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Abstract

An important challenge in systems biology is to quantitatively describe microbial growth using a 

few measurable parameters that capture the essence of this complex phenomenon. Two key events 

at the cell membrane – extracellular glucose sensing and uptake – initiate the budding yeast’s 

growth on glucose. However, conventional growth models focus almost exclusively on glucose 

uptake. Here we present results from growth-rate experiments that cannot be explained by 

focusing on glucose uptake alone. By imposing a glucose uptake rate independent of the sensed 

extracellular glucose level, we show that despite increasing both the sensed glucose concentration 

and uptake rate, the cell’s growth rate can decrease or even approach zero. We resolve this puzzle 

by showing that the interaction between glucose perception and import, not their individual 

actions, determines the central features of growth and characterize this interaction using a 

quantitative model. Disrupting this interaction by knocking out two key glucose sensors 

significantly changes the cell’s growth rate, yet uptake rates are unchanged. This is due to a 

decrease in burden that glucose perception places on the cells. Our work shows that glucose 

perception and import are separate and pivotal modules of yeast growth whose interplay can be 

precisely tuned and measured.

In 1942 Jacques Monod introduced his microbial growth model1 that prompted quantitative 

studies of microbial metabolism2–13. This motivated a wealth of mathematical models 

describing the growth of budding yeast Saccharomyces cerevisiae on the key carbohydrate 

glucose14. These models mainly focus on the effect of glucose import on the growth rate. 

But in addition to importing glucose, yeast senses extracellular glucose through several 

glucose sensors. These two key events at the cell membrane – glucose sensing and import – 

then trigger many downstream intracellular molecular events (e.g. transcription, metabolic 

processes, post-transcriptional modifications) that collectively determine the growth rate15. 

Many conventional models overlook this collective effect by ignoring glucose sensing. 

Growth behaviors that are qualitatively very different from current models’ descriptions may 

arise if glucose sensing and import are properly taken into account. One approach to 
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addressing this deficiency is constructing detailed many-parameter models that attempt to 

explicitly track each of the vast molecular events involved in the yeast’s glucose 

metabolism8,9. Such approach has provided detailed information on the flux of thousands of 

known metabolic reactions and new insights into yeast’s growth on glucose. However, such 

an approach also conflates the effects of glucose sensing and import because it is not yet 

known how each of the vast molecular events are altered when glucose import rate is varied 

independently of the level of extracellular glucose sensed by the cell. The enormous number 

of metabolites and reactions involved makes experimentally determining each molecular 

change due to glucose sensing and import challenging. Indeed, a persistent challenge in 

obtaining a quantitative understanding of microbial growth on nutrients has been identifying 

just the few parameters that are necessary for extracting the central features from this 

complex cellular process. A phenomenological model that retains just those essential 

parameters may provide new insights and central design principles16,17 underlying 

microbial growth. Motivated by these considerations, we sought to decouple and measure 

the separate effects of glucose sensing and import on cell growth, then provide a concise 

phenomenological model that elucidates how the interaction between the two determines the 

growth rate.

Dependence of growth rate on glucose level

To measure and separate out the effects of glucose perception and import on growth rate, we 

first decouple any control that glucose sensing has on glucose import. Such coupling 

primarily comes from the two glucose sensors (Snf3 & Rgt2)18 that drive the transcriptional 

regulation of the six primary hexose transporters (Hxt1-4, 6 & 7)19–23 which are 

responsible for glucose import (Supplementary Fig. 1). Our background strain lacks all the 

major and minor glucose transporter genes (hxt1-17Δ, agt1Δ, stl1Δ, gal2Δ)24, thus no 

sensors affect the transcription level of any transporter genes including the HXTs. We made 

five “single-HXT” strains by introducing into the background strain only one of the five 

primary HXT genes (excluding HXT7) under the control of the inducible promoter PTET07. 

Each of these strains contains just one type of HXT gene, and its expression level could be 

controlled by the inducer doxycycline independently of extracellular glucose 

(Supplementary Fig. 2).

