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ABSTRACT

Protein-RNA interactions play important roles in
many biological processes. Given the high cost
and technique difficulties in experimental methods,
computationally predicting the binding complexes
from individual protein and RNA structures is press-
ingly needed, in which a reliable scoring function is
one of the critical components. Here, we have
developed a knowledge-based scoring function,
referred to as ITScore-PR, for protein-RNA bind-
ing mode prediction by using a statistical
mechanics-based iterative method. The pairwise
distance-dependent atomic interaction potentials
of ITScore-PR were derived from experimentally
determined protein–RNA complex structures. For
validation, we have compared ITScore-PR with 10
other scoring methods on four diverse test sets.
For bound docking, ITScore-PR achieved a
success rate of up to 86% if the top prediction
was considered and up to 94% if the top 10 predic-
tions were considered, respectively. For truly
unbound docking, the respective success rates of
ITScore-PR were up to 24 and 46%. ITScore-PR
can be used stand-alone or easily implemented in
other docking programs for protein–RNA
recognition.

INTRODUCTION

Because of the importance of protein–RNA interactions
on fundamental biological processes such as protein syn-
thesis, DNA replication and repair, regulation of gene ex-
pression and defence against pathogens (1–8),
determination of 3D protein–RNA complex structures
would be valuable to understand the underlying recogni-
tion mechanisms at the atomic level (9–14). Despite the
exponential growth in the experimental structures of

individual proteins and RNAs in the Protein Data Bank
(PDB) (15), the number of protein–RNA complex struc-
tures remains limited. As of 5 March 2013, there were only
1478 protein–RNA structures in the PDB. On the other
hand, there are many more individual protein and RNA
structures if we also count computationally modeled struc-
tures, such as structures constructed by homology
modeling. Given the importance of protein–RNA recog-
nition and the abundance of individual protein and RNA
structures, computational methods for determination
of the binding modes from individual protein and RNA
structures, such as molecular docking (16–22) and
template-based approaches (14), would have great
potential for structural determination of protein–RNA
complexes.
Although molecular docking for protein–protein recog-

nition has been developed for more than one decade
(23–41), the protein–RNA docking field is still in infancy
and has received attentions only recently, partially
motivated by the protein–RNA example in the Critical
Assessment of PRedicted Interactions (CAPRI) experi-
ments (42). This phenomenon may be attributed to
several reasons. First, predicting the 3D structure of an
RNA from its sequence is challenging. Unlike proteins for
which there is a significant correlation between structure
similarity and sequence homology, RNA molecules show
much less conservation in primary sequences than in sec-
ondary and tertiary structures. Therefore, it is challenging
to construct RNA structures from sequences through
homology modeling, as shown in the exercise of Target
33 in the CAPRI experiment (42,43). Second, the
numbers of experimentally determined RNA structures
and protein–RNA bound structures are limited, which
makes it more difficult to develop and assess protein–
RNA docking algorithms than for protein–protein
docking. Lastly, it is more challenging to predict conform-
ational changes in RNA molecules than in proteins on
binding because of the aforementioned less correlation
between RNA sequences and structures.
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To perform molecular docking, there are two equally
important components, sampling and scoring. During
the sampling process, all the possible binding modes of
one molecule are sampled relative to the other molecule.
Conformational changes may be considered during the
sampling process. Following or during the sampling
process, a scoring function is used to evaluate the energy
associated with each generated binding pose and to rank
the poses accordingly. The scoring function will be
the focus of the present study. Although several
attempts have been made recently toward the develop-
ment of scoring functions for protein–RNA interactions
(9–13,44–46), the scoring issue remains unsolved. No
existing scoring function has been extensively tested
owing to the lack of a large diverse test set of protein–
RNA structures in the past (47–49). Several factors should
be considered for the development of a scoring function
for protein–RNA interactions. First, owing to the huge
number of possible binding modes that are sampled, par-
ticularly for global sampling, a fast and efficient scoring
function is needed to complete the energy evaluation
process within a practical period with reasonable
accuracy. A second challenge in scoring function develop-
ment is protein/RNA flexibility and structural distortion.
Specifically, conformational changes often occur on
protein–RNA binding. Also, given the limited number of
individual protein and RNA structures, theoretical struc-
tures may also be used for docking. Therefore, a scoring
function should be able to handle a certain degree of mo-
lecular distortion arising from binding-induced conform-
ational changes and modeling-related inaccuracies. Lastly,
a large and diverse structural data set is needed for scoring
function validation.
Recently, we have developed a statistical mech-

anics-based method for scoring function construction by
extracting atomic, distance-dependent interaction poten-
tials from experimentally determined structures (50). The
method circumvents the long-standing ‘reference state’
issue (51–55) in knowledge-based scoring functions by
using a physics-based iterative algorithm, and has
proved to be efficient on scoring/ranking protein–protein
binding decoys (43,56) in the CAPRI experiments (42). In
this study, we have developed a scoring function based on
the atomic distance-dependent potentials derived from
known protein–RNA structures, referred to as ITScore-
PR, for predicting protein–RNA complex structures from
individual unbound protein/RNA structures. The scoring
function has been tested for its ability to identify near-
native binding modes by using four test sets that were
prepared by different docking methods and benchmarks.
The scoring function and the decoy set generated for our
validation study are expected to be beneficial to the devel-
opment of computational algorithms for protein–RNA
docking.

