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Nanopore sequencing reveals genomic
map of CTX-M-type extended-spectrum β-
lactamases carried by Escherichia coli strains
isolated from blue mussels (Mytilus edulis)
in Norway
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Abstract

Background: Environmental surveillance of antibiotic resistance can contribute towards better understanding and
management of human and environmental health. This study applied a combination of long-read Oxford Nanopore
MinION and short-read Illumina MiSeq-based sequencing to obtain closed complete genome sequences of two
CTX-M-producing multidrug-resistant Escherichia coli strains isolated from blue mussels (Mytilus edulis) in Norway, in
order to understand the potential for mobility of the detected antibiotic resistance genes (ARGs).

Results: The complete genome sequence of strain 631 (E. coli sequence type 38) was assembled into a circular
chromosome of 5.19 Mb and five plasmids (between 98 kb and 5 kb). The majority of ARGs cluster in close
proximity to each other on the chromosome within two separate multidrug-resistance determining regions (MDRs),
each flanked by IS26 transposases. MDR-1 carries blaTEM-1, tmrB, aac(3)-IId, aadA5, mph(A), mrx, sul1, qacEΔ1 and
dfrA17; while MDR-2 harbors aph(3″)-Ib, aph(6)-Id, blaTEM-1, catA1, tet(D) and sul2. Four identical chromosomal copies
of blaCTX-M-14 are located outside these regions, flanked by ISEc9 transposases. Strain 1500 (E. coli sequence type
191) exhibited a circular chromosome of 4.73 Mb and two plasmids (91 kb and 4 kb). The 91 kb conjugative plasmid
belonging to IncI1 group carries blaCTX-M-15 and blaTEM-1 genes.

Conclusion: This study confirms the efficacy of combining Nanopore long-read and Illumina short-read sequencing
for determining complete bacterial genome sequences, enabling detection and characterization of clinically
important ARGs in the marine environment in Norway, with potential for further dissemination. It also highlights
the need for environmental surveillance of antibiotic resistance in low prevalence settings like Norway.
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Background
Extended-spectrum β-lactamase (ESBL)-producing En-
terobacteriaceae represent an emerging public health
threat, for which research and urgent development of new
antibiotics is needed [1]. Extended-spectrum β-lactamases
are a group of enzymes that hydrolyze β-lactam antibi-
otics, including 3rd generation cephalosporins [2]. These
enzymes are divided into molecular class A, C and D,
based on the protein sequences [3]. Among ESBLs,
plasmid-mediated class A β-lactamases belonging to the
CTX-M-type are prominent ESBLs in the clinics, espe-
cially in Europe [4, 5]. CTX-M-producing Escherichia coli
are dominated by a few high-risk clones, such as sequence
type (ST) 131 and ST38 [6, 7]. E. coli ST131 and ST38 are
recognized as enteroaggregative E. coli (EAEC) that can
also cause extra-intestinal infections, including blood
stream infection and urinary tract infection [8–10].
Environmental niches, including the aquatic environ-

ment, serve as a source of and/or a dissemination route
for antibiotic resistance genes (ARGs) and resistant bac-
teria [11–14]. Clinically relevant ARGs and pathogens
are introduced into the environment via different routes,
such as through sewage contamination [15], waste from
livestock production [16] and runoff from land [17].
Once introduced into the environment, ARGs and path-
ogens interact with environmental bacteria when shar-
ing, at least temporarily, the same habitats [18].
Proximity and interactions within environmental niches
provide opportunities for acquisition of resistance genes
via horizontal transfer [18, 19]. Moreover, environmental
pollution with antibiotics and other antimicrobial sub-
stances lead to selection of ARGs and resistant bacteria
[20, 21]. Such environments, thus, may be hotspots for
further dissemination of ARGs and resistant bacterial
strains.
The southern and eastern countries in Europe

present high-risk of antimicrobial resistance (AMR)
due to, in part, extensive use of antibiotics [22, 23].
For instance, the prevalence of invasive E. coli isolates
resistant to 3rd generation cephalosporins was 29.5%
in Italy, in 2017 [22]. Accordingly, the prevalence of
AMR in the environment was high [24], e.g., 15% of
the E. coli strains (n = 141) isolated from Venus
clams (Chamelea gallina) in Italy carried ESBLs [25].
In contrast, Norway represents a low prevalence set-
ting, in terms of antibiotic use [23] and prevalence of
AMR [22]. The prevalence of ESBL-positive E. coli in
Norway was 6.6 and 3.0% from blood and urine, re-
spectively, in 2017 [26]. Although there is limited
knowledge, the overall prevalence of AMR in the en-
vironment in Norway is low. In a previous study, we
detected only two ESBL-positive E. coli strains (out of
199 analyzed), isolated from blue mussels (Mytilus
edulis) in Norway [27].

