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Causal Interactions in Human 
Amygdala Cortical Networks across 
the Lifespan
Yuhao Jiang, Yin tian & Zhongyan Wang

there is growing evidence that the amygdala serves as the base for dealing with complex human 
social communication and emotion. Although amygdalar networks plays a central role in these 
functions, causality connectivity during the human lifespan between amygdalar subregions and their 
corresponding perception network (PerN), affiliation network (AffN) and aversion network (AveN) 
remain largely unclear. Granger causal analysis (GCA), an approach to assess directed functional 
interactions from time series data, was utilized to investigated effective connectivity between 
amygdalar subregions and their related networks as a function of age to reveal the maturation and 
degradation of neural circuits during development and ageing in the present study. For each human 
resting functional magnetic resonance imaging (fMRI) dataset, the amygdala was divided into three 
subareas, namely ventrolateral amygdala (VLA), medial amygdala (MedA) and dorsal amygdala (DorA), 
by using resting-state functional connectivity, from which the corresponding networks (PerN, AffN and 
AveN) were extracted. subsequently, the GC interaction of the three amygdalar subregions and their 
associated networks during life were explored with a generalised linear model (GLM). We found that 
three causality flows significantly varied with age: the GC of VLA → perN showed an inverted U-shaped 
trend with ageing; the GC of MedA→ AffN had a U-shaped trend with ageing; and the GC of DorA→ 
AveN decreased with ageing. Moreover, during ageing, the above GCs were significantly correlated 
with social Responsiveness scale (sRs) and state-trait Anxiety Inventory (stAI) scores. In short, perN, 
AffN and AveN associated with the amygdalar subregions separately presented different causality 
connectivity changes with ageing. These findings provide a strong constituent framework for normal 
and neurological diseases associated with social disorders to analyse the neural basis of social behaviour 
during life.

Emotional characteristics differ greatly over the human lifespan (from development to ageing). In recent years, 
social perception, affiliation and aversion have attracted significant attention due to their fundamental role in 
human interaction dynamics. In previous research, when judging social cognitive developmental trajectories, 
children and older adults obtained low accuracy rating scores, while adolescents and young adults received high 
scores. Compared to adolescents and children, adult emotion was more stable when faced with environmen-
tal stimuli1. Moreover, the ability to process emotional information was stable in adults, but emotional control 
indicated a positive emotional bias, where the person tended to weaken negative emotion and enhance positive 
emotion2,3. Although studies have provided some interesting insights, a full explanation for this phenomenon has 
yet to be established. Notably, the above discrepancy could result from lower ecological validity or cue utilisation 
validity in children and older adults than in adolescents and young adults4.

In humans, the amygdala plays a key role in emotional control. For instance, the functional connectivity den-
sity of an amygdala-based network increases with age5, in contrast with decreases in the nodes of other networks 
involved in anxiety. Indeed, the connectivity between the amygdala and attentional networks increases linearly 
with age6,7. Other studies have suggested that the amygdala is a key hub in social cognitive and emotional systems, 
and it is involved in face perception together with fusiform gyrus8,9. Additionally, the amygdala encodes and 
affects social emotional stimuli when processing faces and subjective judgments of facial expressions10–12. As such, 
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the amygdala could contribute to the integrative processing of social information that underlies the awareness of 
other individual’s affective experiences in complex social perception.

Previous research about lifespan emotional changes focused on the amygdala as a whole13, but some stud-
ies suggested that the amygdalar role in cognition, disapproval and sympathy might be separable. For example, 
Bickart and colleagues divided the amygdala into three subregions, namely the ventrolateral amygdala (VLA), 
medial amygdala (MedA) and dorsal amygdala (DorA), and indicated that these subregions exert important 
roles in perception, affiliation and aversion, respectively7. The perception network (PerN) is responsible for social 
perceptual abilities, the affiliation network (AffN) is related to prosocial behaviours and the aversion network 
(AveN) contributes to antipathetic processes. Further, the amygdala cooperates with many other brain regions 
to process social emotional information at the network level14–17. For example, the PerN is involved with the 
lateral orbitofrontal cortex (lOFC), fusiform gyrus (FFA), rostral superior temporal sulcus (rSTS), ventromedial 
temporal cortex, temporal pole and subgenual anterior cingulate cortex (ACC); the AffN is associated with the 
ventromedial prefrontal cortex (vmPFC), ventral medial striatum of the nucleus accumbens, ventromedial hypo-
thalamus, adjoining subgenual and rACC, dorsomedial temporal pole and medial temporal lobe; and the AveN 
refers to caudal ACC, ventrolateral striatum, anterior insula, somatosensory operculum, caudolateral hypothala-
mus, thalamus and brainstem7,18–27.

