
http://doi.org/10.25165/j.ijabe.20191202.4637
http://doi.org/10.1134/S0020168519140115
http://doi.org/10.3390/molecules26216390
http://www.ncbi.nlm.nih.gov/pubmed/34770798
http://doi.org/10.1016/j.chemolab.2021.104287
http://doi.org/10.1002/cem.3367
http://doi.org/10.1016/j.chemolab.2022.104520
http://doi.org/10.1080/10408347.2022.2047607
http://doi.org/10.1016/bs.coac.2020.08.001
http://doi.org/10.1007/978-981-15-8648-4_5
http://doi.org/10.1002/9783527814596.ch13
http://doi.org/10.1016/j.saa.2021.119625
http://doi.org/10.3390/books978-3-03928-053-7
http://doi.org/10.1039/D0CS01602K
http://doi.org/10.1016/j.molliq.2020.113271
http://doi.org/10.3390/molecules24112189
http://doi.org/10.1021/acs.jpca.7b00646
http://www.ncbi.nlm.nih.gov/pubmed/28218851
http://doi.org/10.1021/acs.jpca.9b02170
http://www.ncbi.nlm.nih.gov/pubmed/31017787
http://doi.org/10.1021/acs.jpcb.8b04862
http://www.ncbi.nlm.nih.gov/pubmed/29894632
http://doi.org/10.1038/s41598-019-53827-6
http://www.ncbi.nlm.nih.gov/pubmed/31758033


Foods 2022, 11, 1465 49 of 53
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