MATERIALS AND METHODS

Training set for deriving potentials

To construct a diverse training set of protein–RNA
complex structures, we searched the PDB for all the

radiographic crystal structures that have a resolution
better than 3.5 Å and contain at least one protein and
one RNA chain but no DNA chains. As of 7 December
2012, the query yielded 962 entries, which were further
manually examined. Only the appropriate protein–RNA
complexes that met the following criteria were considered.
First, both the protein and RNA chains should belong to
the same biological unit according to the description in the
PDB file. Second, the individual protein and RNA should
be large enough to have a stable structure, but not too
large for docking calculations. In this study, the number of
the residues in the protein was set to be >20 and <1000,
and the number of the residues in the RNA was between
10 and 200. Third, to ensure that the binding interface
forms a whole patch rather than multiple separate
patches for the sake of simplicity, only the PDB entries
that contain a moderate number of chains in the protein
oligomers or multiple RNA segments were considered.
Specifically, we empirically allowed for no more than six
chains in the protein or RNA. Finally, the complexes with
only backbone atoms in the protein or in the RNA were
excluded. The complexes that met the above criteria were
then clustered according to their sequence similarities to
remove the redundancy. Namely, two protein–RNA
complexes were grouped into the same cluster if they
met the following two criteria: First, any protein chain
of the first complex has a sequence identity >30% with
a protein chain from the second complex. Second, any
RNA chain of the first complex has a sequence identity
>70% with an RNA chain from the second complex. The
higher sequence identity cutoff for RNA during clustering
was because RNA molecules have a much lower sequence-
structure homology than proteins (57). A total of 175
clusters of protein–RNA complexes were obtained. The
crystal structure with the best resolution in each cluster
was selected as a representative.

These 175 protein–RNA complex structures were found
to have some overlap with the protein–RNA docking
benchmark 1.0 that we developed recently (49).
Considering that the benchmark will be used as a test
set to validate our scoring function, we eliminated the
overlap by removing the complexes in the training set
that have >30% sequence identity with the protein chain
and >70% sequence identity with the RNA chain of a
complex in the benchmark. The resulting training set con-
tained 110 diverse protein–RNA complex structures,
which were used to derive our scoring function. The
PDB entries of these 110 complexes are listed in
Supplementary Table S1.

Statistical mechanics-based method to derive the
interaction potentials

We used a statistical mechanics method to derive the
interaction potentials between the protein and the RNA
from a training set of diverse protein–RNA complex struc-
tures. Our method circumvents the challenging ‘reference
state’ problem in knowledge-based scoring functions. The
basic idea behind the method is to improve the interatomic
pair potentials step by step though iterations by
comparing the predicted pair distribution functions of

e55 Nucleic Acids Research, 2014, Vol. 42, No. 7 PAGE 2 OF 12

s
-
[
],
due 
,
-
[
]
-
due 
of time 
up
-
[
]
``
''
[
]
-
[
,43]
]
-
-
-
2 
2.1 
-
X-ray
7, 
a total of 
-
greater than 
less than 
-
[
].
-
-
-
[
]
greater than 
above 
a total of 
-
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gku077/-/DC1
2.2 
-
``
''
-


the protein–RNA complexes and the experimentally
observed pair distribution functions of the (native)
crystal structures in the training set. The method can be
represented mathematically by the following iterative
formula:

u
ðn+1Þ
ij ðrÞ ¼ u

ðnÞ
ij ðrÞ+�u

ðnÞ
ij ðrÞ,

�u
ðnÞ
ij ðrÞ ¼

1

2
kBT g

ðnÞ
ij ðrÞ � gobsij ðrÞ

h i ð1Þ

where n stands for the iterative step, i and j represent the
types of a pair of atoms in the protein and the RNA,
respectively. gobsij ðrÞ stands for the pair distribution
function for atom pair ij calculated from the experimen-
tally observed protein–RNA complex structures in the
training set:

gobsij ðrÞ ¼
1

K

XK
k¼1

gk�ij ðrÞ ð2Þ

where K is the total number of the protein–RNA
complexes in the training data set and gk�ij ðrÞ is the pair
distribution function of the k-th native complex structure
(50,56,58,59). The g

ðnÞ
ij ðrÞ is the pair distribution function

calculated from the ensemble of the binding modes
according to the binding score-dependent Boltzmann
probabilities Pl

k (50) that are predicted with the trial
potentials fu

ðnÞ
ij ðrÞg at the n-th step.

g
ðnÞ
ij ðrÞ ¼

1

K

XK
k¼1

XL
l¼0

Pl
kg

kl
ij ðrÞ ð3Þ

where gklij ðrÞ is the pair distribution function for atom pair
ij observed in the l-th binding state of the k-th protein–
RNA complex (50,56). fu

ðn+1Þ
ij ðrÞg are the improved poten-

tials from fu
ðnÞ
ij ðrÞg after the correction and are used in the

next iterative step. Without loss of generality, kBT was set
to unit 1 in the iterations.

Theoretically, g
ðnÞ
ij ðrÞ can be calculated from an ensemble

of binding modes generated by Monte Carlo (MC)
simulations with the potentials fu

ðnÞ
ij ðrÞg at each iterative

step. However, given the large number of complexes and
atoms therein, running MC simulations to sample a
complete set of binding modes at each cycle would be
computationally impractical. Therefore, an ensemble of
globally sampled binding orientations is pre-generated
for the iteration process. Specifically, to avoid any bias,
the third-party docking software ZDOCK 2.1 (30) was
used to generate a set of possible binding modes.
ZDOCK 2.1 uses a basic shape complementarity scoring
function. All the default parameters of ZDOCK 2.1 were
used during docking. A total of 2000 binding modes were
generated by default.