We measured the log-phase growth rate of the single-HXT strains in minimal media 

containing a range of different concentrations of doxycycline and glucose, whose 

concentrations were held constant during batch growth for each experiment. We found 

surprising behaviors in every single-HXT strain’s growth rate (Fig. 1 and Supplementary 

Fig. 3). Since glucose no longer regulates the transcription of the sole HXT gene in our 

strains in a complicated manner, one would expect that an increase in extracellular glucose 

concentration would lead to a simple increase in the single-HXT strain’s glucose uptake rate 

(when the doxycycline concentration is held constant). A typical conventional model14 

predicts that the growth rate should thus simply rise as the glucose level increases. Yet, 

depending on the initial glucose level, a further increase in the glucose level either increases 

or decreases the “Hxt1-only” strain’s growth rate (Fig. 1). This is also true for the growth 

rates of the “Hxt2-only” and “Hxt4-only” strains. Furthermore, despite growing as well as 

other strains at low glucose levels, the “HXT3-only” and “HXT6-only” strains even approach 
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growth arrest for glucose level higher than 0.02% (Fig. 1). Thus, we observed no systematic 

relationship between glucose level and growth rate. It is noteworthy that the wild-type strain, 

unlike these single-HXTs, simply grows faster when more glucose is present (Fig. 1), a 

behavior we will consider more closely later.

Dependence of growth rate on glucose uptake rate

Using our doxycycline inducible expression system, we were able to show that for every 

single-HXT strain at fixed doxycycline level, the glucose uptake rate increased as the 

glucose level increased (Fig. 2). To measure glucose uptake rates, we fused yEGFP to the 

inducible HXT gene in each of the single-HXT strains (Supplementary Fig. 4). Measuring the 

average single-cell fluorescence in these strains gave us the relative number of Hxt proteins 

synthesized in these cells (Supplementary Fig. 5). Using the known Michaelis-Menten 

parameters of the Hxts25,26, we calculated the cell’s total glucose uptake rate. We also 

directly measured the cell’s glucose uptake rate. The directly measured and calculated 

uptake rates were in good agreement (Supplementary Fig. 6): glucose uptake rate increased 

as the glucose concentration increased (at constant doxycycline concentration) (Fig. 2 and 

Supplementary Fig. 7). Hence despite a monotonic increase in both glucose uptake rate and 

extracellular glucose level, single-HXT strains at fixed doxycycline concentration can grow 

significantly faster, or slower, or even approach growth arrest as seen earlier (Fig. 1), effects 

that no conventional growth model can either quantitatively or qualitatively describe.

Phenomenological model of growth

Plotting all five single-HXT strains’ growth rates and uptake rates together resulted in a wide 

scatter of data points, where each data point is specified by two coordinates: uptake rate and 

growth rate (Fig. 3a and Supplementary Fig. 8). This plot reveals that uptake rate alone 

cannot specify the cell’s growth rate. Specifying the glucose concentration by color-coding 

these data points (i.e., each data point now has three coordinates: (uptake rate, extracellular 

glucose concentration, growth rate)) causes a striking pattern to emerge (Fig. 3b). This 

analysis reveals that growth rate μ is determined by two independent variables: the glucose 

uptake rate r, and the extracellular glucose concentration g. Our full experimental data set of 

all five single-HXT strains over a wide range of glucose and doxycycline concentrations are 

described by a single equation

[1]

where μc and rc are constants specifying the point of convergence of the log-linear lines 

(Fig. 3b), and the function P(g) describes the slope of the log-linear correlation between μ 

and r for each value of g. This equation does not depend on which Hxt the cell uses for 

glucose uptake. This slope P(g) increases with increasing g, and in turn tends to decrease 

growth rate (when r < rc). P(g) quantifies the dramatic effect that the extracellular glucose 

has on growth rate independently of glucose import – the effect of glucose perception. 

Qualitatively, Eqn. [1] states that an increase in the extracellular glucose concentration may 

cause two counteracting effects: an increased glucose uptake rate r (which tends to increase 
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growth rate), and an increased perception of extracellular glucose (which tends to decrease 

growth rate). The net result on growth rate (i.e., whether it rises or falls) is decided by the 

competition between these opposing effects of glucose perception and uptake. Which one of 

the two effects dominates depends on the actual values of g and r, in particular on the 

product P(g)ln(r/rc) quantifying the interaction between glucose perception and import 

(Supplementary text).