With the advent of next-generation sequencing,
whole-genome sequencing is increasingly used for re-
solving questions of bacterial taxonomy as well as for
studying the genetic contents of particular strains [28].
Short-read sequencing technologies, such as Illumina
and Ion Torrent, allow fragmented genome assembly,
i.e., draft genome and, occasionally, complete closed
genome sequences [29, 30]. Draft genome sequences are
suitable for detecting genes present in a given strain and
for basic characterization and phylogenetic studies [31].
However, draft genome sequences do not reveal the
complete metabolic potential of the given strains. Long-
read sequencing technologies, such as Oxford Nanopore
and PacBio, allow assembly of complete genome se-
quences [32, 33], including the sequences of associated
plasmids, which often carry metabolic genes and ARGs.
However, owing to higher sequencing error rates associ-
ated with the long-read sequencing technologies, hybrid
assembly using a combination of low-error short-reads
as well as the long-reads, has been successfully applied
to obtain reliable, complete closed genome sequences of
bacterial strains [34].
The aim of this study was to apply a combination of

long-read Nanopore and short-read Illumina-based se-
quencing to obtain high-quality complete genome se-
quences of the two ESBL-positive E. coli strains (631 and
1500) isolated from blue mussels (M. edulis) collected
from coastal waters in Norway [27], in order to deter-
mine the genomic map of resistance genes and their po-
tential for horizontal transfer.

Results
Complete genome sequences of the two CTX-M-
producing E. coli strains
The Oxford Nanopore sequencing run generated
471,175 sequence reads for strain 631 and 576,474 se-
quence reads for strain 1500, with average read length of
7.7 kb and 6.7 kb, respectively. The longest read for
strain 631 was 105,952 bp and for strain 1500 was 125,
266 bp. The average Phred quality score of the raw reads
for Nanopore was 10.0 for both the strains (i.e., prob-
ability of error 0.1). The Nanopore-solo sequence assem-
bly yielded six contigs for strain 631 and three contigs
for strain 1500. The Illumina sequencing of strains 631
and 1500 generated 1,362,720 and 2,769,670 paired-end
reads, respectively. After quality trimming, the average
length of the reads was 227 bp for strain 631 and 211 bp
for strain 1500. The longest read was 251 bp for both
the strains. For Illumina reads, the average Phred quality
scores of the trimmed reads were 34.5 for strain 631 and
34.9 for strain 1500 (i.e., probability of error < 0.001).
The assembly of Illumina-solo sequences produced 102
and 50 contigs (> 500 bp) for strains 631 and 1500,
respectively.
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In order to obtain highly accurate closed complete
genome sequences of strains 631 and 1500, hybrid de
novo assembly of Nanopore long-reads and Illumina
short-reads was performed for each strain. The complete
genome of strain 631 (GenBank accession number:
CP040263-CP040268) was assembled into six contigs;
one contig representing a complete circular chromo-
some of 5,191,486 bp and five plasmids, ranging from
97,726 bp to 5165 bp (Table 1). All ARGs, virulence genes
(except for the espI gene detected on plasmid pEc631_1)
and biocide/metal resistance genes (BMRGs) were located
on the chromosome of this strain. Strain 1500 (GenBank
accession number: CP040269-CP040271) exhibits a
circular chromosome of 4,736,377 bp and two plasmids of
91,123 bp and 4087 bp (Table 1). This strain carries all
virulence genes and BMRGs on the chromosome.
However, β-lactamase genes blaCTX-M-15 and blaTEM-1 are
located on the plasmid pEc1500_CTX. Genome assembly
statistics and complete overview of the genome sequences
of strains 631 and 1500 are presented in Additional files 1
and 2, respectively. Additionally, a list of the virulence
genes and BMRGs detected in strains 631 and 1500 (i.e.,
gene names and their function) are presented in
Additional file 3. Conjugal transfer genes detected by
searching through the GenBank files of the annotated
genome sequences of strains 631 and 1500 are listed in
Additional file 4.