Next, a simplex optimization (60) was performed to
remove atomic clashes in the binding modes sampled
by ZDOCK 2.1 by using a van der Waals (VDW)
scoring function. The top 1000 binding modes based on
the VDW scores plus one native structure were used as
the structural ensemble for the whole iteration procedure.

Then, for a given set of initial potentials fu
ð0Þ
ij ðrÞg,

u
ð0Þ
ij ðrÞ ¼

wijðrÞ forhydrogen-bondpairs

vijðrÞe
�vijðrÞ+wijðrÞe

�wijðrÞ

e�vij ðrÞ+e�wij ðrÞ
otherwise

8<
:

ð4Þ

where vijðrÞ is the 6-12 VDW potential and
wijðrÞ � �kBT ln gobsij ðrÞ is the potential of mean force
(56). The first iterative step will lead to an improved set
of pair potentials fu

ð1Þ
ij ðrÞg via the Equation (1), followed by

fu
ð2Þ
ij ðrÞg, fu

ð3Þ
ij ðrÞg and so on in the following steps. The it-

eration continues until all the native binding structures
were discriminated from the decoys by the current
potentials.
The final set of pair potentials were treated with the

following smoothing algorithm to account for statistical
fluctuations in the experimentally determined structures in
the training set: The potential at the i-th bin was set to the
weighted average of 1:2:4:2:1 of the potentials from bins
ði� 2Þ to ði+2Þ.
In this study, only heavy atoms were considered and the

effects of hydrogens were implicitly incorporated in the
potentials. The categorization for the protein atom types
is the same as in our previous study for ITScorePP (56),
giving 20 atom types. The categorization for the RNA
atom types was based on our method for ITScore (58),
yielding 12 atom types (Table 1). The VDW radii and well
depths for the calculation of the initial potentials were
taken from (56). The radius of the reference sphere used
for pair distribution function calculations was set as 12 Å.
The bin size �r for the distance was set at 0.2 Å. The
cutoff distance rcut of the potentials for binding score cal-
culations was set to 10 Å, as the potentials approach zero
at this distance (Figure 1). The maximum penalty for the
potentials at short distances was set 100 kcal/mol unless
otherwise specified.

Test sets for validating ITScore-PR

In this study, we have used four test sets that were
constructed by different groups using different algorithms
to test the performance of ITScore-PR on identification of
near native binding modes for both bound and unbound
docking.

The ROSETTA docking decoys prepared by the Varani
Group
This test set consists of five protein–RNA complexes
(PDB codes: 1CVJ, 1EC6, 1FXL, 1JID and 1URN). For
each complex, 2000 binding decoys were generated by
Chen et al. in the Varani Group (9) using the protein–
protein docking module (61) of ROSETTA to test their
knowledge-based potentials (9,10), in which the RNA
molecule was treated as a rigid body and the protein
backbone was also fixed. The rigid RNA molecule was
first perturbed around the binding site on the protein,
followed by a protein side chain repacking and optimiza-
tion for each relative translation and orientation of the
two partners. This set is regarded as a semi-unbound (or
semi-bound) test set because the decoys generated from
this protocol include both rigid (i.e. the RNA and
protein backbones) and flexible (i.e. the side chains)
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components. The final decoys cover a wide range of root
mean square deviation (RMSD) values from 0.2 Å to
�30 Å relative to the corresponding native complexes.

Protein–RNA docking benchmark constructed by Huang
and Zou
The second test set for this study is the protein–RNA
docking benchmark 1.0 (49) that we recently developed
(http://zoulab.dalton.missouri.edu/RNAbenchmark/).
Briefly, the benchmark contains 72 diverse targets of
protein–RNA complex structures. Each target includes
both the bound structures and unbound structures of the
protein and the RNA. The unbound structure is defined as
a structure in free form or being a binding partner in a
different complex. In addition, following the sequence
alignment, a residue mapping between the bound and
unbound structures was obtained for both the protein

and the RNA, respectively. Based on the residue
mapping, a second set of mapped bound and unbound
structures was created by removing the mismatched
residues in the alignments from the original structure
files. The mapped bound and unbound structures are im-
portant for binding mode quality assessment. The bench-
mark also contains other useful information, such as the
interface RMSD between the bound complex and the
unbound complex after optimal superimposition and the
percentage of native contacts of the unbound complex
compared with the bound complex. The information
provides the benchmark users a clear picture about the
degree of conformation changes on RNA binding.
Detailed description about the benchmark can be found
in our protein–RNA benchmark paper (49). This bench-
mark was used for bound and unbound docking tests in
the present study.

Table 1. List of 20 protein atom types and 12 RNA atom types used in ITScore-PR, in which ‘*’ stands for any residue name of proteins

Numbers Symbol Atom name

Protein
1 C2+ ARG_CZ
2 C2- ASP_CG, GLU_CD
3 C2M *_C
4 C2S ASN_CG, GLN_CD
5 Car HIS_CD2, HIS_CE1, HIS_CG, PHE_CD1, PHE_CD2, PHE_CE1, PHE_CE2, PHE_CG, PHE_CZ,

TRP_CD1, TRP_CD2, TRP_CE2, TRP_CE3, TRP_CG, TRP_CH2, TRP_CZ2, TRP_CZ3,
TYR_CD1, TYR_CD2, TYR_CE1, TYR_CE2, TYR_CG, TYR_CZ

6 C3C ALA_CB, ARG_CB, ARG_CG, ASN_CB, ASP_CB, GLN_CB, GLN_CG, GLU_CB, GLU_CG,
HIS_CB, ILE_CB, ILE_CD1, ILE_CG1, ILE_CG2, LEU_CB, LEU_CD1, LEU_CD2, LEU_CG,
LYS_CB, LYS_CD, LYS_CG, MET_CB, PHE_CB, PRO_CB, PRO_CG, THR_CG2, TRP_CB,
TYR_CB, VAL_CB, VAL_CG1, VAL_CG2