The “growth landscape” in Fig. 3c, described by Eqn. [1], shows the full set of growth rates 

possible for a wide range of g and r. Because Eqn. [1] does not distinguish between the type 

and number of Hxts cells use for glucose import, it is applicable to cells with any number of 

HXT genes, including the wild-type, as long as the cells achieve the uptake rate within the 

range we probed. The shape of this landscape allows for the unusual growth-rate behaviors 

observed, including the convex shaped growth rate of the “Hxt1-only” strain (orange path, 

Fig. 3c), the “Hxt6-only” strain’s path towards growth arrest (red path, Fig. 3c) and the wild-

type’s hyperbolic growth rate (blue path, Fig. 3c). The wild-type strain is near the peak of 

this growth landscape yet its uptake rate is not much higher than those achieved by some 

single-HXT strains. The growth landscape shows that some values of (g, r) cannot sustain 

growth (μ= 0). Indeed, for every g, there is a minimum uptake rate a cell needs to have in 

order for it to have any chance of growing in that particular glucose environment 

(Supplementary Fig. 9).

Manipulation of glucose perception by sensors

Whereas the glucose uptake rate depends on the Hxts, glucose perception – captured by P(g) 

– should depend on mechanisms the cell uses to measure the level of extracellular glucose. 

Snf3 and Rgt2 are two glucose sensors primarily known for regulating transcription of both 

major and minor glucose transporter genes18, 27 (HXTs, GAL2, STL1, AGT1). Since such 

regulation is disabled in our single-HXT strains, we could manipulate P(g) by knocking out 

these two glucose sensors without affecting the uptake rate r. We constructed a panel of 

single-HXT strains with these two sensors deleted (Supplementary Fig. 10). The relationship 

between growth rates and extracellular glucose concentration in these “sensorless” strains is 

strikingly different from that in strains with the two sensors intact (Fig. 4a and 

Supplementary Fig. 11). Growth rates now generally increase as the glucose level increases 

(at constant doxycycline level). Also, without the sensors the “Hxt3-only” and “Hxt6-only” 

strains no longer approach growth arrest as the glucose level increases. Because we deleted 

all minor glucose transporter genes and removed the glucose’s control of the sole transporter 

expression in our single-HXT strains, changes in uptake rate were not the reason for the 

growth rescues we observed. For every combination of glucose and doxycycline 

concentrations, the uptake rate of the sensorless strains was nearly identical to the uptake 

rate of their sensor-containing counterparts (Fig. 4b and Supplementary Fig. 12).

In the sensorless strains, growth rate again explicitly depends on glucose concentration but 

with much reduced sensitivity (Fig. 4c–d). When Snf3 and Rgt2 are absent, a cell in 4% 

glucose acts as if it were in 0.06% glucose with intact sensors. Since the uptake rate remains 

virtually unchanged in the single-HXT strains when SNF3 and RGT2 are deleted, this 

reduced-sensitivity effect is due to a change in the perception function P(g), not uptake rate 
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r (Fig. 4d). The remaining dependence of the cell’s growth rate on the glucose concentration 

even after Snf3 and Rgt2 have been deleted suggests that other sensors may contribute to the 

effect embodied in P(g)28,29. Nonetheless, our experiments show that Snf3 and Rgt2 are 

the key determinants of P(g) (as quantified in Fig. 4d).

The behavior depicted by Eqn. [1] should apply to the wild-type strain as well, as long as it 

achieves an uptake rate within the range probed with the single-HXT strains used to 

construct our growth landscape. We measured the wild-type’s uptake rate and found that it 

was below the critical uptake rate rc for glucose concentrations smaller than 0.02% (Fig. 3b 

and Supplementary Fig. 16). For higher [glucose], the uptake rate exceeds rc. When the 

wild-type cell’s uptake rate is below rc, its growth rate fits with the trend revealed in Fig. 3b. 

For higher glucose concentration, the effect of perception on the wild-type’s growth rate 

disappears (Fig. 3b). One possible explanation is that as long as the glucose concentration is 

not too low, the wild-type escapes the seemingly detrimental effect of perception on growth 

rate by making enough hexose transporters to go beyond rc. But for lower glucose level 

where its uptake is less than rc, it properly tunes the interaction between glucose perception 

and uptake (quantified by the product P(g)ln(r/rc)) such that its growth rate will increase 

when the cell perceives more extracellular glucose. Such tuning suggests that the 

transcriptional regulation of the HXT genes by Snf3 and Rgt2 is organized such that the 

wild-type always climbs uphill in the growth landscape (Fig. 3c) as it perceives an increase 

in the extracellular glucose concentration.