Interestingly, connectivity patterns represent various trajectories during human ageing. Short- and 
long-distance connectivity between brain regions shows an upright and inverted U-shaped trajectory, respec-
tively, between brain regions28. The connectivity within/between functional networks separately presented 
inverted/upright U-shaped trends29,30. Moreover, functional flexibility shows various changes in trajectory with 
ageing. The lateral frontal and parietal lobe exhibit an inverted and upright U-shaped trend, respectively31.

Critically, early studies explored age-related connections between the amygdala and other brain networks 
largely in terms of examining the strength of functional connectivity. For example, enhanced amygdalar activ-
ity is related to stronger activation of visual-, attentional- and emotional-related neural networks32–34. Since the 
amygdala plays a modulatory role within this network, where it can enhance neural responses in visual areas and 
perceptual ability for affect-laden stimuli35,36, increased amygdalar activity is linked to increased visual acuity37 
and greater visual cortex activation, including area V138. However, the usual methods, such as time series cor-
relation analysis on region of interests (ROIs), resting-state connectivity maps using independent component 
analysis (ICA) and large-scale functional connectivity networks, do not always explicitly explain the functional 
interaction between brain regions. Besides, simultaneous activation of two anatomically disconnected neural 
circuits by an external stimulus does not reveal potential effective connectivity between them. Importantly, effec-
tive connectivity refers to the influence that one neural circuit exerts over another and indicates the information 
flow direction. More clearly, functional connectivity refers to the factor of simultaneity. In contrast, GCA is one 
of analysis models for effective connectivity, and it emphasises causality between brain areas39. In practice, as 
reported in early research, the conclusion that the amygdala exerts an important role in the PerN was derived 
from their correlation, but the information flow direction between them is still unclear. Thus, in this study we pro-
posed a novel approach to examine the flows of Granger causality (GC) between the amygdalar subregions (VLA, 
MedA or DorA) and their corresponding networks (PerN, AffN or AveN) during the entire human lifespan based 
on an age-related generalised linear model (GLM). We investigated the correlation between effective connectivity 
changes and human behaviour alteration at different ages and aimed to reveal the neurally mediated mechanisms 
that involve the amygdala and their networks during the human lifespan.

Results
Identification of amygdalar subregions. Using the three cortical ROIs (lOFC, VMPFC and cACC) as 
seed regions, the amygdalar subregions were defined by connectional analysis, as shown in Fig. 1. According to 
Harvard-Oxford 50% probability maps of the entire amygdala, we divided the amygdala into three subregions 
that encompassed the social-perception-relevant VLA, the social-affiliation-relevant MedA and the social-aver-
sion-related DorA. The coordinates of peak nodes for identifying amygdalar subregions are shown in Table 1.

Identification of amygdalar subregion-based social networks. The spatial patterns for social net-
works (PerN, AffN and AveN) were depicted via the binary intersection maps of amygdalar subregions (VLA, 
MedA and DorA) and corticolimbic regions (lOFC, VMPFC and cACC), as shown in Fig. 2 and Table 2.

statistical results. One sample t-test results. One-sample t-test analysis revealed significant GC between 
the VLA and PerN, MedA and AffN and DorA with AveN. We also found significant GC net flow (inflow minus 
outflow from the network to the amygdala) from amygdalar subregions to the associated social network (p < 0.05, 
false discovery rate [FDR] corrected).

