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a b s t r a c t 

The primary cilium, an organelle that transduces extracellular signals important for development and 

tissue homeostasis, is typically assembled upon cell cycle exit and disassembled upon cell cycle re- 

entry. Cilium assembly is thought to be suppressed in cycling cells, however the extent of suppression 

is not clear. For example, primary cilia are present in certain proliferating cells during development, 

and a period of reciliation has been reported to occur in late G1 in murine 3T3 cells released from

serum starvation-induced quiescence. Human retinal pigmented epithelial (hTERT-RPE1; herein, RPE1) 

cells are commonly used to investigate pathways regulating cilium disassembly, however the ciliary 

disassembly profile of these cells remains uncertain. A period of reciliation has not been observed. Here, 

we analyse the ciliary disassembly profile of RPE1 cells by immunofluorescence microscopy. The results 

suggest a profile similar to 3T3 cells, including a period of reciliation in late G1 and a second wave of

deciliation in S phase. We present evidence that arresting cells in early S phase with hydroxyurea or 

excess thymidine prevents the second wave of deciliation, and that deciliation is initiated shortly after 

release from a thymidine block, consistent with coupling to DNA replication. These findings support 

the often overlooked notion that cilium formation can occur in late G1, and suggest that RPE1 cells 

could serve as a model system for studying the molecular pathways that direct this process, in addition 

to those that stimulate cilium disassembly. We also present immunofluorescence data indicating that 

cyclin B1 localises to primary cilia. 
C © 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical 

Societies. All rights reserved. 
. Introduction 

The primary cilium is a membrane-bound microtubule-based or- 

anelle that projects from the cell surface and has key roles in trans- 

ucing signals from the extracellular environment. Disruption of pri- 

ary cilium structure or function is thought to underlie many of the 

linical features of numerous human genetic disorders, reflecting both 

he widespread tissue distribution of this organelle and its involve- 

ent in signalling pathways required for normal development and 

issue homeostasis [ 1 ]. Cilium assembly and disassembly are coordi- 

ated with the cell cycle by mechanisms that remain incompletely 
 This is an open-access article distributed under the terms of the Creative Commons 

ttribution-NonCommercial-ShareAlike License, which permits non-commercial use, 

istribution, and reproduction in any medium, provided the original author and source 

re credited. 
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understood. These mechanisms are of considerable interest because 

of their importance for the cell’s responsiveness to external signals, 

and because their deregulation could also disrupt mitosis [ 2 ]. 

Primary cilia are typically formed upon cell cycle exit and disas- 

sembled upon cell cycle re-entry [ 2 ]. Pathways that suppress ciliogen- 

esis in cycling cells appear to exist [ 3 –5 ]. However, the presence or 

formation of primary cilia is not restricted to quiescent or terminally 

differentiated cells [ 6 ]. For example, early studies using murine 3T3 

fibroblasts revealed that, following release from serum starvation- 

induced quiescence and the accompanying rapid disassembly of cilia, 

a wave of reciliation occurred in late G1, followed by deciliation cou- 

pled to DNA synthesis [ 7 , 8 ]. In hamster BHK 21 / C13 fibroblasts, pri- 

mary cilia are lost some time between the end of S phase and early 

prophase, and can begin to reappear soon after the completion of mi- 

tosis [ 9 ], while PtK1 (rat kangaroo kidney epithelial) cells appear to 

remain ciliated until early mitosis [ 10 ]. Primary cilia are also present 

in highly proliferative cells during vertebrate development, for ex- 

ample in the neural tube [ 11 ] and limb bud [ 12 ], consistent with 

involvement in sensing and processing morphogenetic signals. 

Primary cilia are not normally present during mitosis, possibly 
f European Biochemical Societies. All rights reserved. 
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because the mature (mother) centriole of the centrosome, which nu-

cleates cilium formation and in the process attaches to the cell mem-

brane, needs to be liberated to fulfil its role in spindle formation.

Activation of the mitotic kinase AurA (Aurora kinase A) at the base

of cilia has been implicated in triggering cilium disassembly at the

G2 / M transition [ 13 ]. Surprisingly, AurA was also shown to be tran-

siently activated during the G0 / G1 transition, and to be required for

cilium disassembly at this time [ 13 ]. Several other factors have been

implicated in stimulating cilium disassembly at the G0 / G1 transition,

including Plk1 (polo-like kinase 1), Dvl2 (Dishevelled 2), TcTex-1 and

Pifo (Pitchfork) [ 14 –17 ]. In comparison, the possibility that a period

of cilium assembly occurs in late G1 [ 7 ], has received little attention. 