The critical point (μc, rc) may represent a region of phase transition in the cell’s growth and 

metabolism. The cell dramatically increases its ethanol production rate as its uptake rate 

increases above the critical rate rc (Supplementary Fig. 17). This suggests that when its 

uptake rate is below rc, the cell metabolizes glucose largely through respiration, but then 

switches to a largely fermentative metabolism as the uptake rate exceeds rc. A key rate 

limiting step in fermentation is import of glucose and therefore the cell only redirects its 

glucose flux from respiration to fermentation when its glucose uptake rate is sufficiently 

high30,31. Our results suggest that this major redistribution of flux occurs around rc.

Discussion

Glucose perception and import are two separable modules that each affects the growth rate. 

But it is the interaction between the two modules that ultimately determines the cell’s 

growth rate, and that interaction can be both precisely altered and measured. But why would 

it make sense that yeast grows according to Eqn. [1], which allows for a possible detrimental 

growth if the interaction between the perception and import modules is not properly tuned? 

One explanation may be that yeast has no way to directly ‘measure’ its glucose import rate 

in real-time. Indeed, there is no known ‘flux sensor’ that the yeast uses to measure its 

glucose import rate in real-time and then adjust the production level of Hxts to change the 

glucose import rate if the yeast senses that the flux is too low. In fact, Hxt expression levels 

are primarily set by the extracellular glucose concentration32 (Supplementary Fig. 1). While 

yeast certainly can measure the extracellular glucose level directly and the intracellular 

glucose level indirectly (for example, through the catabolite-repressor Mig1 which uses 

intracellular glucose as its substrate)33–35, knowing the two glucose levels is not sufficient 
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for the yeast to infer what its glucose import rate is. This is because a given steady-state 

glucose concentration gradient can be maintained by a combination of wide ranges of 

glucose import rate and intracellular glucose breakdown rate. Since the cell has no direct 

way to measure the breakdown rate (there is no known ‘rate sensor’ measuring intracellular 

glucose breakdown), the cell cannot infer what the glucose import rate is in real-time just 

from the difference between extracellular and intracellular glucose. Given the engineering 

difficulty of building ‘flux sensors’, the yeast may have solved the problem by evolving 

glucose sensors such as Snf3 and Rgt2 to measure the extracellular glucose level, then 

anticipate a certain glucose import rate would be achieved, set up intracellular activities to 

process glucose being imported at the anticipated rate, and make sure that such an import 

rate is indeed achieved by putting its HXT genes under the control of those glucose sensors 

(Supplementary Fig. 1).

On-going efforts at large-scale modeling of glucose metabolism, gene regulation36 and 

cellular signaling must decouple and consider how the cell’s response varies when glucose 

uptake rate is varied independently of extracellular glucose level. For instance, microarray 

studies have shown that hundreds of genes involved in ribosomal biogenesis, which are 

energetically very costly, are up-regulated by many folds as the yeast is subjected to ever 

increasing levels of glucose37. In these studies, as the level of glucose is increased, so does 

the glucose import rate. These observed large-scale changes are thus due to the conflated 

effects of glucose perception and import. It would be interesting to measure which of these 

changes are due to glucose perception and import separately by decoupling the two effects. 

We hope that our model, as well as the framework used to extract some key principles from 

the complexity underlying yeast growth, will assist ongoing efforts to rationally engineer38–

40 and understand microbial metabolism at the systems-level41–48.

METHODS SUMMARY

Growth rate measurements

Growth rates were measured while the cells were in log-phase growth in 5 mL batch cultures 

at 30 °C using synthetic media supplemented with the desired doxycycline and glucose 

concentrations. These concentrations remained nearly constant during growth 

(Supplementary Information). Using a spectrophotometer (Hitachi U-1800), we measured 

the optical density (OD600 : Absorbance at λ = 600 nm) of these batch cultures over time, 

and extracted the growth rate of the cells.