Age-related causal interaction analysis results. We investigated the changes in the causal influences from a 
lifespan perspective using an age-relevant GLM with linear and quadratic age terms as the predictive factor. The 
patterns that described the GC trend between amygdalar subregions and associated networks are shown in Fig. 2. 
For GC from VLA to PerN, the linear term was found to be significant (t = 3.16, p = 0.002, R2/R = 0.30), and the 
GC from VLA to PerN increased linearly with age. The GC from the PerN to VLA had a significant quadratic age 
term (t = 2.03, p = 0.004, R2/R = 0.09) and exhibited U-shaped trajectory with ageing. The net flow from VLA 
to PerN also exhibited a significant quadratic age effect (t = −2.10, p = 0.004, R2/R = 0.13) and demonstrated an 
age-related Inverted-U trend. For causal interaction between AffN and MedA, onlyGC from the MedA to AffN 
demonstrated a U-shaped trend with a significant quadratic age term (t = 3.38, p = 0.001, R2/R = 0.12). Neither of 
the GC from AffN to MedA nor the net flow from MedA to AffN showed a significant correlation with age. GLM 
analysis revealed that the GC from DorA to AveN was not statistically significantly correlated with age. However, 
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the GC from AveN to DorA increased linearly as age increased (t = 3.33, p = 0.001, R2/R = 0.31), while the net 
flow from DorA to AveN decreased linearly with age (t = −2.27, p = 0.03, R2/R = −0.22). The statistical regression 
coefficients appear in Table 3. Moreover, all Granger causal interactions between the amygdala subregions (VLA, 
MedA, and DorA) and their corresponding networks (PerN, AffN and AveN) were not correlated to gender.

Behavioural scale correlation analysis. For the entire lifespan, there was no statistically significant correlation 
between GC values and Behavioral scale test results, including Social Responsiveness Scale (SRS) and State-Trait 
Anxiety Inventory (STAI). However, there were significant correlations between the age-dependent quadratic 
fitting curve of GC values and the behavioural scales (SRS and STAI) during ageing (>50 years), as shown in 
Fig. 3. The blue line and points represent development, while the red line and points represent ageing. The GC 
information flow from the VLA to PerN was negatively correlated with SRS score(r = −0.41, p = 0.04; Fig. 3A) 
during ageing. GC from PerN to VLA was positively correlated with SRS scores during ageing (r = −0.44, 
p = 0.02; Fig. 3B). GC from MedA to AffN was negatively correlated with SRS cognitive scores (r = −0.38, 
p = 0.03; Fig. 3C). Additionally, GC from PerN to VLA was positively correlated with STAI scores during the 
ageing (r = 0.44, p = 0.02; Fig. 3D). There were no statistically significant correlations between GC values and 
behavioural scales during development (<50 years; Fig. 3).

Discussion
In this work, we uncovered GC trends between specific amygdalar nuclei (VLA, MedA or DorA) and their corre-
sponding networks during the entire human lifespan using Granger causal analysis (GCA)-based on a GLM, and 
explored the mechanisms of different amygdalar nuclei in specific control modes during development and ageing. 
Further, a continuous age-relevant NKI-RS database provided a potential neural basis for better elucidating the 
perception, affiliation and aversion networks, and offered biomarkers for these social-network-related disorders.

The NKI-RS dataset employed in this study was also utilised in several previous studies. For instance, this 
dataset was used to explore functional connectivity patterns of the amygdala and visual cortex in healthy adults 

Figure 1. Three connectionally defined subregions of the amygdala. Three voxel clusters demonstrate strongest 
functional connectivity with lOFC, VMPFC and cACC, respectively. The red brain region represents VLA, 
lOFC > cACC and VMPFC; the blue brain region represents MedA, VMPFC > cACC and lOFC; the green 
brain region represents DorA, cACC > lOFC and VMPFC.

Anatomical Hemisphere Cluster voxels MNI(x,y,z)

Ventrolateral amygdala L 36 (−27, −3, −21)

Ventrolateral amygdala R 45 (33, 0, −21)

Medial amygdala L 20 (−15, −8, −18)

Medial amygdala R 26 (18, −9, −18)

Dorsal amygdala L 18 (−24, −6, −12)

Dorsal amygdala R 17 (18, 0, −18)

Table 1. Identification of amygdala nuclei.
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but precluded the influence of age40,41. He et al. investigated anxiety-relevant variations in the intrinsic functional 
connectivity between the amygdala and multiple cortical networks across adulthood42. Moreover, Yang et al. stud-
ied the correlation between brain function and structure by using data mining43. However, because each amygda-
lar subregion is responsible for a specific emotional function, the correlation between effective connectivity and 
age would be better understood in terms of segmentation.