7 C3A *_CA
8 C3X ARG_CD, CYS_CB, LYS_CE, MET_CE, MET_CG, PRO_CD, SER_CB, THR_CB
9 N2N ALA_N, ARG_N, ASN_N, ASP_N, CYS_N, GLN_N, GLU_N, GLY_N, HIS_N, ILE_N, LEU_N,

LYS_N, MET_N, PHE_N, PRO_N, SER_N, THR_N, TRP_N, TYR_N, VAL_N
10 N2+ ARG_NH1, ARG_NH2
11 N2X ASN_ND2, GLN_NE2
12 Nar HIS_ND1, HIS_NE2, TRP_NE1
13 N21 ARG_NE
14 N3+ LYS_NZ
15 O2M *_O
16 O2S ASN_OD1, GLN_OE1
17 O3H SER_OG, THR_OG1, TYR_OH
18 O2- ASP_OD1, ASP_OD2, GLU_OE1, GLU_OE2
19 S31 CYS_SG
20 S30 MET_SD

RNA
1 C2X C_C2, G_C6, U_C2, U_C4
2 Car C_C4, C_C5, C_C6, G_C2, U_C5, U_C6, A_C2, A_C4, A_C5, A_C6, A_C8, G_C4, G_C5, G_C8
3 C3X A_C1’, A_C2’, A_C3’, A_C4’, A_C5’, C_C1’, C_C2’, C_C3’, C_C4’, C_C5’, G_C1’, G_C2’, G_C3’,

G_C4’, G_C5’, U_C1’, U_C2’, U_C3’, U_C4’, U_C5’
4 N2N C_N1, G_N1, U_N1, U_N3
5 N2X A_N6, C_N4, G_N2
6 Nar C_N3, G_N3, A_N1, A_N3, A_N7, G_N7
7 N21 A_N9, G_N9
8 O2 C_O2, G_O6, U_O2, U_O4
9 O31 A_O2’, C_O2’, G_O2’, U_O2’
10 O32 A_O3’, A_O4’, A_O5’, C_O3’, C_O4’, C_O5’, G_O3’, G_O4’, G_O5’, U_O3’, U_O4’, U_O5’
11 O2- A_OP1, A_OP2, C_OP1, C_OP2, G_OP1, G_OP2, U_OP1, U_OP2
12 P A_P, C_P, G_P, U_P
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Protein–RNA docking benchmark constructed by
Perez-Cano et al
The third test set is the protein–RNA docking benchmark
constructed by Perez-Cano et al. in the Fernandez-Recio
Group using a different set of rules (http://life.bsc.es/pid/
protein-rna-benchmark/) (48). The authors strictly con-
sidered only the structures in free form as unbound struc-
tures, except for pseudo-unbound RNA structures that are
bound to a nonhomologous protein because of the limited
number of free RNA structures in the PDB. For the cases
with no unbound structures available, the authors used
modeled structures that were built based on the homolo-
gous templates with a sequence identity of � 35 % for
proteins and � 70 % for RNA. By including the
modeled structures, the benchmark contains a large set,
with 106 cases. Among them, 71 cases have both bound
and unbound experimentally determined structures, and
the remaining 35 cases have at least one of the unbound
structures modeled by homology. To remove the overlap
between this benchmark and our training set, we excluded
the homologous test cases with sequence identity >30%
for the proteins and >70% for the RNA molecules with
respect to the protein–RNA complexes in our training set.
This process reduced the number of the test cases to 78.
We further removed five cases of biological assembly and
one case in which the RNA residues are swapped between
the target and template structures. A final set of 72
protein–RNA test cases were obtained, as described in
Section ‘Test on the protein–RNA docking benchmark
prepared by Perez-Cano et al.’ and Supplementary
Table S9. The test set served as an assessment of
ITScore-PR with the structures prepared by different
rules and protocols.

The RPDOCK docking decoys prepared by Huang et al
This test set consists of two sets of decoys that were
generated by Huang et al. in the Xiao Group using their
RPDOCK program (62). The first decoy set was con-
structed based on the protein–RNA docking benchmark
by Perez-Cano et al. (48), and the second set was based on
the protein–RNA docking benchmark by Huang and Zou
(49) (Supplementary Table S2). Specifically, first, the
authors used the RPDOCK program to generate the

binding decoys based on the unbound/modeled structures
in the benchmarks. Only those test cases with at least one
near-native poses in the top 1000 decoys were kept, where
the near-native pose was defined as the pose with an
RMSD of the RNA molecule <10 Å compared with the
corresponding native complex after the superimposition of
the proteins. This protocol resulted in 43 test cases for the
decoy set based on the benchmark by Perez-Cano et al.
(48), and 50 test cases for the decoy set based on the
benchmark by Huang and Zou (49). These two decoy
sets were also used in the present study to assess
ITScore-PR on the structures generated from different
docking protocols.