Glucose uptake rate measurements and calculations

Glucose uptake rates were determined by measuring the rate of glucose depletion in the 

growth medium while the cells were in log-phase growth. It can be shown (Supplementary 

Information) that the glucose uptake rate per population density of cells (in units: mM hr−1 

OD600
−1) is approximately , where ρt)-ρ is the measured change in 

OD600 of the cell culture after time t, μ is the log-phase growth rate, and G0 − G(t) is the 

depleted glucose concentration in the growth medium after time t. This depleted glucose 

concentration was measured using a standard commercial ‘glucose assay kit’ (Sigma G3293) 
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that is based on the conversion of glucose through hexokinase and NADP+ dependent 

glucose-6-phosphate-dehydrogenase. We compared the measured glucose uptake rates with 

the uptake rates calculated using an independent method for the fluorescent single-HXT and 

wild-type strains. We calculated the glucose uptake rates by using the known Michaelis-

Menten parameters (Vm and Km) of Hxts26 and the relative number of Hxt proteins per cell 

inferred from measuring the average single-cell yEGFP fluorescence (Supplementary 

Information). These comparisons showed a close agreement between our measured and 

calculated uptake rates (Supplementary Figs. 6 & 14).

METHODS

Strain background and construction

A list of strains with diagrams summarizing their key features are provided in the 

supplementary information section. All strains were derived from the haploid strain 

CEN.PK2-1C (MAT α, kind gift from E. Boles)24, referred to as the “wild-type” in our 

study. Both EBY.VW4000 and EBY.VW5000 are deficient in hexose transport due to 

deletions of all HXT genes as well as genes encoding transporters with minor glucose uptake 

capabilities (agt1Δ ydl247wΔ yjr160Δ)24. HY4D1 and HY5F1 each contain rtTA protein 

expressed constitutively by the MYO2 promoter (inserted into EBY.VW4000 and 

EBY.VW5000 respectively using plasmid pDH18 (EUROSCARF) containing HIS5 gene) 

and CFP constitutively expressed by PTEF1. XhoI-PTET07-BamHI, BamHI-HXTn-NotI 

fragments were cloned into pRS305 (EUROSCARF) backbone containing LEU2 gene (n= 

1–4, 6). Integrating these plasmids into defective LEU2 locus (leu2-3) in HY4D1 by 

linearizing the plasmids with NarI, the “single-HXT” strains were constructed. To construct 

fluorescent “single-HXT” strains, yEGFP-TADH1-Kan fragment was amplified from pKT127 

plasmid (EUROSCARF) and was fused to C-terminus of HXTn ORF in each of the single-

HXT strains via standard PCR integration49. This fragment was also fused to C-terminus of 

HXTn ORF (n=1–4, 6, 7) in CEN.PK2-1C, thus resulting in six fluorescent wild-type strains 

(Supplementary Fig. 16). The “sensorless” versions of single-HXT strains (snf3Δ rgt2Δ) 

were constructed in the same way as their sensor-intact counterparts mentioned above by 

using HY5F1 instead of HY4D1. To probe the wild-type’s transcriptional regulation of each 

of the HXT genes (Supplementary Fig. 1), XhoI-PHXTn-BamHI, BamHI-YFP-NotI fragments 

were cloned into pRS305 backbone containing LEU2 gene (n=1–4, 7) and was integrated 

into the defective LEU2 locus (leu2-3) in CEN.PK2-1C by linearizing the plasmid with 

either NarI (for n=1) or ClaI (for all other n), resulting in five strains. The PHXT1, PHXT2, 

PHXT3, PHXT4, and PHXT7 promoter sequences refer to 1941-, 850-, 1996-, 1544-, 2042-bp 

upstream of the start codon of the respective genes. These sequences include all the known 

binding sites of transcription factors for the respective genes50.