It has recently been reported that depletion of factors that promote

cilium disassembly, including AurA, impairs cell cycle re-entry and

possibly S phase entry, specifically in cells able to form cilia [ 14 , 18 ].

These reports suggest that cilium disassembly must be initiated to

allow cell cycle re-entry and the G1 / S transition. Notably, in addition

to promoting cilium disassembly, AurA has been implicated in sup-

pressing ciliogenesis in cycling cells, in conjunction with trichoplein

[ 3 ]. Depletion of either protein led to cilium formation and G0 / G1

arrest, consistent with the idea that cilia act as a brake to prevent

cell cycle progression. However, depletion of two other suppressors

of ciliogenesis, Cep97 and CP110, has been reported to induce cilium

formation without G0 / G1 arrest [ 4 ]. Moreover, another study found

that cell cycle re-entry and progression through interphase occurred

normally in AurA-deficient cells, despite a block to cilium disassem-

bly [ 13 ]. Thus, the cilium’s ability to act as a brake on the cell cycle

remains uncertain. 

hTERT-RPE1 (human telomerase-immortalised retinal pigmented

epithelial; herein RPE1) cells are commonly used to study molecular

pathways regulating cilium disassembly, yet the ciliary disassembly

profile of these cells remains uncertain. Two waves of cilium disas-

sembly have been reported to occur, the first associated with cell cycle

re-entry and the second with mitotic entry [ 13 ]. However, other stud-

ies have implied that cilium disassembly is completed before S phase

entry in this cell line [ 18 ], or proceeds gradually over a 24 h period

post-serum (in lentivirus-infected hTERT-RPE cells) [ 15 ]. Reciliation

in G1 has not been observed, and is therefore generally assumed not

to occur. 

Here, we sought to gain a better picture of the ciliary disassem-

bly profile of RPE1 cells in late G1 and during S phase entry, using

immunofluorescence microscopy. The results provide evidence for a

period of reciliation in late G1, and suggest that deciliation is not

required for S phase entry but is coupled to DNA replication. 

2. Results 

2.1. Time course analysis of serum-induced cilium disassembly in RPE1 

cells 

We were interested in the ciliary disassembly profile of RPE1 cells

around the time of S phase entry. To first determine the timing of S

phase entry following release from serum starvation-induced quies-

cence, we fixed cells at various times post-serum and stained them

with an antibody to cyclin B1. We found that detectable levels of cy-

clin B1, indicative of progression into S phase [ 19 ], began to appear

between 14 and 16 h post-serum, and that cells began to enter mitosis

between 20 and 24 h post-serum, based on DAPI staining of nuclear

DNA and cyclin B1 immunostaining ( Fig. 1 A; data not shown). A sim-

ilar timing of S phase entry was obtained using BrdU incorporation to

identify cells undergoing DNA replication ( Fig. 2 A). 

Next, we released cells from serum starvation for 12–20 h and co-

stained them with antibodies to acetylated α-tubulin (to mark cilia

and centrioles) and either cyclin B1 or AurA phosphorylated at posi-

tion T288 (phospho-AurA-T288), a marker of AurA activation [ 20 ]. In
separate experiments, we confirmed that significant deciliation oc-

curred within 2 h of serum addition (data not shown), as reported

previously [ 13 ]. As shown in Fig. 1 B, we found that ciliation increased

between 12 and 17 h post-serum, and decreased between 17 and 18 h

post-serum. A wave of reciliation has been reported to occur in late

G1 in 3T3 cells [ 7 ]. Thus, our data raise the possibility that a similar

event occurs in RPE1 cells. In support of this, we found that cilium

length increased steadily between 12 and 20 h post-serum in cells that

lacked detectable cyclin B1 immunostaining ( Fig. 1 C). This correlation

was not apparent when total cell populations were analysed, proba-

bly due to wider variations in cell cycle stage (data not shown). Cyclin

B1-negative cells were likely in G1 of the first cell cycle post-serum,

because few would have passed through mitosis (and thus lack cy-

clin B1 due to its destruction at the metaphase–anaphase transition)

within 20 h ( Fig. 1 A). We obtained similar results using BrdU incor-

poration as a marker of S phase entry ( Fig. 2 B). It seems reasonable

to assume that most cells negative for BrdU at 12–18 h post-serum

were still in G1 or early S phase, prior to the onset of detectable DNA

replication, since the duration of S phase in human cultured cells is

typically at least 5 h [ 21 , 22 ], and the number of cells incorporating

BrdU first began to rise significantly between 14 and 16 h post-serum

( Fig. 2 A). 