Criteria for the assessment of the prediction quality

The assessment of the prediction quality was based on
three parameters that were used in CAPRI: fnat, Lrmsd

and Irmsd (42,63–65). fnat stands for the percentage of
native residue–residue contacts in the predicted binding
mode relative to the total residue contacts in the crystal
structure. Here, a contact is defined as a pair of residues
whose nearest atom pair is within 5.0 Å. Lrmsd is the ligand
(RNA) RMSD between the predicted binding mode and
the native structure after the corresponding receptors
(proteins) are optimally superimposed. Irmsd is the
RMSD of the interface region between the predicted
binding complex and the native structure after optimal
superimposition. Here, the interface is defined as the con-
tacting residues in the native protein–RNA structure that
are within 10 Å and belong to different binding partners.
In the evaluation, all the superimpositions and RMSD
calculations were based on Ca atoms for proteins and
C4

0

atoms for RNA molecules, unless otherwise specified
(49).
According to the above three parameters, the prediction

quality is classified into four categories: high accuracy,
medium accuracy, acceptable accuracy and incorrect pre-
diction. Details are explained in our previous study (56) or
the CAPRI analysis papers (63,64). In the present work,
we defined that the binding mode of a protein–
RNA complex is successfully predicted if the best-scored
(i.e. the top) RNA orientation has at least acceptable
accuracy. This criterion is the default success criterion
unless otherwise specified.

RESULTS AND DISCUSSION

Extracted effective pair potentials

Using the 1001 binding modes (1000 decoys plus one
native structure) for each of the 110 protein–RNA
complexes in the training set, we have extracted the effect-
ive pairwise potentials for protein–RNA interactions with
our statistical mechanics-based iterative method. The 20
protein atom types and 12 RNA atom types, which are
listed in Table 1, may result in 240 different pairs. The
number of occurrences within the reference sphere (see
‘Materials and Methods’ section) depends on the pair of
protein and RNA atom types, as shown in Supplementary
Table S3. For example, the number of occurrences
was 163 501 for C3C-C3X, and 33 528 for Car-Car.
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Figure 1. Two example pair potentials for ITScore-PR.
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To guarantee sufficient statistics, only the atom type pairs
with >1000 occurrences were retained, resulting in 206
pairs of effective interaction potentials out of 240
possible pairs. The iteration process was efficient and
normally converged within 10 cycles, as shown in
Supplementary Figure S1. Supplementary Figure S1
shows two example pairwise potentials. Several notable
features can be found in the potentials and are consistent
with experimental findings. For the atom pair Car–Car,
the potential curve exhibits an energy minimum at �3.6 Å,
representing the hydrophobic interaction between the
atom pair. For the atom pair N+–O�, the energy
minimum occurs at �2.8 Å, which is consistent with the
corresponding hydrogen-bonding interaction. The more
favorable (negative) potential for the N+–O� pair is due
to the attractive electrostatic interaction between these
two oppositely charged atom types in addition to the
hydrogen-bonding interactions.

Test on the ROSETTA docking decoys

The derived ITScore-PR was evaluated on each of the
ROSETTA decoys generated by Chen et al. (9) in the
Varani Group. Figure 2 shows the score-RMSD plots
for the five test cases. It can be seen from the figure
that all of the native structures were identified, which
were associated with the lowest ITScore-PR scores with re-
spect to the decoys. To quantify the ability of ITScore-PR
to identify near-native protein–RNA structures, we
calculated the score-RMSD correlation coefficients for
the decoys with RMSD <5 Å, <10 Å and <20 Å, respect-
ively. The results are listed in Supplementary Table S4.
For references, we calculated the corresponding
correlation coefficients for dRNA, a knowledge-based
scoring function from the Zhou Group (14). We also
took the correlation results of four other knowledge-
based scoring functions from the study by Tuszynska
and Bujnicki (45): DARS-RNP and QUASI-RNP by
Tuszynska and Bujnicki (45), the potentials derived by
the Varani Group (10) and the potentials derived by the
Fernandez-Recio Group (11). It can be seen from the table
that there exist strong score-RMSD correlations for
ITScore-PR, dRNA, DARS-RNP and QUASI-RNP,
with an average correlation coefficient of � 0:8 for all
the RMSD ranges. Compared with other scoring

functions, ITScore-PR performed relatively better on the
test case 1URN, with the correlations of 0.84, 0.89 and
0.84, followed by DARS-RNP with the correlations of
0.77, 0.83 and 0.81, when the decoys of RMSD <5 Å,
<10 Å and <20 Å were considered, respectively. Overall,
ITScore-PR performed slightly better (correlations of
0.86, 0.89 and 0.84 for RMSD <5 Å, <10 Å and <20 Å,
respectively), followed by dRNA (0.81, 0.88 and 0.86),
DARS-RNP (0.81, 0.88 and 0.85) and QUASI-RNP
(0.80, 0.87 and 0.84). The respective correlations were
0.53, 0.47 and 0.39 for the Varani potential, and 0.23,
0.35 and 0.38 for the Fernandez potential. In summary,
ITScore-PR is able to identify the near-native structures
by achieving strong score-RMSD correlations for all the
five test cases of the ROSETTA docking decoys.

Test on the protein–RNA docking benchmark prepared by
Huang and Zou

ITScore-PR was also tested for its ability to distinguish near-
native structures from binding decoys with a wide range
of RMSDs using the protein–RNA benchmark of 72
complexes developed by our group (49), for both bound
docking and unbound docking. Here, bound docking
refers to rigid redocking, namely, reproducing the co-
crystalized structure by using individual separated bound
conformations. The advantage for the use of bound orien-
tations is the absence of molecular flexibility so that bound
docking is a direct and essential assessment of a scoring
function. Unbound docking refers to the use of an apo struc-
ture or a conformation taken from a different protein–RNA
complex for docking, following the commonly used defin-
ition in the protein–protein docking field (66,67).