Growth rate measurements

All growth rates reported in our study were measured while the cells were in log-phase 

growth in 5 mL batch cultures at 30 °C, in a standard synthetic media with various 

combinations of glucose and doxycycline concentrations. To bring the cells into log-phase, 

the single-HXT strains were first grown in a standard synthetic media containing 2% maltose 

and the desired concentration of doxycycline until the cells have been in log-phase for 
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roughly 12 hours. This procedure ensured that the cells were already making Hxts needed to 

initiate glucose uptake immediately after being transferred to glucose media. Then these 

cells were diluted into the standard synthetic media with the same amount of doxycycline, 

but this time containing glucose instead of maltose. These dilutions were done such that by 

the time the density of cells in the batch culture reached level detectable by our 

spectrophotometer (Hitachi U-1800) (roughly 15 hours after dilution), the cells had adjusted 

to the glucose media and were in log-phase growth. Hence, the transient growth rate change 

associated with maltose to glucose media transfer did not enter into our growth rate 

measurements. In a separate experiment, we confirmed this was indeed the case by further 

diluting these cultures into an identical glucose media, which showed that having the cells 

pre-grown in maltose before did not affect the growth rates reported in our study. By 

measuring the Optical Density (OD600 : Absorbance at λ = 600 nm) of these batch cultures 

over time, we extracted the growth rate of the cells. Strains that approached growth arrest 

also went through the same procedure as above. Upon transfer to glucose media from 

maltose media, these cells’ growth rates transiently decreased to nearly zero during a period 

of roughly 24 hours. By looking at the cells under the microscope, no abnormal cell 

morphologies were detected, thus indicating normal growth (i.e. no pseudohyphal or 

filamentous growth was detected).

Fluorescence measurements

The average single-cell fluorescence due to yEGFP fused to C-terminus of HXT genes in 

both the wild-type and the single-HXT strains was measured using a Becton Dickinson 

FACScan flow cytometer with excitation laser at 488nm. Emission filter FL1 (530/30) was 

used to detect the yEGFP fluorescence levels as well as the YFP for determining the PTET07 

induction curves in the calibration strains HY4DCal5 and HY5FCal2. Before observation 

using FACscan, the strains were grown using the protocol outlined in “growth rate 

measurements” section. The mean fluorescence values reported in our study represent the 

steady-state levels of Hxt proteins in single cells, since no appreciable changes in 

fluorescence was detected while the cells were growing in log-phase.

Glucose uptake rate measurements and calculations

Glucose uptake rates of cells were determined by measuring the rate of glucose depletion in 

the growth medium while the cells were in log-phase growth. First, the reasoning behind this 

procedure is as follows: If the cell’s growth rate at glucose concentration G0 is μ, G(t) is the 

concentration of glucose in the growth medium at time t, r(G(t)) is the uptake rate per OD of 

the cells as a function of extracellular glucose, and r is the OD of cells at t = 0, then the 

decrease in glucose concentration in the growth medium over time t is

[2]

If this change in glucose concentration is sufficiently small, but large enough to be 

detectable by our chemical assay (described below), then we can approximate r(G(t)) ≈ 
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r(G0) and μ as a constant during the time interval t. Then above equation can be solved for 

r(G0):

[3]

where r(G0) is the uptake rate per OD600, measured in units of mM hr−1 OD600
−1. This was 

then converted into molecules sec−1 cell−1 using conversion factor 1.7 × 107 cells ml−1 

OD600
−1. ρt)-ρ is the change in OD600 of the cells measured using the spectrophotometer 

(Hitachi U-1800), and μ is the growth rate determined by the method mentioned previously. 

The change in glucose concentration G0 − G(t) was measured using the standard commercial 

glucose assay kit (Sigma G3293) based on conversion of glucose through hexokinase and 

NADP+ dependent glucose-6-phosphate-dehydrogenase. We compared the measured 

glucose uptake rates with the uptake rates calculated using an independent method for the 

fluorescent single-HXT and wild-type strains. We calculated the glucose uptake rates by 

using the known Michaelis-Menten parameters (Vm and Km) of Hxts26 and the relative 

number of Hxt proteins per cell inferred from measuring the average single-cell yEGFP 

fluorescence (Supplementary Information). These comparisons showed a close agreement 

between our measured and calculated uptake rates (Supplementary Figs. 6 & 14).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Growth rates of “single-HXT” strains do not show any systematic trend with respect to 
glucose concentration
Log-phase growth rates of the wild-type strain (CEN.PK2-1C) and five single-HXT strains at 

varying [glucose] but constant [doxycycline] (0 μg/ml for wild-type and 2.5 μg/ml for 