CTX-M-14 gene is located on the chromosome of E. coli
strain 631
Strain 631, belonging to ST38, carries all the ARGs on
the chromosome (Table 1). The majority of ARGs are
clustered together on the chromosome at two separate
multidrug-resistance determining regions (MDRs), each
flanked by IS26 transposases on either end. MDR-1
(25,149 bp), located between positions 1,184,422 - 1,209,
571 bp on the chromosome, carries genes conferring re-
sistance to penicillins, tunicamycin, aminoglycosides,
macrolides, sulfonamides and trimethoprim (Fig. 1a).
This region harbors blaTEM-1, tmrB, aac(3)-IId, aadA5,
mph(A), mrx, sul1, qacEΔ1 and dfrA17 genes. Addition-
ally, MDR-1 carries a chrA gene, conferring chromate
resistance [35]. MDR-2 (19,772 bp), located between po-
sitions 4,406,649 - 4,426,421 bp on the chromosome,
carries genes conferring resistance to aminoglycosides,
penicillins, amphenicols, tetracycline and sulfonamides
(Fig. 1b). This region harbors aph(3″)-Ib, aph(6)-Id, bla-
TEM-1, catA1, tet(D) and sul2 genes. Four identical copies
of the blaCTX-M-14 gene are present on the chromosome
of strain 631. Two of the blaCTX-M-14 copies are flanked
by complete IS5 and ISEc9 transposases, while the
remaining two copies are flanked by a truncated IS5 and
a complete ISEc9 transposase.

A single nucleotide polymorphism (SNP)-based phylo-
genetic tree shows that E. coli strain 631 is clustering closer
to human isolates, compared to ST38 isolates from other
animals, suggesting a possible human origin of strain 631
(Fig. 2). The number of SNPs between strains 631 and
other ST38 strains is presented in Additional file 5.

E. coli strain 1500 carries CTX-M-15 gene on a conjugative
IncI1 plasmid
The CTX-M-15-encoding plasmid pEc1500_CTX be-
longing to IncI1 group (GenBank accession number:
CP040270) is 91,123 bp and also carries blaTEM-1 gene
(Table 1). The blaCTX-M-15 gene is located between posi-
tions 8445–9320 bp on the plasmid, flanked by Tn3 and
ISEc9 transposases (Fig. 3). The ISEc9 transposase flank-
ing the blaCTX-M-15 gene in strain 1500 is identical
(100%) to the ISEc9 transposase flanking blaCTX-M-14 in
strain 631, further supporting the role of ISEc9 transpo-
sase in dissemination of CTX-M-type ESBLs [36].

Discussion
To the best of our knowledge this is the first study
reporting closed complete genome sequences of CTX-
M-producing E. coli strains (631 and 1500) isolated from
blue mussels (Mytilus edulis) in Norway. In accordance
with previous studies, we used a combination of Nano-
pore and Illumina sequencing and hybrid de novo assem-
bly combining Nanopore long-reads with the accuracy
of Illumina reads, for obtaining closed complete genome
sequences [37–41].
The multidrug-resistant E. coli strain 631 (ST38) was re-

sistant to 15 antibiotics [27]. ST38 is a known pathogenic
sequence type of E. coli, usually associated with intestinal
disease and sometimes extra-intestinal infection [8]. Des-
pite the number of plasmids harbored by this strain, all
the ARGs are located on the chromosome clustered to-
gether at two separate MDRs, both flanked by IS26 trans-
posases. MDR-1 contains two DNA fragments (17,687 bp
and 3094 bp, respectively) that are identical (> 99.9% nu-
cleotide identity) to segments of a conjugative IncFII plas-
mid pE2855–3 (92.7 kb) reported in E. coli (GenBank
accession number: AP018799) (Fig. 1a). MDR-1 also has
DNA segments that are identical (> 99.9% nucleotide
identity) to segments of a plasmid, pVPS43 (19.4 kb), re-
ported in Vibrio parahaemolyticus (GenBank accession
number: KX957970). MDR-2 contains three DNA frag-
ments (13,222 bp, 4188 bp and 1176 bp, respectively) that
are identical (> 99.9% nucleotide identity) to segments of
plasmid pKPN5 (88.6 kb), reported in Klebsiella pneumo-
niae (GenBank accession number: CP000650) (Fig. 1b).
High identity of MDRs to the segments of plasmids car-
ried by known pathogens, indicate that these regions are
potentially mobile. Strain 631 carried four identical copies
of the blaCTX-M-14 gene on the chromosome, flanked by
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Table 1 Overview of antibiotic resistance genes, virulence genes, biocide/metal resistance genes and conjugal transfer genes
detected in Escherichia coli strains 631 (GenBank accession number: CP040263-CP040268) and 1500 (GenBank accession number:
CP040269-CP040271) complete genome sequences