Interestingly, Zhao et al. found age-related inverted U-shaped trends in network properties (network strength, 
cost, topological efficiency and robustness) across the human lifespan30. Uddin et al. selected the developmental 
and adulthood portion of the NKI-RS sample to verify stronger functional hub coupling in adults compared to 
children44. Similarly, Yang et al. used this dataset to show various age-related trajectories of functional network 
connectivity based upon independent component analysis45. Zuo et al. discovered that functional homogeneity 
in the human cortex might be determined by anatomical, developmental and neurocognitive factors46. Yin et al.  
found dissociable variations in frontal and parietal cortices in inherent functional flexibility across the entire 
human lifespan31. Cao et al. reported a linear decrease in the functional connectome and an inverted-U shaped 
lifespan trend for rich club structure28. Although these studies explored age-related correlation between the over-
all topological properties of the brain across the human lifespan, the characteristics of emotional functions during 
different stages (development, maturation and ageing) remains largely unclear.

Concretely, we found an increased Granger causal influence from the VLA to PerN with ageing, and the 
age-related GC from PerN to VLA showed a U-shaped trajectory. Further, the causal influence net flow degree 
from VLA to PerN (VLA → PerN - PerN → VLA) demonstrated an inverted U-shaped trend with ageing. In 
contrast, GC values from the MedA to AffN showed a U-shaped trend with ageing, and the GC values from AveN 
to DorA increased as age increased, while the net flow from DorA to AveN (DorA → AveN - AveN → DorA) 
decreased with ageing (Fig. 2).

Information flow between the VLA and PerN. A growing body of work indicates that resting-state 
intrinsic connectivity reflects functional properties of the brain that relate to individual differences for a variety 
of abilities and behaviours47–51. The social PerN network of the human brain would change as an individual gains 
experience during development and ageing, and thus the age-related changes in information flow between the 
VLA and PerN are important for interpreting perceptual development and degeneration.

Figure 2. The trends of Granger causality between amygdala subregions and associated networks with age.
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As Bickart et al. discussed in their previous study, the amygdala may play a modulatory role in the PerN7. In their 
review, Ray and Zald described the connections between prefrontal areas and the amygdala from the point of infor-
mation flow direction on the basis of cytoarchitectonics52, but no study has used an effective connectivity technique 
to analyse the interaction between amygdalar subregions and associated networks. Age-related GC increase from 
the VLA to PerN indicates greater output signals from the VLA to PerN, a finding that is in line with the well-known 
conclusion that human cognition is enhanced as experience increases. In contrast, the U-shaped trend of age-related 
GC from PerN to VLA indicates more input signals from the perceptual cortex to the amygdala for older compared 
to young adults, a finding which may indicate why older adults become more sensitive. Additionally, a social psy-
chology study reported that human social perception has an inverted U-shaped trajectory throughout life4. We also 
found that the information flow VLA → PerN showed an inverted U-shaped trend during life and negatively corre-
lated with SRS score in ageing, results that indicate elderly social perception is degraded.

Additionally, the GC of PerN → VLA was irrelevant to the utilised behavioural scales (SRS and STAI scores) 
during development, but was positively correlated during ageing. This finding revealed that decreased perceptual 
abilities during ageing may lead to social cognitive disorders and increase social anxiety in the older adult social 
life. Of particular note, although both amygdalar and perceptual network activities increase with ageing, the 
decreased social perception might be related to a change in information flow. Consistent with previous studies, 