Validation protocol
The validation process is described as follows. First, for
each protein–RNA complex in the test set, 2000 binding
orientations of the RNA molecule were generated globally
relative to the protein for the bound conformations and
unbound conformations, respectively, using the third-
party docking software ZDOCK 2.1 (30). ZDOCK 2.1
uses a simple shape complementarity scoring function
and thus would introduce the least bias toward sampled
conformations. Here, we use bound cases as an example.
Specifically, using the bound conformation of each

Figure 2. The score-RMSD plots of ITSocre-PR for the ROSETTA docking decoys (five complexes) generated by the Varani group (9).
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complex in the test set, the possible orientations were
sampled globally and rigidly via ZDOCK 2.1, and 2000
orientations were kept. The same procedure was repeated
for unbound cases. Considering that ZDOCK 2.1 might
be unable to generate near-native binding orientations in
the 2000 poses, we included the native bound structures
for bound docking and the superimposed unbound struc-
tures for unbound docking for the scoring function assess-
ment. Namely, there are 2001 RNA bound orientations
(i.e. 2000 bound decoys plus one native pose) and 2001
RNA unbound orientations (i.e. 2000 unbound decoys
plus one superimposed unbound structure). These 2001
RNA bound (or unbound) decoys were then evaluated
with ITScore-PR, during which the simplex algorithm
(60) was used to optimize the ITScore-PR scores. The
refined decoys by ITScore-PR covered the whole protein
surface and included a certain number of near-native hits
in all the bound cases and in most of the unbound cases
(see Supplementary Table S5 and Figures S2 and S3),
which may serve as a useful decoy set for scoring
function assessment on protein–RNA docking. Lastly,
for each complex, all the orientations were ranked accord-
ing to their ITScore-PR scores and clustered based on
their RMSD distances. If two orientations have an
RMSD of <5 Å for the heavy atoms in the RNA
molecule, only the orientation with a lower ITScore-PR
score was kept. For consistency, the same clustering
strategy was also applied to the ranked orientations
during the calculations of the success rates for other
scoring functions being tested in this study.

The bound cases
Figure 3 shows the success rates of bound docking as a
function of the number of the top RNA orientations
ranked by ITScore-PR (referred to as top predictions)
based on the CAPRI criteria (63). For validation
purpose, the results of five other scoring functions,
dRNA (14), DARS-RNP, QUASI-RNP (45), ZDOCK
2.1 (30) and pure PMF, are also listed in the figure.
ZDOCK 2.1, which was originally developed for

protein–protein docking, is approximated as a shape com-
plementary-based scoring function for protein–RNA
docking. The pure PMF refers to the traditional approxi-
mation of the reference state by randomly mixing all the
atoms in the training set. It can be seen from the figure
that ITScore-PR shows significantly better performance in
binding mode prediction and yielded a success rate of
86.1% if only the top ranked orientation was considered,
compared with 69.4% for dRNA, 51.4% for DARS-RNP,
37.5% for QUASI-RNP, 40.3% for ZDOCK 2.1 and
23.6% for PMF (Supplementary Figure S4). If the top
10 ranked orientations were considered, ITScore-PR
achieved a success rate of 94.4%, compared with 79.2%
for both dRNA and DARS-RNP, 68.1% for QUASI-
RNP, 65.3% for ZDOCK 2.1 and 46.2% for PMF
(Supplementary Figure S4).
To analyze the accuracy of ITScore-PR in more details,

we also examined the accuracy qualities and the rankings
of the first successful predictions for the benchmark of 72
bound cases. As shown in Supplementary Table S6, most
of the successful binding modes predicted by ITScore-PR
were high-accuracy structures according to the CAPRI
criteria and were ranked as No. 1, whereas the other
scoring functions yielded relatively less accurate modes
(i.e. more models with medium or acceptable accuracy)
and lower rankings for the best successful predictions.
PMF was even unable to predict any successful binding
modes for two bound cases (Supplementary Table S6).

The unbound cases that include homologous unbound
structures
Next, ITScore-PR was assessed using the ‘unbound’ cases
of these 72 complexes in which at least one partner of each
complex has a nonnative structure (i.e. either an apo struc-
ture or a structure taken from a different protein–RNA
complex) (49), following the definition used in the protein–
protein docking field (66,67). Some of these ‘unbound’
structures are homologous to the corresponding bound
structures. Unbound docking is considered to be a realistic
assessment for a scoring function because of the involve-
ment of conformational changes and uncertainties in
structural modeling. Current docking algorithms are still
not sophisticated enough to accurately handle molecular
flexibility during docking calculations. Therefore, scoring
functions should be robust enough to be able to implicitly
account for partial induced conformational changes
without much sacrifice of its accuracy to make reasonable
binding mode predictions. To this end, softer pairwise po-
tentials were introduced for ITScore-PR for unbound
docking. Namely, the potential penalty at short distances
was reduced to 10 kcal/mol, allowing for limited tolerance
on severe atomic clashes between the protein and the
RNA during unbound docking.
Figure 4a shows a comparison of the success rates of

ITScore-PR and five other scoring functions (dRNA,
DARS-RNP, QUASI-RNP, ZDOCK 2.1 and PMF) for
the unbound cases of the 72 protein–RNA targets. When
the top ranked orientation was considered, ITScore-PR
and dRNA yielded the same success rate with 36.1%,
compared with 27.8% for DARS-RNP, 23.6% for both
QUASI-RNP and ZDOCK 2.1 and 11.1% for PMF