Strain Contig Size (bp) Plasmid
type

Antibiotic resistance
genes

Virulence genesα Biocide/metal resistance genesβ Conjugal transfer genesγ

631 Chromosome 5,191,486 – aac(3)-IId, aadA5,
aph(3″)-Ib, aph(6)-Id,
blaCTX-M-14, blaTEM-1,
catA1, dfrA17, mph(A),
mrx, qacEΔ1, sul1,
sul2, tet(D), tmrB

ecpA-E, ecpR, elfA/G,
elfC-D, eaeH, hcpA-C,
papX, fimA-I, cah, ehaB,
air/eaeX, upaG/ehaG,
upaH, ibeB-C, tia, chuA,
chuS-U, chuW-Y, sitA-D,
fyuA, irp1–2, ybtA/E/X,
ybtP-Q, ybtS-U,
espL1/L4/R1/X1, espX4–5,
espY1–4, ACE T6SS-like
gene, aec11, aec15–19,
aec22–32, two SCI-I
T6SS-like genes, hlyE/clyA

acrA-B, arsB-C, arsR, asr,
baeR-S, bcr, chrA copA,
corA-D, cpxA/R, cueO,
cusB/S, cutA/C, dsbA-C,
emrA-B, emrD/K/R/Y, nikA-E,
nikR, sodA-B, soxR-S, modA-C,
modE, evgA/S, gadA-B, gadX,
ibpA-B, marA/R, pstA-C, pstS,
tehA-B, ybtP-Q, ydeI, ydeO-P,
fabI, glpF, iclR, mgtA, mntR,
nfsA, oxyRkp, phoB, pitA, robA,
rpoS, sugE, tolC, ychH, ygiW,
yhcN, yieF, yodD, yqjH, acrD/
yffA, acrE/envC, acrF/envD,
actP/yjcG, bhsA/ycfR/comC,
comR/ycfQ, cueR/ybbI, cusA/
ybdE, cusC/ylcB, cusF/cusX,
cusR/ylcA, cutE/lnt, cutF/nlpE,
emrE/mvrC, fetA/ybbL, fetB/
ybbM, fieF/yiip, gadC/xasA,
gadE/yhiE, gadW/yhiW, hdeA/
yhiB, hdeB/yhiC, mdfA/cmr,
mdtA/yegM, mdtB/yegN,
mdtC/yegO, mdtE/yhiU, mdtF/
yhiV, mdtG/yceE, mdtI/ydgE,
mdtJ/ebrB/ydgF, mdtK/ydhE,
mdtN/yjcR, mntH/yfeP, mntP/
yebN, ostA/lptD, rcnA/yohM,
rcnB/yohN, rcnR/yohL, ymgB/
ariR, zinT/yodA, zitB/ybgR,
zntA/yhhO, zntR/yhdM, znuA/
yebL, znuB/yebI, znuC/yebM,
zraR/hydH, zraS/hydG, zupT/
ygiE, zur/yjbK

None

Plasmid
pEc631_1

97,726 IncB/O/
K/Z

None espI None traX, traV, traT, traS, traR,
traQ, traO, traN, traM,
traJ, traF, traE, traC, trbC,
trbA, traW, traP

Plasmid
pEc631_2

73,952 IncFII None None None traM, traY, traA, traL, traE,
traK, traB, traP, traV, traR,
traC, traW, traU, traN,
traF, traQ, traH, traG,
traT, traD, traI, traX,
trbB, trbC, trbE, trbF,
trbI, trbJ