Anatomical Hemisphere Cluster voxels MNI(x, y, z) T

PerN

VLA L 55 (−27, −3, −18) 57.36

VLA R 35 (26, −3, −21) 58.27

medial OFC L 110 (−6, 48, −12) 14.22

medial OFC R 87 (6, 48, −12) 15.06

lOFC L 293 (−31, 30, −18) 49.62

lOFC R 297 (36, 32, −18) 50.44

FFA L 288 (−31, −33, −20) 16.10

FFA R 350 (35, −34, −21) 18.44

rSTS L 374 (−52, −4, 21) 13.66

ventralmedial temporal cortex L 154 (−12, −27, 0) 14.65

ventralmedial temporal cortex R 148 (12, −22, 6) 14.68

temporal pole L 160 (−51, 9, −18) 17.09

temporal pole R 157 (49, 9, −16) 18.18

subgenual ACC R 161 (−6, 0, 30) 13.38

AffN

MedA L 86 (−15, −3, −18) 42.99

MedA R 69 (14, −3, −20) 30.76

VMPFC L/R 203 (0, 32, −13) 43.25

ventral medial striatum L 83 (−11, 12, −9) 8.10

ventral medial striatum R 174 (9, 12, −11) 10.42

ventral medial hypothalamus L 25 (3, −5, −16) 9.35

ACC L 121 (−3, 45, 0) 29.72

dorsomedial temporal pole L 40 (−24, −14, −22) 12.11

dorsomedial temporal pole R 37 (33, −15, −21) 10.55

medial temporal lobe L 420 (−54, −60, 3) 10.39

medial temporal lobe R 446 (50, −61, 3) 7.44

AveN

DorA L 45 (−18, −3, −12) 48.85

DorA R 24 (21, −3, −15) 58.38

cACC L/R 247 (0, 15, 33) 45.07

anterior insula L 178 (−33, 9, 3) 31.27

anterior insula R 147 (33, 12, −16) 13.87

somatosensory operculum L 337 (−6, −6, 63) 20.66

somatosensory operculum R 423 (3, −3, 63) 11.70

ventrolateral striatum L 127 (−27, −3, 12) 18.66

ventrolateral striatum R 135 (27, 3, 9) 17.29

caudolateral hypothalamus R 40 (3, −6, −12) 12.58

thalamus R 83 (3, −15, 3) 17.84

brainstem L 239 (−6, −24, −33) 10.58

Table 2. Distribution of brain regions associated with the amygdala nuclei based social networks.
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the enhanced GC from VLA to PerN, which reflects augmented information flow, indicates that the VLA upreg-
ulates the PerN. Thus, a degenerated perceptual cognition might be associated with a reduced VLA role in PerN 
regulation, a phenomenon that could result in older adults becoming more sensitive and susceptible to infections 
as well as their attenuated social response capacity. In general terms, our findings not only indicate the ability of 
the amygdala to use a top-down control mechanism to regulate the PerN during the lifespan, but also provide an 
information basis for inferring behavioural intention, sensory-motor system and high-order cognitive processes.

GC T p R2/R Fitting curve

VLA → PerN 3.16 0.002 0.30 y = 0.0139 age − 0.8206

PerN → VLA 2.03 0.04 0.09 y = 0.0010 age2 − 0.10833 age + 4.4730

VLA → PerN-PerN → VLA −2.10 0.04 0.13 y = −0.0013 age2+0.1475 age−5.7180

MedA → AffN 3.38 0.001 0.12 y = 0.0030 age2 − 0.28812 age + 7.9426

AveN → DorA 3.33 0.001 0.31 y = 0.0638 age − 1.1736

DorA → AveN-AveN → DorA −2.27 0.03 −0.22 y = −0.0756 age + 1.9887

Table 3. Statistical parameters of age-related causal connectivity. Note: R2 in R2/R represents the curve fitting 
degree of the age-related quadratic fitting curve, expressed in black, R represents the correlation between GC 
and age.

Figure 3. The correlation between Granger causality and behavioral scales. (A) Scatter plots demonstrate the 
relationship between GC net flow from VLA to PerN and Social Responsiveness Scale score. (B) Scatter plots 
demonstrate the relationship between GC of PerN to VLA and Social Responsiveness Scale score. (C) Scatter plots 
demonstrate the correlation between GC of MedA to AffN and Social Responsiveness Scale score. (D) Scatter plots 
demonstrate the correlation between GC and State Trait Anxiety Inventory. SRS_TOT_R represents SRS score, 
SRS_COG_T represents the social cognitive scale, and STAI_TOT_T represents State Trait Anxiety Inventory.  
The blue line and points indicates the development process, and red line and points indicates the aging process.
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Information flow between the MedA and AffN. Previous studies suggest that the MedA is involved in 
affiliative behaviours53,54. Behavioural and neuroimaging evidences illustrated that the brain network specific to 
prosocial behaviours require a long period for maturation, but prosocial behaviours decline with pubertal devel-
opment55. Several functional magnetic resonance imaging (fMRI) studies reported that amygdalar activation to 
emotional faces and functional connectivity within the subregion that anchors in the AffN decreases from ado-
lescence to adulthood56 Compared to younger adults, older adults partake in more prosocial behaviours because 
of empathy induction, a finding that suggests older people are likely to be more motivated to help others due to 
prioritisation of socioemotional goals57. Of note, in line with these previous findings, our U-shaped pattern for 
the GC of the MedA to AffN during life demonstrates that output signals from MedA to AffN are reduced from 
puberty to adulthood, and consequently the MedA sends more output information to the AffN with ageing. This 
phenomenon supports the MedA role in prosociality. Therefore, our analysis concurs with the explanation that 
adolescents are more easily agitated and more motivated by incentives than adults58. The negative correlation 
between the social cognitive scale and GC of the MedA → AffN indicates declined social recognition for old peo-
ple, a result that demonstrates the neural analyses are consistent with human behaviours.