Figure 3. The success rates of ITScore-PR and five other scoring func-
tions (dRNA, DARS-RNP, QUASI-RNP, ZDOCK 2.1 and PMF) as a
function of the number of top ranked orientations for the bound test
cases of the 72 complexes in the protein–RNA docking benchmark by
Huang and Zou (49).
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(Supplementary Figure S5a). When the top 10 predictions
were considered, the success rate of ITScore-PR increased
to 55.6%, compared with 51.4% for dRNA, 47.2% for
DARS-RNP, 41.7% for QUASI-RNP, 38.9% for
ZDOCK 2.1 and 26.4% for PMF (Supplementary
Figure S5a).
Figure 5 shows the predicted binding modes for three

example unbound docking cases; each case belongs to a
different difficulty category in the protein–RNA docking
benchmark (49). It can be seen from the figure that
ITScore-PR gave high-accuracy predictions for 1QTQ
(‘easy target’), with Lrmsd ¼ 0:811 Å, Irmsd ¼ 0:405 Å and
fnat ¼ 0:965. ‘Medium target’ 2ZZM was predicted
at medium accuracy, with Lrmsd ¼ 2:266 Å, Irmsd ¼ 1:729
Å and fnat ¼ 0:740. Even for the ‘difficult target’ 1H3E,
ITScore-PR was still able to achieve a medium-accuracy
prediction (fnat ¼ 0:571) and recognized the flexible
C-terminal domain of the tyrosyl-tRNA synthetase.
Remarkably, this domain flips its orientation with an
RMSD as large as 25.87 Å (see Figure 5c) and plays a
crucial role in the recognition of tRNAtyr (68).
We also analyzed the accuracy qualities and rankings of

the first successful predictions for the 72 unbound cases of
the benchmark (Supplementary Table S7). Similar to the
bound cases, ITScore-PR yielded relatively higher
accuracy predictions and lower rankings for the first pre-
dicted successful modes than the other scoring methods
like ZDOCK2.1 and PMF, even though the improvement
is relatively less than bound docking because of the effect
of molecular flexibility.

The unbound cases in which homologous unbound
structures are excluded
To further test ITScore-PR, we created a subset of ‘truly’
unbound cases from the 72 protein–RNA complexes in
our protein–RNA docking benchmark by removing
those homologous unbound cases. Here, ‘truly’ unbound
cases are defined as the cases in which at least one of the
binding partners is a ‘truly’ unbound structure, either in
the free form or bound to an RNA (or a protein) that has
a sequence identity of <70% (or <30%) compared with

the RNA (or the protein) in the corresponding native
complex. We ended with 50 truly unbound test cases out
of the original 72 cases (Supplementary Table S8).

Figure 4b shows the success rates of ITScore-PR,
dRNA, DARS-RNP, QUASI-RNP, ZDOCK 2.1 and
PMF for these 50 truly unbound cases. A similar trend
of performance can be found as compared with Figure 4a,
despite the decrease of the success rates for all the scoring
functions. If the top ranked orientation was considered,
ITScore-PR tied with dRNA, both having a success rate
of 24%, compared with 16% for DARS-RNP, 14% for
QUASI-RNP, 14% for ZDOCK 2.1 and 6% for PMF
(Supplementary Figure S5b). If the top 10 predictions
were considered, the success rate of ITScore-PR increased
to 46%, compared with 44% for dRNA, 38% for
DARS-RNP, 32% for both QUASI-RNP and ZDOCK
2.1 and 16% for PMF (Supplementary Figure S5b).

The success rates are lower for the subset of truly
unbound cases than for the original set of 72 complexes
(Figure 4) are expected because homologous complexes
tend to adopt similar conformations. In other words, the
unbound structures that are taken from the homologous
complexes would be closer to the native bound conform-
ations and therefore make the corresponding unbound test
cases easier for prediction.

The similar performance of ITScore-PR and dRNA on
the unbound test cases as shown in Figure 4 may be par-
tially attributed to the facts that both scoring functions are
knowledge-based and have been optimized by addressing
the reference state issue. ITScore-PR circumvents the
reference state problem via an iterative method and
dRNA improves the reference state approximation by
introducing a volume correction. In addition, the decoys
prepared by using ITScore-PR are optimized and contain
no atomic clashes, which excludes close atomic contacts
and may help the performance of the reference state-based
scoring functions including dRNA. Regarding the differ-
ences, for bound docking, ITScore-PR would achieve a
significantly higher success rate than dRNA. For general
unbound cases, ITScore-PR performed slightly better than
dRNA when only a few top conformations were

(a) (b)

Figure 4. The success rates of ITScore-PR and five other scoring functions (dRNA, DARS-RNP, QUASI-RNP, ZDOCK 2.1 and PMF) as a
function of the number of top ranked orientations for (a) all the unbound cases in which homologous unbound structures are included (72
complexes), and (b) the ‘truly’ unbound test cases of the 50 complexes from the protein–RNA docking benchmark by Huang and Zou (49). The
details are explained in the text.
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considered (also see the following subsections). It is noted
that all these unbound studies treated the molecular flexi-
bility implicitly. It would be interesting for future studies
to make comparative assessment of the performances of
these scoring functions when they are combined with good
conformational sampling algorithms that are able to
handle conformational changes properly.