Plasmid
pEc631_3

30,240 IncFII
family

None None None trbM, trbG, trbI

Plasmid
pEc631_4

7464 Col156 None None None None

Plasmid
pEc631_5

5165 Col156 None None None None

1500 Chromosome 4,736,377 – None cfaA-E, ecpA-E, ecpR,
elfA/G, elfC-D, eaeH,
hcpA-C, fimA-I, ehaB, air/
eaeX, upaG/ehaG, ibeB-C,
sitA-D, espL1/L4/R1/X1,
espX4–5, ACE T6SS-like
gene, aec15–18,
aec22–32, hlyE/clyA

cpxA/R, corA-D, nikA-E, nikR,
cusB/F/S/X, soxR-S, emrA-B,
emrD/K/R/Y, gadA-B, gadX,
cutA/C, ars, arsC-B, arsR,
dsbA-C, copA, tehA-B, modA-C,
modE, ibpA-B, sodA/B, pstA-C,
ptsS, marA/R, acrA/B, baeR/S,
evgA/S, ydeO-P, bcr, cueO, fabI,
glpF, iclR, mgtA, mntR, nfsA,
oxyRkp, phoB, pitA, robA, rpoS,

None
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ISEc9 transposases. Our results are in accordance with
previous studies reporting chromosomal CTX-M genes in
E. coli ST38 [39, 42]. Although blaCTX-M-14 was detected
on the chromosome of strain 631, the DNA fragment car-
rying blaCTX-M-14 and the flanking transposases, detected
on the chromosome of strain 631, are identical (100%) to
segments of plasmids carried by different members of the
family Enterobacteriaceae, including K. pneumoniae (Gen-
Bank accession number: CP041102), Salmonella enterica
(GenBank accession number: MH522424) and Enterobac-
ter cloacae (GenBank accession number: CP035635), sug-
gesting that blaCTX-M-14 carried by strain 631 is mobile.
IncFII is a well-known plasmid family contributing to the

worldwide spread of clinically relevant ARGs, particularly
blaCTX-M-15 [43]. We detected two IncFII plasmids in strain
631, which did not carry ARGs. Even though this is quite un-
usual, IncFII plasmids without ARGs have been reported
previously [44–47]. Further, our analysis showed that the
MDR-1 on the chromosome of strain 631 has DNA seg-
ments that are identical (> 99.9% nucleotide identity) to
DNA segments of a conjugative IncFII plasmid reported in
E. coli (GenBank accession number: AP018799) (Fig. 1a).
This suggests a likelihood that the MDR regions in strain

631 may have been transferred from IncFII plasmid onto the
chromosome by transposition [48].
E. coli strain 1500 carries CTX-M-15 gene on a conju-

gative IncI1 plasmid (pEc1500_CTX) that has high se-
quence identity (> 99.9%) with plasmid pSH4469 (91.1
kb), detected in CTX-M-15-producing Shigella sonnei
(GenBank accession number: KJ406378) isolated from
an outbreak in the Republic of Korea [49]. Plasmid
pEc1500_CTX also has high identity (> 99.9%) with CTX-
M-carrying plasmid pEK204 (93.7 kb) from an E. coli
strain (GenBank accession number: EU935740) reported
in the UK [50]. The plasmid backbone also shares high
identity (> 99.9%) to a segment of ~ 61 kb from plasmid
pHNRD174 (86.2 kb) from E. coli (GenBank accession
number: KX246268) reported in China. Although CTX-
M-14-encoding IncI1 plasmid has previously been re-
ported in Norway [51], to the best of our knowledge, this
is the first report on detection of E. coli carrying
blaCTX-M-15 on an IncI1 plasmid in the marine environ-
ment in Norway. IncI1 plasmids are widely distributed
within the family Enterobacteriaceae and are associated
with dissemination of several ARGs [52]. The presence of
CTX-M-15 gene on a conjugative IncI1 plasmid in strain

Table 1 Overview of antibiotic resistance genes, virulence genes, biocide/metal resistance genes and conjugal transfer genes
detected in Escherichia coli strains 631 (GenBank accession number: CP040263-CP040268) and 1500 (GenBank accession number:
CP040269-CP040271) complete genome sequences (Continued)