However, the GC of AffN → MedA and net flow of MedA → AffN were irrelevant for age based on our results. 
A possible explanation for this finding is that the number of participants was too small and/or the represented 
ages were not uniformly distributed. Another interpretation is that the factors which facilitate attachment and 
prosociality development are complicated. These factors are involved in peer relationships, social competence, 
academic achievement, caring, respect, fairness and perspective-taking skills, all of which lead to particular dif-
ference in an individual’s information input from the AffN to MedA. Consequently, our investigation on AffN 
during life provides a neural basis for leading adolescents to form more positive emotional incentives and targeted 
behavioural habits and assists older adults to maintain emotional well-being.

Information flow between the DorA and AveN. Recent studies highlighted the amygdalar involve-
ment in human avoidance and escape behaviours. Notably, several previous structural MRI studies offered strong 
evidence for early maturation of the amygdala and protracted development of AveN-relevant brain regions 
(ACC, pre-supplementary motor area and anterior insula)59–61, but the functional connectivity between ventral 
striatum-insula and ventral striatum-dorsal ACC gradually declines during development58. The stronger func-
tional connectivity between the ventral striatum and insula reflects a higher dependence on motivational behav-
iours that were saliently simulated by physiological arousal in late childhood. In terms of these data, the amygdala 
matures fast during development, whereas the social AveN-relevant regions mature during adulthood. Our find-
ing that the GC of the AveN → DorA increased with ageing indicates gradually elevated input signals from the 
AveN to DorA during life, in agreement with prior studies, and demonstrates that older individuals may exhibit 
more loss aversion. In contrast to young people, older adults were less negatively influenced by experienced 
emotional reactions via minimised emotional reactivity, a finding that suggests older adults show better emo-
tional regulation when they employ avoidance strategies62. Additionally, the GC net flow from the DorA to AveN 
gradually decreased with age. For low negative arousal, an age-related increase in activation of the emotional 
control region led to decreased bilateral amygdalar activity, a result that shows older adults exhibit spontaneous 
engagement in the downregulation of their negative emotional responses63.

Taken together, our findings explored the trend of the social AveN during development and ageing to provide 
a theoretical basis for helping adolescents build a better AveN and assist older individuals to stay vigilant over 
their external environment. Moreover, our findings offer a new and comprehensive insight for neural connectivity 
between the amygdala and AveN during life.

Limitations
Although this study explored the age-related relevance between the overall topological properties of the brain 
during the human lifespan, there were two noteworthy limitations to our investigation. First, the NKI-RS 
database does not have direct perception-, affiliation- or aversion- relevant scales. In this paper, we analysed 
perception-related SRS and negative-emotion-related STAI scores instead of using direct scales, a design 
which might limit result analysis. In future studies, we intend to apply direct perception-, affiliation- and 
aversion-relevant scales to uncover the trend of social cognition throughout the lifespan. Second, we studied GC 
between the amygdalar nuclei and their corresponding networks over a wide age range, but performance during 
infant and early childhood development is also significantly important. It is crucial that future datasets have a 
wider age distribution and more individuals are important to detect the neural mechanisms that underlie the 
networks between amygdalar nuclei and their corresponding areas.

Conclusion
In summary, we tested alterations in the causal flow between social emotional function relevant amygdalar sub-
regions and their associated networks across the entire lifespan. In other words, the Granger information flow 
between amygdalar subregions and their corresponding networks during life exhibited a long and complex trajec-
tory. Our findings provide a new and comprehensive insight for variability of neural mechanism between social 
behaviours and cognition during life.