The time course data suggest that the second wave of deciliation

coincides broadly with the appearance of cyclin B1 expression and

BrdU incorporation ( Fig. 1 A, B; Fig. 2 A), and therefore that it begins as

RPE1 cells enter S phase, rather than mitosis. In support of this con-

clusion, analysis of cells fixed at 18 h post-serum, when BrdU incor-

poration peaked, showed that BrdU-positive cells were less likely to

be ciliated, and typically possessed shorter cilia, than BrdU-negative

(presumptive G1) cells ( Fig. 2 C). Collectively, these results suggest

that the ciliary disassembly profile of RPE1 cells closely resembles

that of 3T3 cells, in which a period of reciliation occurs in late G1, fol-

lowed by deciliation coupled to DNA synthesis [ 7 ]. Importantly, this

profile differs from previous analyses of RPE1 cells [ 13 , 15 ]. 

Phospho-AurA-T288 has been detected at the base of shortened

cilia at 2 h post-serum in RPE1 cells, in line with its involvement in

stimulating ciliary resorption at this time [ 13 ]. We were unable to

detect phospho-AurA-T288 at the base of shortened cilia at 18 h post-

serum ( Fig. 3 ). However, we also failed to detect it at 2 h post-serum,

and therefore cannot rule out the possibility that very low levels were

present at the later time point ( Fig. 3 ). We note that, under the same

fixation conditions, relatively low levels of phospho-AurA-T288 were

detectable at centrioles in cells that appeared to be in late G2 (based

on the presence of well-developed procentrioles, prior to centrosome

separation) ( Fig. 3 ). 

2.2. Cells arrested in late G1 or early S phase show high levels of 

ciliation 

To further examine the timing of the second wave of deciliation,

and the preceding period of reciliation, with respect to S phase entry

in RPE1 cells, we arrested cells in either late G1 (using mimosine) or

early S phase (using hydroxyurea or excess thymidine) [ 23 –26 ]. Cells

were released from serum starvation in the presence or absence of

each chemical for 4 or 24 h, then fixed and stained with antibodies

to acetylated α-tubulin and cyclin B1. At 24 h post-serum, cyclin B1

immunostaining was extremely weak or undetectable in mimosine-

treated cells, consistent with G1 arrest, and present at low levels in

HU- and thymidine-treated cells, consistent with early S phase arrest

( Fig. 4 A). It was more intense in most cells treated with serum alone,

or serum plus vehicle, consistent with progression into G2 and M

phase in the absence of cell cycle inhibitors ( Fig. 4 A and data not

shown). Immunoblot analysis of total cellular levels of cyclin B1 and

cyclin A (a second marker of S phase entry [ 27 ]), at 24 h post-serum

corroborated the immunofluorescence data ( Fig. 4 B). 

The first wave of cilium disassembly occurred normally in the
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Fig. 1. Time course analysis of serum-induced cilium disassembly in RPE1 cells. (A) Quantification of cyclin B1-positive and mitotic cells at various time points after release from 

serum starvation, based on immunofluorescence microscopy analysis ( n = 100 cells). (B) Percentage of cells with cilia at 0 and 12–20 h post-serum. Data represent the mean + 

s.e.m. from two independent experiments ( n > 200 cells). (C) Cilium length in cyclin B1-negative cells at 0–20 h post-serum (mean + s.d.; 0–18 h, n = 50; 20 h, n = 24). Examples 

of primary cilia in cells fixed at the indicated times post-serum are shown. Cells were stained with an antibody to acetylated α-tubulin. Bar, 1 μm. 

Fig. 2. Cilium length increases before, and decreases during, DNA replication. (A) Per- 

centage of cells positive for BrdU immunostaining at different times after release from 

serum starvation. BrdU was added 30 min before fixation ( n > 200 cells). (B) Cilium 

length in BrdU-negative (BrdU −) cells at different times after release from serum star- 

vation (mean + s.d.; n = 50). (C) Immunofluorescence analysis of ciliation and cilium 

length with respect to BrdU incorporation status at 18 h post-serum. Examples of 

BrdU − and BrdU + cells are shown. An antibody to acetylated α-tubulin was used to 

mark cilia (arrows); the percentage of ciliated cells in each class is indicated (BrdU −, n 

= 73; BrdU + , n = 82). Quantification of cilium length is shown (mean + s.d.; n = 50; 

P value, unpaired two-tailed t -test). Bar, 5 μm. 
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Fig. 3. Activated AurA is undetectable at the base of shortened cilia during S phase. 