Strain Contig Size (bp) Plasmid
type

Antibiotic resistance
genes

Virulence genesα Biocide/metal resistance genesβ Conjugal transfer genesγ

sugE, tolC, ychH, ydeI, ygiW,
yhcN, yieF, yodD, ygjH, acrD/yffA,
acrE/envC, acrF/envD, acrR/YbaH,
actP/yjcG, bhsA/ycfR/comC,
comR/ycfQ, cueR/ybbI, cusA/ybdE,
cusC/ylcB, cusR/ylcA, cutE/Int,
cutF/nlpE, emrE/mvrC, fetA/ybbL,
fetB/ybbM, fieF/yiip, gadC/xasA,
gadE/yhiE, gadW/yhiW, hdeA/yhiB,
hdeB/yhiC, mdfA/cmr, mdtA/yegM,
mdtB/yegN, mdtC/yegO, mdtE/yhiU,
mdtF/yhiV, mdtG/yceE, mdtI/ydgE,
mdtJ/ebrB/ydgF, mdtK/ydhE,
mdtM/yjiO, mdtN/yjcR, mntH/yfeP,
mntP/yebN, ostA/lptD, rcnA/yohM,
rcnB/yohN, rcnR/yohL, ymgB/ariR,
zinT/yodA, zitB/ybgR, zntA/yhhO,
zntR/yhdM, znuA/yebL, znuB/yebI,
znuC/yebM, zraR/hydH, zupT/ygiE,
zur/yjbK

Plasmid
pEc1500_CTX

91,123 IncI1 blaCTX-M-15, blaTEM-1 None None traX, traV, traT, traS, traR,
traQ, traP, traO, traN,
traM, traJ, traE, traC, traA,
traA, trbC, trbA, traW, traI

Plasmid
pEc1500_2

4087 Col8282 None None None None

α,βDetails about the virulence genes and biocide/metal resistance genes are provided in Additional file 3, γDetails about the conjugal transfer genes are provided
in Additional file 4
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1500 [27] highlights the potential for transfer of CTX-M-
15 to other environmental bacteria.

Conclusion
This study highlights the usefulness of hybrid assembly
combining accurate short-reads and long-reads for
obtaining closed complete genome sequences of strains

631 and 1500. Thus, enhancing the understanding of the
genomic arrangement and potential for mobility of clin-
ically important ARGs. It demonstrates the potential role
of the marine environment in dissemination of patho-
genic E. coli strains and clinically relevant ESBLs. These
observations strengthen the notion that the environment
plays an important role in dissemination of clinically

Fig. 1 Map of chromosomal multidrug-resistance determining regions (MDR) in Escherichia coli strain 631. a MDR-1, located on the chromosome
between positions 1,184,422 - 1,209,571 bp, flanked by IS26 transposase, encoding blaTEM-1, aac(3)-IId, tmrB, mph(A), mrx, sul1, qacEΔ1, aadA5 and
dfrA17. b MDR-2, located on the chromosome between positions 4,406,649 - 4,426,421 bp, flanked by IS26 transposase, encoding aph(3″)-Ib,
aph(6)-Id, sul2, tet(D), blaTEM-1 and catA1. Arrows indicate the sizes of the ORFs and their orientations in the genome. Antibiotic resistance genes
are highlighted in red, IS26 transposases in dark blue, other transposases in blue, transcriptional regulators in green, metal resistance genes in
orange and other genes are highlighted in dark grey. Δ represents truncated genes. Grey shaded regions represent > 99.9% nucleotide identity

Fig. 2 Single nucleotide polymorphism (SNP)-based phylogenetic tree of Escherichia coli strain 631 and genome sequences of other strains of
ST38 retrieved from GenBank
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relevant ARGs and pathogens [13]. Our study also high-
lights the need for surveillance of antibiotic resistance in
the environment, especially in a low prevalence setting
like Norway, which would provide important insights for
designing mitigation strategies for coping with resistance
dissemination, before it becomes widespread.

Methods
Bacterial strains, DNA extraction and sequencing
E. coli strains 631 and 1500 were isolated from blue
mussels (M. edulis) collected along the Norwegian coast,
and characterized as described earlier [27]; the strains
631 and 1500 were denoted as strains B184 and B117,
respectively, in Grevskott et al. 2017 [27]. E. coli strains
631 and 1500 were grown overnight on Mueller-Hinton
(MH) agar (Oxoid, UK) containing 2 μg/mL cefotaxime
sodium salt (Sigma-Aldrich, USA) at 35 °C. For Illumina
sequencing, genomic DNA was extracted from the
strains using the MagNA Pure 96 DNA Small Volume

kit and a MagNA Pure 96 instrument (Roche Diagnos-
tics, Germany). For Oxford Nanopore sequencing, the
extraction and purification of high-molecular weight
DNA was achieved, following the protocol described by
Salvà-Serra et al. [53]. The DNA was quantified, using
NanoDrop™ 2000 Spectrophotometer (Thermo Fisher,
USA) assay and Qubit™ 2.0 Fluorometer with the dsDNA
BR (Broad-Range) kit (Thermo Fisher, USA). Integrity of
the DNA (i.e., > 60,000 bp) was verified, using a Gen-
omic ScreenTape kit, on a 2200 TapeStation system
(Agilent Technologies, Inc., USA).
For Illumina sequencing, Kapa HyperPlus Library