Materials and Methods
participants and data acquisition. The initial fMRI and MRI data come from the Nathan Kline Institute/
Rockland Sample (NKI–RS, http://fcon_1000.projects.nitrc.org/indi/pro/nki.html). One-hundred-six right-handed 
subjects (46 females, age range: 10–85 years, mean age: 38.8 years; 60 males, age range: 7–81 years, mean age: 38.3 years; 
age: <15, sample size: 11; age: 16–25, sample size: 32; age: 26–45, sample size: 24; age: 46–65, sample size: 23; age: >65, 
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sample size: 16) were chosen from the NKI–RS database without diagnosed mental disorders or unusable anatomical 
images due to excessive head motion. The data were collected according to protocols approved by the institutional 
review board of the Nathan Kline Institute. Institutional Review Board Approval was obtained for this project at the 
Nathan Kline Institute (Phase I #226781 and Phase II #239708) and at Montclair State University (Phase I #000983A 
and Phase II #000983B). Written informed consent was obtained for all participants. Written informed consent and 
assent were also obtained from minor/child participants and their parents and/or legal guardian for study participation.

Structural and functional images were collected using a 3-Tesla Siemens Trio scanner. High resolution 
T1-weighted structural data were acquired using the magnetisation-prepared rapid gradient echo (MPRAGE) 
sequence with TR/TE = 2500/3.5 ms, flip angle = 8°, thickness = 1.0 mm, slices = 192, matrix = 256 × 256 and 
FOV = 256 mm2. T2-weighted resting-state functional data were acquired using a single shot, gradient-recalled 
echo-planar imaging (EPI) sequence with TR/TE = 2500/30 mm, flip angle = 80°, FOV = 216 mm2, in-plane 
matrix = 64 × 64, slices = 38 and thickness = 3.0 mm, for a total of 260 volumes. In order to ensure steady-state 
longitudinal magnetisation, the first 4 volumes were excluded.

fMRI data preprocessing. A sequence of steps was applied to preprocess the dataset using the Statistical 
Parametric Mapping software based on SPM12 (http://www.fil.ion.ucl.ac.uk) and REST software (http://restfmri.net/
forum/REST_V1.8). First, slice-timing correction was performed to correct each voxel’s time series during acquisition. 
Second, functional images were realigned for head-motion correction with rigid-body transformation (translation 
≤1.5 mm and rotation ≤1.5°). Third, images of each subject are registered to the individual subjects' T1 structural 
image, then data were spatially normalised to the Montreal Neurological Institute (MNI) standard template, and voxels 
resampled to 3 × 3 × 3 mm3. Fourth, data were spatial smoothed using a Gaussian kernel with a 5 mm full-width and 
half-maximum (FWHM) to ensure a high signal-to-noise ratio (SNR). Fifth, to remove the linear low frequency drift 
and physiological noise, low pass filtering was performed to extract the low frequency signal range over 0.0078–0.10 Hz. 
Sixth, considering the impact of micro-level head motion on functional connectivity and social network patterns, we 
excluded sources of 24 variances via a Friston-24 model, including 6 parameters derived from the rigid-body head 
motion correction, 6 parameters of head motion one time point before and 12 corresponding squared items, and we 
also removed the mean signals over the whole brain, white matter and cerebrospinal fluid.

Identifying amygdalar subregions. In order to identify the networks (PerN, AffN and AveN), three brain 
ROIs outside the amygdala were selected with MNI coordinates: lOFC (+/−38, 34, −18), vmPFC (0, 32, −12), 
and cACC (0, 16, 32). These ROIs interconnect with the VLA, MedA and DorA, respectively7,64,65.

We then generated spherical seed regions (lOFC, vmPFC and cACC), 3 mm in radius, and computed a 
Pearson’s product moment correlation coefficient, r, between the averaged time series within each seed region 
and the time series in each cerebral hemisphere. Next, the resultant correlation maps were converted to z (r) val-
ues using Fisher’s r-to-z transformation. The entire amygdala was displayed using Harvard–Oxford Subcortical 
Structural Atlas probabilistic maps, and only the voxels that had 50% or higher probability were labeled as amyg-
dala (left: 2106 mm3, right: 2268 mm3).