RPE1 cells were released from serum starvation for the indicated times and stained 

with antibodies to AurA phosphorylated at position T288 (Ph-AurA) and acetylated 

α-tubulin. DNA was stained with DAPI. Ph-AurA was not detectable at the base of 

shortened cilia during S phase (18 h post-serum), or during the initial wave of decili- 

ation (2 h post-serum), but became detectable in late G2 phase (24 h post-serum), as 

indicated by the presence of at least one clearly visible, well-developed procentriole 

(less intense dot of acetylated α-tubulin adjacent to the more brightly stained cen- 

triole; both procentrioles were not always clearly visible, most likely due to differing 

orientations of each centriole–procentriole pair). Examples of cells in prophase and 

metaphase are included to show that the conditions used were suitable for detection 

of Ph-AurA. Bar, 10 μm. 
resence of each chemical, as judged by analysis of ciliation and cilium 

ength at 0 and 4 h post-serum ( Fig. 4 C and D). At 24 h post-serum, in

he absence of inhibitors, the level of ciliation was low, as expected 

 Fig. 4 E). In contrast, at 24 h post-serum in the presence of mimosine, 

he level of ciliation was similar to that before serum stimulation 

 Fig. 4 E). Cilium length had also increased compared to the 4 h time 

oint, and was similar to that before serum stimulation ( Fig. 4 F). 

ince mimosine arrests cells in late G1, this result is consistent with 

 period of reciliation occurring in late G1, as suggested by our initial 

ime course data ( Fig. 1 ). 

Somewhat surprisingly, given recent data suggesting that primary 

ilia inhibit S phase entry [ 14 , 18 ], HU- and thymidine-treated cells 

lso displayed high levels of ciliation at 24 h post-serum ( Fig. 4 E). 

he cilia of HU-treated cells were similar in length to before serum 

timulation, while those of thymidine-treated cells were significantly 
longer ( Fig. 4 F). The persistence of cilia in HU- and thymidine-treated 

cells suggests that the second wave of cilium disassembly is initiated 

downstream of S phase entry, since both chemicals cause cell cycle 

arrest by inhibiting DNA synthesis, rather than S phase entry. 

Next, to further investigate if deciliation occurs during S phase 

progression, we analysed ciliation and BrdU incorporation in cells 
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Fig. 4. Effect of cell cycle inhibitors on serum-induced cilium disassembly. (A) RPE1 

cells were serum-starved for 24 h to induce cilium formation, then either fixed or 

incubated in medium containing 10% FBS and mimosine (Mim), hydroxyurea (HU) 

or thymidine (Thy) for 24 h, before fixation. Cells were stained with an antibody to 

acetylated tubulin (red), to mark cilia, and an antibody to cyclin B1 (green), to confirm 

cell cycle stage. DNA was stained with DAPI (blue). Bars, 20 μm. (B) Immunoblot analysis 

of cyclin B1 and cyclin A expression in cells treated as in (A), with α-actinin as a loading 

control. (C) Percentage of cells with cilia following serum starvation and subsequent 

release for 4 h with the indicated treatments. SS, serum starved. Data represent the 

mean + s.e.m. from two independent experiments ( n > 200 cells). (D) Cilium length in 

cells treated as in (C) (mean + s.d.; n = 50). (E) Percentage of cells with cilia following 

serum starvation and subsequent release for 24 h with the indicated treatments. Data 

represent the mean + s.e.m. from three independent experiments ( n > 100 cells). (F) 

Cilium length in cells treated as in (E) (mean + s.d.; n = 40). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fixed at 0, 3 and 6 h after release from a thymidine block. We found

that ciliation and cilium length both decreased within 3 h of thymidine

washout ( Fig. 5 A). Ciliary loss / shortening was associated with DNA

synthesis, based on analysis of individual cells at 3 h post-washout

( Fig. 5 B), and therefore was not simply due to removal of excess

thymidine from the growth medium. It seems reasonable to assume

that most cells negative for BrdU at 3 h post-washout were still in

early S phase, prior to the onset of detectable DNA replication, since,

as noted above, the duration of S phase in human cells is typically at

least 5 h, and ∼50% of cells were still incorporating BrdU at 6 h post-

washout ( Fig. 5 A). In summary, these data indicate that deciliation

coincides with DNA replication following release from a thymidine

block, in line with the data for cells released from serum starvation in

the absence of cell cycle inhibitors ( Fig. 2 C). 