Preparation kit (Kapa Biosystems, USA) was used to pre-
pare sequencing libraries. Sequencing was performed on
Illumina MiSeq platform (Illumina, USA), using 2 × 250
bp chemistry, at the Public Health Institute, Oslo,
Norway. For Nanopore sequencing, the sequencing li-
brary was prepared, using a Rapid Barcoding kit (Oxford
Nanopore Technologies Ltd., UK). The library was

Fig. 3 Structure of plasmid pEc1500_CTX carrying blaCTX-M-15 and blaTEM-1 genes (GenBank accession number: CP040270). Arrows indicate the
sizes of the ORFs and their orientations in the genome. Antibiotic resistance genes are highlighted in red, transposases in blue, conjugal transfer
genes in green, replication initiation gene in black and other genes are highlighted in grey
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sequenced, using a MinION sequencer and a FLO-MIN
106D Flow Cell version R9.4.1 (Oxford Nanopore Tech-
nologies Ltd., UK).

Genome assembly and sequence analysis
The raw reads generated by Illumina MiSeq were quality
trimmed and assembled, using Trimmomatic version
0.36 [54] and SPAdes version 3.11.1 [55], respectively.
The quality of the generated Illumina reads was analyzed
with FastQC version 0.11.3 [56] and CLC Genomics
Workbench version 12.0.3 (Qiagen, Denmark). The raw
data generated by the MinION instrument were proc-
essed and demultiplexed with Guppy software version
2.3.7 (Oxford Nanopore Technologies Ltd.) and assem-
bled using Canu version 1.8 [57]. The quality of the
demultiplexed data was analyzed with NanoPlot version
1.26.3 [58].
Subsequently, a hybrid de novo assembly of Illumina

and Nanopore reads was performed, using Unicycler
version 0.4.7 [34]. Assembly statistics were obtained,
using QUAST server [59]. Average Nucleotide Identity
values based on BLAST (ANIb) [60] were calculated,
using the server JSpeciesWS [61], between E. coli strains
631, 1500 and E. coli DSM 30083T (GenBank accession
number: AGSE00000000), to confirm the species iden-
tity. Genomes were annotated, using the Prokaryotic
Genome Annotation Pipeline (PGAP) version 4.8 at the
National Center for Biotechnology Information (NCBI)
[62]. Complete overview of the genome sequences of
strains 631 and 1500 were obtained, using GView Server
version 1.7 [63]. Genetic maps were produced, using
SnapGene® software version 4.3.8.1 (GSL Biotech, USA).
Multi-locus sequencing types (MLSTs) were examined,
using the MLSTs tool described by Larsen et al. [64],
with E. coli #1 MLST profile [65]. Plasmid replicons
were typed, using PlasmidFinder 2.0 [66], as well as
BLASTP analysis of the replication initiation (Rep) se-
quence against the NCBI database. The presence of
ARGs was examined, using ResFinder 3.2 [67] and
CARD 3.0.7 [68]. Virulence genes were analyzed, using
the Virulence Factors Database (VFDB) [69], and
BMRGs were examined, using the BacMet database 2.0
[70], using the script BacMet-Scan.pl against the data-
base of “Experimentally confirmed resistance genes”.
Conjugal transfer genes were examined by searching
through the GenBank files of the annotated genome se-
quences of strains 631 and 1500.

Comparative analysis of E. coli strain 631
A SNP-based comparative analysis of the E. coli strain
631 (ST38) with other strains of identical ST from differ-
ent sources and countries was performed as described
by Sabat et al. [71]. Briefly, the assembled genome se-
quences in FASTA format were analyzed, using the tool

CSI Phylogeny 1.4 [72]. The parameters minimum depth
at SNP positions, minimum relative depth at SNP posi-
tions, minimum distance between SNPs and minimum
SNP quality were disabled, while the minimum read map-
ping quality and z-score were kept by default at 25 and
1.96, respectively. The SNP-based phylogenetic tree was
displayed on-line with the Interactive Tree Of Life (iTOL)
[73]. The details of the strains of E. coli ST38 included in
the comparative analysis are presented in Additional file 6.
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