Test on the protein–RNA docking benchmark prepared by
Perez-Cano et al

ITScore-PR was further tested on the 72 complexes from
the protein–RNA docking benchmark constructed by

Perez-Cano et al. (48), which contain no complexes that
are homologous to the complexes in our training set. We
used the same decoy generation method and validation
protocol as described in the previous section. Only the
unbound/model cases were studied for this set. Figure 6
shows the success rates of ITScore-PR as a function of the
number of top predictions. The corresponding rankings
and accuracy qualities of the first successful predictions
were listed in Supplementary Table S9. For comparison,
the success rates of five other scoring methods, dRNA,
DARS-RNP, QUASI-RNP, ZDOCK 2.1 and PMF,
were also plotted in Figure 6. It can be seen from the

Figure 5. The comparison between the predicted complex (protein: light blue, RNA: yellow) and experimentally determined crystal structure
(protein: red, RNA: cyan) of three selected unbound test cases: (a) 1QTQ (Lrmsd ¼ 0:811 Å, Irmsd ¼ 0:405 Å and fnat ¼ 0:965), (b) 2ZZM
(Lrmsd ¼ 2:266 Å, Irmsd ¼ 1:729 Å and fnat ¼ 0:740) and (c) 1H3E (Lrmsd ¼ 62:991 Å, Irmsd ¼ 21:279 Å and fnat ¼ 0:571).

PAGE 9 OF 12 Nucleic Acids Research, 2014, Vol. 42, No. 7 e55

3.4 
-
-
,
 [48]
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gku077/-/DC1


figure that if the top few predictions were considered,
which is often the case in realistic applications, ITScore-
PR yielded higher success rates than the other five scoring
functions. If the top prediction was considered, ITScore-
PR performs significantly better with a success rate of
22.2%, compared with 13.9% for dRNA, 15.3% for
DARS-RNP, 11.1% for QUASI-RNP, 8.3% for
ZDOCK 2.1 and 6.9% for PMF (Supplementary Figure
S6). If the top 10 predictions were considered, both
ITScore-PR and dRNA obtain a good success rate of
�40% that is significantly higher than DARS-RNP
(26.4%), QUASI-RNP (22.2%), ZDOCK 2.1 (20.8%)
and PMF (15.3%) (see Supplementary Figure S6).

Test on the RPDOCK docking decoys

Xiao and coworkers constructed two decoy sets using their
RPDOCK docking protocol (62). The first set was based
on the 43 unbound test cases in the protein–RNA bench-
mark by Perez-Cano et al. (48), and the second set was
based on the 50 unbound cases in the protein–RNA
benchmark by Huang and Zou (49). To make the results

comparable, we adopted the same criterion used in (62) to
measure the success of predictions for this test.
Specifically, a decoy is defined as a successful prediction
if the RMSD of the RNA molecule is <10 Å from the
native structure after the superimposition of the
proteins. Neither did we cluster the scored decoys by
ITScore-PR so that our results can be directly compared
with the results in (62).

Figure 7 shows the success rates of ITScore-PR for the
two decoy sets. For comparison, the figure also shows the
results of four other scoring methods that were computed
by the Xiao group (62): RPDOCK, DARS-RNP (45), the
potentials derived by Li et al. in the Wang Group (46) and
DECK-RP (62,69). The figure displays similar trend that
is observed in the aforementioned tests. ITScore-PR
showed the best overall performance, especially when
only the top few predictions were considered, which is
often the case in realistic applications (Figure 7a and b).
Specifically, for the docking decoys based on the bench-
mark of Perez-Cano et al. (48), ITScore-PR achieved
a success rate of 25.6% (46.5%), compared with
22.7% (45.5%) for DECK-RP, 13.6% (36.4%) for
DARS-RNP, 15.9% (27.3%) for the Li potential and
4.6% (27.3%) for RPDOCK if the top one prediction
was considered (numerals in brackets indicate success
rate for top 10 predictions; Supplementary Figure S7a).
For the docking decoys based on the benchmark by
Huang and Zou (49), ITScore-PR achieved a success
rate of 48% (62%) versus 32% (52%) for DECK-RP,
38% (54%) for DARS-RNP, 10% (32%) for the Li po-
tential and 26% (40%) for RPDOCK if the top one pre-
diction was considered (numerals in brackets indicate
success rate for top 10 predictions; Supplementary
Figure S7b).

CONCLUSION

In summary, we have developed an efficient scoring
function for protein–RNA interactions based on a
training set of diverse protein–RNA complex structures
using a statistical mechanics-based iterative method,

(a) (b)

Figure 7. The success rates of ITScore-PR and four other scoring functions (DECK-RP, DARS-RNP, the Li potential and RPDOCK) as a function
of the number of top ranked orientations for the RPDOCK docking decoys based on (a) the 43 test cases in the protein–RNA docking benchmark
by Perez-Cano et al. (48) and (b) the 50 test cases in the protein–RNA docking benchmark by Huang and Zou (49).

Figure 6. The success rates of ITScore-PR and five other scoring func-
tions (dRNA, DARS-RNP, QUASI-RNP, ZDOCK 2.1 and PMF) as a
function of the number of top ranked orientations for the unbound test
cases of the 72 complexes from the protein–RNA docking benchmark
by Perez-Cano et al. (48).
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referred to as ITScore-PR. Our scoring function has been
extensively assessed on its ability of identifying near-native
structures on four different types of diverse test sets,
compared with 10 other scoring methods. Overall,
ITScore-PR showed a success rate as high as 86.1%
(94.4%) for bound docking and 24% (46%) for (truly)
unbound docking if the top one (10) prediction(s) was
(were) considered. The fact that ITScore-PR performs
much better for bound docking than for unbound
docking indicates the necessity to consider molecular flexi-
bility to further improve the discriminative power of
ITScore-PR on selecting near-native structures. The
scoring function can be used stand-alone or combined
with other molecular docking software for protein–RNA
recognition.

AVAILABILITY

The bound and unbound docking decoy sets that were
generated and optimized in this study using ITScore-PR
for the 72 complexes in our protein–RNA docking bench-
mark are free to download at http://zoulab.dalton.
missouri.edu/RNAdecoys.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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