2.3. Ciliary localisation of cyclin B1 

In agreement with our previous findings [ 28 ], we noted that a

minority (8.4%, n = 131) of late G2 cells were ciliated (late G2 was

defined here as the presence of intense cyclin B1 immunostaining

at unseparated, duplicated centrosomes [ 29 ]), 20–24 h after release

from serum starvation in the absence of cell cycle inhibitors ( Fig. 6 A).

Also in agreement with the previous study, following release from

serum starvation, cilia were typically absent in cells undergoing cen-

trosome separation (duplicated centrosomes separated by > 2 μm,

prior to prometaphase; 0.6% cells ciliated, n = 155; Fig. 6 A), and in

cells beginning to undergo chromatin condensation in prophase, as
indicated by weak phospho-histone H3 immunostaining throughout

the nucleus (1.7% cells ciliated, n = 60; data not shown). These ob-

servations suggest that primary cilia which remain in late G2 are

typically resorbed shortly before, or coincident with, mitotic entry in

RPE1 cells. 

Surprisingly, in the course of this work we noticed that the cyclin

B1 antibody (termed GNS-1) stained primary cilia, in addition to the

expected staining of centrosomes [ 30 ] ( Fig. 6 A). In support of antibody

specificity, we did not observe ciliary GNS-1 immunostaining in cells

in which cytoplasmic GNS-1 staining was undetectable (presumed to

be in G0 or G1 phase), nor did a negative control antibody detectably

stain primary cilia ( Fig. 6 A and B). Ciliary immunostaining was appar-

ent using an alternative cyclin B1 antibody, methanol or PFA fixation,

and other cell lines ( Fig. 7 A; data not shown; Fig. 6 B), and was abol-

ished by siRNA-mediated depletion of cyclin B1 ( Fig. 6 C). An antibody

to cyclin B2, in contrast, did not detectably stain primary cilia ( Fig.

7 B). These results strongly suggest that cyclin B1 localises to primary

cilia. Notably, we observed weak ciliary immunofluorescence with an

antibody to CDK1, the cyclin-dependent kinase partner of cyclin B1

( Fig. 7 C), suggesting that CDK1 also localises to primary cilia. 

3. Discussion 

Our results suggest that the ciliary disassembly profile of RPE1

cells resembles that of 3T3 cells [ 7 , 8 ], with a wave of deciliation at the

G0 / G1 transition, a period of reciliation in late G1 and a second wave

of deciliation coincident with DNA synthesis. Evidence of reciliation

is particularly notable because it is generally assumed not to occur in

RPE1 cells. Selection of different time points may explain why it was

not seen in previous time course analyses [ 13 , 15 ]. Time course anal-

yses of the type used here are hampered by the semi-synchronous

nature of cell cycle re-entry and progression in response to serum

stimulation [ 31 ]. However, two further observations are consistent

with reciliation in late G1: after the initial deciliation, cilium length

increased with time in cyclin B1 / BrdU-negative cells, and cells ar-

rested in late G1 by mimosine showed high levels of ciliation. A no-

table difference between 3T3 and RPE1 cells is that in asynchronously

growing populations, approximately one third of 3T3 cells have cilia

[ 7 ], compared to < 5% [ 3 ] or ∼10% [ 4 ] of RPE1 cells. Thus, it appears

that cilium assembly in G1 is less common in RPE1 cells. However,

our results suggest that a significant proportion of RPE1 cells can form

a cilium in G1, at least in the first cell cycle following release from

serum starvation. 

Evidence for reciliation in G1 can be reconciled with the existence

of pathways that suppress ciliogenesis in cycling cells if suppressors

such as trichoplein [ 3 ] are displaced temporarily from the mother

centriole in late G1. There is a precedent for this type of behaviour,

in that the key suppressor of ciliogenesis CP110 has been reported to

disappear from the mother centriole, but not the adjacent centriole /

procentrioles, in ciliated 3T3 cells in G1 and S / G2 phase [ 4 ]. Late G1 in

particular may be permissive for cilium assembly, because activation

of AurA and Plk1 at cell cycle re-entry appears to be transient [ 13 , 17 ],

and because expression of CP110 is low in G1 [ 32 ]. 