Next, we carried out a one-sample t-test (p < 0.05, with familywise error correction [FWE]) over resultant 
Fisher-z transformed functional connectivity maps. Applying the resultant Harvard–Oxford probabilistic map 
of the amygdala as a mask, we selected the brain area which had statistical significance, and conducted contrast 
analyses on the maps from each ROI using a paired t-test (p < 0.05, with FWE), i.e., lOFC > vmPFC and cACC; 
vmPFC > cACC and lOFC; cACC > vmPFC and lOFC.

Identifying amygdalar-subregion -based networks. We built spherical seed ROIs (VLA, MedA and 
DorA), 3 mm in radius, and computed the averaged time series within each amygdalar subregion. Subsequently, 
we used these seed ROIs to produce hemispherical functional connectivity maps. Next, we converted the resultant 
functional connectivity maps to z(r) values using Fisher-z transformation, and calculated a one sample t-test for 
transformed functional connectivity within bilateral VLA, MedA, DorA, lOFC, VMPFC and cACC (threshold 
p < 10−5 and cluster size > 10 voxels)54. Irrespective of the covariates with respect to age and gender, we binarised 
each amygdalar subregion’s significance map. Given that the intrinsic functional connectivity between amygdalar 
subregions and corticolimbic regions that delineate a certain social network, PerN was defined by the binary 
intersection maps of VLA and lOFC, AffN was defined by the binary intersection maps of MedA and vmPFC, and 
AveN was defined by the binary intersection maps of DorA and cACC.

Causal interaction between amygdalar subregions and associated networks. Causal analysis.  
To investigate causal interaction between the three amygdala subregions (VLA, MedA and DorA) and their asso-
ciated functional networks (PerN, AffN and AveN), GCA was proposed to estimate the effective connectivity 
between the reference time series of each amygdalar subregion and each voxel’s time series of its corresponding 
network. The time-series-relevant GCA was performed using REST-GCA in the REST toolbox (http://www.rest-
fmri.net/forum/REST_V1.8). GCA assesses how well the current signal at a given node may be predicted from 
signals at previous time points in other nodes of the network, and GC is often used for fMRI data analysis via 
vector autoregression, as denoted by the following equations:
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where Xt and Yt denote two time series, an and α′n represent symbol path coefficients, βn and β ′
n represent autore-

gressive coefficients, Zt denotes covariates, and Et and ′Et  represent residuals. In our study, the time series for each 
amygdalar subregion (VLA, MedA or DorA) was defined as time series X, and the time series of each voxel in its 
interconnected social network (PerN, AffN or AveN) was defined as Y. GC between each amygdalar subregion 
and voxels of the respective brain network was studied using bivariate coefficient GCA. Finally, we converted 
GCA maps for all subjects to z-values using Fisher’s r-to-z transformation.

statistical Analysis. One-sample t-test. Within-group analysis of GC between VLA and PerN, MedA and 
AffN, and DorA with AveN was conducted using a one-sample t-test, by which we compared the z-value of 
each voxel to a normal distribution with mean of zero and an unknown variance (p < 0.05, FDR corrected). 
Subsequently, we extracted mean GC values that were statistically significant and computed their Granger causal 
net flow.

Age-related GLM. Specifically, we created an age-related GLM to examine GC changes between amygdalar sub-
regions (VLA, MedA and DorA) and their corresponding brain networks (PerN, AffN and AveN) during life. In 
order to investigate the casual interaction between amygdalar subregions and social networks for ageing individ-
uals, we established multiple linear regression equations with gender as covariate and age2 as the predictive factor. 
Concretely, the GLM model can be expressed with the following equations:

= + × + ×

= + × + × + ×

a a age a sex
a a age a age a sex

EC
EC (2)

0 1 2

0 1 2
2

3

The age-relevant prediction model was generated using Akaike’s information criterion66, and the regression 
coefficients of model predictor variables were statistically analysed using a one sample t-test. When GC between 
the amygdalar subregion and network exhibited significant quadratic age effects, the peak age could be calculated 
using the following formula:

=
−a

a
Age

2 (3)peak
1

2

Behavioural scale correlation analysis. To investigate the age-dependent relationship between causal interaction 
and emotional cognition, we examined correlation between the GC values and behavioural parameters, including 
SRS and STAI (p < 0.05), during life. We then plotted the fitted quadratic curve of the obtained GC values versus 
age, and also computed Pearson’s correlation between the GC values across the range that centered on the peak 
age and behavioural scales (p < 0.05).
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