single-HXT strains) are shown. The shape of each single-HXT strain’s growth-rate curve is 

maintained over a wide range of doxycycline concentrations (Supplementary Fig. 3). The 

growth-rate curves of the “single-HXT” strains display stark differences from the wild-type’s 

curve: single-HXT strains’ growth rates can substantially decrease, and some strains even 

approach growth arrest, despite a monotonic increase in [glucose]. Error bars, s.e.m.; n=3.
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Figure 2. A rise in [glucose] yields an increase in the uptake rate, but cells do not necessarily 
grow faster
To both measure and calculate glucose uptake rates, yEGFP was fused to the HXT gene in 

each “single-HXT” strain. These fluorescent single-HXT strains have the same growth-rate 

features as their non-fluorescent counterparts shown in Fig. 1 (Supplementary Fig. 4). The 

measured glucose uptake rates per cell for just three of these fluorescent single-HXT strains 

at [doxycycline] = 2.5 μg/ml are shown here. These fluorescent single-HXT strains’ glucose 

uptake rates monotonically increase as [glucose] increases, despite the non-systematic 

behavior of their growth rates reflected in Fig. 1. Hence, a cell can grow faster, or slower, or 

approach growth arrest despite an increase in both its glucose uptake rate and [glucose]. 

Error bars, s.e.m.; n=3.

Youk and van Oudenaarden Page 13

Nature. Author manuscript; available in PMC 2010 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Emergence of a concise growth model incorporating cell’s perception and uptake rate 
of glucose, and the resulting “growth landscape”
a, b, Plotting together all the measured growth rates and glucose uptake rates of the 

fluorescent single-HXT strains (a) then color-coding by extracellular glucose level reveals 

this striking pattern (b). This plot shows that extracellular glucose concentration g and 

glucose uptake rate r are two independent variables. Growth rate is concisely described by 

the fit function μ(r, g). P(g) is the slope of the log-linear correlation between growth rate and 

uptake rate for each g; we obtain P(g) by fitting. μc and rc are constants specifying the point 

of convergence of the log-linear lines (μc = 0.44 hr−1, rc = 1.4×107 molecules/s). Error bars, 

s.e.m.; n=3. c, Full “growth landscape” of budding yeast: Three dimensional plot of the 

function μ(r, g). The “growth trajectories” followed by the parental wild-type (blue path, 

near the peak of this landscape), and fluorescent “Hxt1-only” and “Hxt6-only” strains 

(orange and red paths respectively) are shown. Colored arrows indicate the direction the cell 

travels on each path as g increases. The arrows along the two axes (along “[glucose]” and 

“Glucose uptake rate”) point in the direction of increase.
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Figure 4. Manipulation of the cell’s perception of extracellular glucose, leaving uptake rate 
unperturbed, can yield significant growth-rate changes
a, Growth rates of single-HXT strains lacking two glucose sensors (snf3Δrgt2Δ, bold lines) 

along with their counterparts with intact sensors (dotted lines) are shown for [doxycycline] = 

5μg/ml. Error bars, s.e.m.; n=3. b, Knocking out the two glucose sensors leaves the cell’s 

glucose uptake rate virtually unperturbed. Just the “Hxt1-only” and “Hxt2-only” strains are 

shown here for simplicity (See Supplementary Figs. 7 & 12 for others). Each data point 

represents a particular combination of glucose and doxycycline concentrations. Error bars, 

s.e.m.; n=3. c, By yEGFP fusion, fluorescent sensor-less single-HXT strains were 

constructed for comparison with their sensor-intact counterparts. The features of growth 

rates seen in (a) were preserved after this fusion (Supplementary Figs. 11). Growth rates and 

glucose uptake rates of these strains were measured (Supplementary Figs. 12–15). For 

comparison, data for the sensor-intact single-HXT strains (from Fig. 3a) are shown in grey 

(μ̃
c=0.40 hr−1, r̃c=1.4×107 molecules/s). Error bars, s.e.m.; n=3. d, The sensitivity function 

P(g), calculated from fitting the data in Fig. 3a and 4c is shown for strains with intact 
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sensors (black) and snf3Δrgt2Δstrains (red). Error bars indicate 95% confidence interval in 

these fits.
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