Notably, treatment of quiescent 3T3 cells with different compo-

nents of serum has revealed some of the requirements for deciliation

and DNA synthesis. Tucker et al. [ 8 ] reported that PDGF (platelet-

derived growth factor) induced an initial rapid deciliation, followed

by a period of reciliation, but that plasma components were required

to efficiently induce the second wave of deciliation and DNA synthe-

sis. Treatment with plasma alone did not induce the initial deciliation

or DNA synthesis. It is now known that ciliary localisation of PDGFR α

(PDGF receptor α) is important for the cellular response to its lig-

and PDGF-AA [ 33 ]. Moreover, one of the plasma components that

induces DNA synthesis, IGF1 (insulin-like growth factor 1) [ 34 ], has

been shown to act at least partly through the primary cilium dur-

ing differentiation of 3T3-L1 preadipocytes [ 35 ]. These findings raise
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Fig. 5. Cilium disassembly coincides with DNA synthesis following release from a thymidine block. (A) Immunofluorescent detection of BrdU incorporation and primary cilia 

following thymidine washout. Cells were initially released from serum-starvation in the presence of excess thymidine for 24 h, then incubated in thymidine-free medium (with 

serum) for 3 or 6 h prior to fixation. In parallel, cells were fixed immediately after serum-starvation (SS) or thymidine treatment (0 h post-washout). BrdU was added 30 min prior 

to fixation. Cells were co-stained with antibodies to acetylated α-tubulin (not depicted) and BrdU; DNA was stained with DAPI. Charts show the percentage of cells with cilia (mean 

+ s.e.m. from three independent experiments; n = 150–300 cells) and cilium length (mean + s.d.; n = 50–75). (B) Ciliation status of individual cells, with respect to the presence 

or absence of detectable BrdU immunostaining, 3 h after thymidine-washout. Examples of ciliated BrdU-negative (BrdU −) and BrdU-positive (BrdU + ) cells are shown. Arrows 

indicate primary cilia; the percentage of cells with cilia is indicated (BrdU − cells, n = 50; BrdU + cells, n = 70). The chart shows cilium length for cells in each class (mean + s.d.; 

BrdU − cells, n = 64; BrdU + cells, n = 79; P value, unpaired two-tailed t -test). Bars, 20 μm (A) and 5 μm (B). 

Fig. 6. Cyclin B1 localises to the primary cilium. (A) RPE1 cells were released from serum starvation for up to 24 h, then fixed and stained with antibodies to cyclin B1 (GNS-1) 

and acetylated α-tubulin. Cell cycle stage, based on cyclin B1 immunostaining, is indicated. (B) 142BR human fibroblasts were stained with antibodies to acetylated α-tubulin and 

cyclin B1 (GNS-1) or an irrelevant antibody, as indicated. Main images are merges. (C) RPE1 cells were transfected with a negative control siRNA or cyclin B1-directed siRNA for 

24 h, then fixed and stained with antibodies to cyclin B1 (GNS-1) and acetylated α-tubulin. Main images show GNS-1 staining. The presence of procentrioles (dots of acetylated 

α-tubulin immunostaining, adjacent to the more intensely stained centrioles) was used as a marker of entry to S / G2 phase. Bars, 10 μm. 
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he possibility that reciliation in G1 could serve to sensitize cells to 

GF1 and other plasma components that induce progression into S 

hase. It is also noteworthy that the mTOR (mammalian target of 

apamycin)-dependent, nutrient-sensing ‘cell growth checkpoint ’ is 

ituated in late G1 [ 36 ]. The mTOR pathway is regulated by cilium- 

ediated sensation of fluid flow in renal cells, and it is possible that 

ilia have a role in mTOR signalling in other contexts [ 37 ]. 

A previous study has suggested that, after the wave of cilium dis- 

ssembly associated with cell cycle re-entry, a second wave of cilium 

isassembly coincides with mitotic entry in RPE1 cells [ 13 ], consis- 

ent with stimulatory roles for the mitotic kinases AurA, Plk1 and 

ek2 [ 13 , 15 , 17 , 28 , 38 ]. In partial agreement, our results suggest that

ome cells undergo deciliation at the time of centrosome separation. 

verall, however, our results suggest that the second wave of ciliary 

esorption begins in S phase. Interestingly, we found that cilia per- 

isted in conditions of early S phase arrest. Since the chemicals used 

o induce this arrest (HU and thymidine) inhibit DNA synthesis, this 
result extends the notion that deciliation is coupled to DNA synthesis 

[ 7 ], and implies that any experimental condition that inhibits DNA 

synthesis will delay the second wave of cilium disassembly. It also 

suggests that cyclin-CDK activities sufficient to trigger S phase en- 

try are insufficient to trigger deciliation. However, it may be argued 

that replication stress or another effect of HU / thymidine treatment 

could promote ciliation. For example, hydroxyurea treatment can lead 

to DNA damage [ 39 ], which may in turn inhibit AurA, Plk1 and Nek2 

[ 40 –42 ]. Thus, it remains possible that in unperturbed cells deciliation 

is controlled by the same activities that promote the G1 / S transition. 

Notably, the presence of full length (or in the case of thymidine- 

treated cells, unusually long) cilia in S phase-arrested cells appears to 

conflict with data suggesting that ciliary resorption must be initiated 

to allow S phase entry [ 14 , 18 ]. 

In summary, the results presented here support the notion that cil- 

ium formation can occur in G1 phase in cycling cells, and suggest that 

cilium disassembly is not essential for S phase entry, but is coupled 
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Fig. 7. Antibodies to cyclin B1 and CDK1, but not cyclin B2, stain primary cilia in murine 

IMCD3 cells. (A) Cells were fixed in methanol and stained with a rabbit polyclonal anti- 

body to cyclin B1 and a mouse monoclonal antibody to acetylated α-tubulin. Examples 

shown include cells in which cyclin B1 was detectable only in the proximal portion of 

the cilium, and a ciliated cell lacking detectable cyclin B1 expression, demonstrating 

that the cyclin B1 antibody does not stain cilia non-specifically. (B) Cells were fixed 

in methanol and stained with a rabbit polyclonal antibody to cyclin B2 and a mouse 

monoclonal antibody to acetylated α-tubulin. (C) Cells were fixed in methanol and 

stained with a rabbit polyclonal antibody to cyclin B1, to mark cilia, and either a mouse 

monoclonal antibody to Cdk1 or an irrelevant mouse antibody, as indicated. Bars, 10 

μm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to DNA replication. Thus, RPE1 cells could serve as a model system in

which to investigate the assembly and function of primary cilia in G1,

as well as the pathways that regulate their disassembly. 

In the course of this work, we noticed that cyclin B1 antibod-

ies specifically stained primary cilia. An antibody to CDK1 also pro-

duced ciliary staining, consistent with a recent proteomic analysis of

IMCD3 primary cilia [ 43 ]. To our knowledge, ciliary immunolocalisa-

tion of mammalian cyclins / CDKs has not been previously reported.

It is uncertain if there is a selective barrier for soluble proteins at

the base of cilia in mammalian cells, although there is mounting ev-

idence for a mechanism similar to that governing entry to the nu-

cleus [ 44 , 45 ]. Thus, it may be interesting to investigate if importin-

β1, which is thought to mediate the relatively slow nuclear import

of cyclin B1 in interphase [ 46 ], also mediates its localisation to pri-

mary cilia. The immunofluorescence data are intriguing, considering

the key cell cycle regulatory functions of these proteins, together

with data indicating that cyclin B1 targets CDK1 to microtubules,

and that CDK1 activity can negatively influence microtubule stability

and tubulin polymerisation [ 47 , 48 ]. It is also noteworthy that CDK1

activity has recently been implicated in promoting pericentriolar ma-

terial 1 (PCM1)-mediated centrosomal recruitment of Plk1, which in

turn promotes cilium disassembly before mitotic entry [ 38 ]. We have

found that treatment of RPE1 cells with a CDK1 inhibitor increases

cilium length (unpublished data). However, a similar effect apparent

in serum starved quiescent cells suggests that inhibition of another

CDK, or a non-specific effect, was at least partly responsible. Further

work is required to determine if CDK1 influences cilium length, either

via PCM1 or more directly. 

4. Materials and methods 

4.1. Cell culture and synchronisation 

hTERT-RPE1 (LGC Standards, Middlesex, UK) and IMCD3 (ECACC,

Porton Down, UK) cells were maintained in DMEM / Ham’s F12 sup-

plemented with 10% fetal bovine serum (FBS) and antibiotics at 37 ◦C

and 5% CO 2 (reagents from Invitrogen, Paisley, UK). 142BR human

skin fibroblasts (ECACC) were maintained in DMEM with the same
supplements and conditions. For immunofluorescence microscopy,

cells were seeded in Lab-Tek II chamber slides (VWR, Lutterworth,

UK), or on cover slips in 12-well plates. For time course analyses,

cells were incubated in serum-free medium for 24 h to induce pri-

mary cilium formation, then fixed at various time points after addi-

tion of 10% FBS. For cell cycle synchronisation, cells were incubated

in serum-free medium for 24 or 48 h to induce primary cilium for-

mation, then in medium containing 10% FBS and either 0.5 mM mi-

mosine, 4 mM hydroxyurea or 5 mM thymidine (or vehicle) for a

further 24 h. For thymidine-washout, cells were rinsed three times

with thymidine-free medium containing 10% FBS and then incubated

in this medium for 3 or 6 h before being processed for immunofluo-

rescence. Chemicals were from Sigma–Aldrich (Dorset, UK). Stock so-

lutions of mimosine, hydroxyurea and thymidine were prepared with

culture medium, dimethyl sulfoxide (DMSO) and phosphate buffered

saline (PBS), respectively. 

4.2. Bromodeoxyuridine (BrdU) incorporation assay 

Cells were incubated in growth medium containing BrdU (10 μg /

ml; Sigma–Aldrich) for the last 30 min prior to methanol fixation

(5 min). Fixed cells were rinsed twice with PBS, incubated in 1.5 M

HCl for 20 min at room temperature, then rinsed three times with PBS

before incubation with primary antibodies for immunofluorescence,

as described below. 

4.3. RNA interference 

RPE1 cells were transfected with siRNA duplexes at a final con-

centration of 50 nM using HiPerFect reagent (Qiagen, Crawley, UK).

Cells were fixed in methanol 24 h later and processed for immunoflu-

orescence microscopy as described below. An siRNA duplex targeting

cyclin B1 (siRNA3 in Ref. [ 49 ]) and AllStars negative control siRNA

were purchased from Qiagen. 

4.4. Immunoblotting 

Cells synchronised as above were rinsed with PBS and lysed in RIPA

buffer (Sigma–Aldrich) supplemented with Roche Complete Mini pro-

tease inhibitors. Cell lysates were cleared by centrifugation at 13,000

rpm at 4 ◦C for 10 min. Proteins were denatured and reduced, sepa-

rated on NuPAGE 4–12% Bis–Tris gels (Invitrogen) and transferred to

Hybond ECL nitrocellulose membrane (VWR). Antibody incubations

and ECL detection were done as described [ 50 ]. Primary antibodies

were: rabbit anti-cyclin B1 (H-433; Insight Biotechnology, Wembley,

UK), mouse anti-cyclin A (Sigma–Aldrich) and mouse anti- α-actinin

(BM-75.2; Sigma–Aldrich). 

4.5. Immunofluorescence microscopy 

Cells were rinsed with PBS and fixed in chilled methanol for 5 min

or 4% paraformaldehyde (PFA) for 10 min. We included an antigen

retrieval step that we have found improves staining of centrosomal

proteins in both methanol and paraformaldehyde fixed cells: slides /

coverslips were immersed in 10 mM sodium citrate (85–90 ◦C) and

allowed to cool at room temperature for 30 min, then rinsed in PBS for

5 min. Immunofluorescence was otherwise performed as described

[ 50 ]. Cells were mounted in Vectashield with DAPI (Vector Labs, Pe-

terborough, UK) and images captured using an Axio Observer Z1 mi-

croscope equipped with an AxioCam MRm digital camera (Carl Zeiss

Ltd., Welwyn Garden City, UK). 

4.6. Antibodies 

Primary antibodies for indirect immunofluorescence were: mouse

anti-acetylated α-tubulin (6-11B-1) and anti-BrdU (Sigma–Aldrich);
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ouse anti-cyclin B1 (GNS-1) and anti-CDK1 (BD Biosciences, Oxford, 

K); rabbit anti-cyclin B1 (H-433) and anti-cyclin B2 (H-105) (Insight 

iotechnology); mouse anti-phospho-histone H3 (Ser10) (6G3) and 

abbit monoclonal anti-phospho-Aurora A (Thr288) (New England Bi- 

labs, Hitchin, UK). Goat secondary antibodies were: FITC anti-rabbit 

Sigma–Aldrich), Alexa Fluor 594 anti-rabbit, Alexa Fluor 488 anti- 

ouse IgG1 and Alexa Fluor 594 anti-mouse IgG2b (Invitrogen). 
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