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Abstract
Since the discovery of the base excision repair (BER) system for DNA more
than 40 years ago, new branches of the pathway have been revealed at the
biochemical level by   studies. Largely for technical reasons, however,in vitro
the confirmation of these subpathways   has been elusive. We reviewin vivo
methods that have been used to explore BER in mammalian cells, indicate
where there are important knowledge gaps to fill, and suggest a way to address
them.
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Introduction
Cellular DNA is continuously damaged by hydrolytic reactions 
and metabolic by-products such as free radicals, which results in 
a wide array of base damages as well as various forms of abasic  
(AP) residues and deoxyribose fragments1. Damage from environ-
mental agents adds to this burden. Much of the endogenous damage,  
including most oxidant- or alkylation-induced base lesions, 
is corrected by the base excision DNA repair (BER) system.  
The pathways have been summarized in many recent reviews2,3. 
Briefly, a set of DNA glycosylases excises the base lesions to generate 
AP sites that, along with those generated by spontaneous purine 
loss, are funneled into the central pathways of BER when they are 
cleaved by an AP endonuclease. In mammalian cells, the main such 
enzyme is Ape1, which remains at the cleaved site to recruit the 
next enzyme in the pathway, DNA polymerase β (Polβ). Polβ is 
quite an inefficient polymerase that may insert only a single nucle-
otide before completing excision of the residual AP residue to per-
mit DNA ligation. The net result is so-called “short-patch” BER, or 
more correctly a single-nucleotide pathway (SN-BER). Other vari-
ations of SN-BER have been identified: some DNA glycosylases 
harbor an AP lyase activity that can yield an unsaturated AP residue 
on the 3’ terminus at the resulting strand break. Excision of the  
3’ residue by Ape1 enables Polβ to fill the gap, leading to DNA liga-
tion. Still another reported variation is Ape1 independent4,5, with 

the dual lyase activities of NEIL1 or NEIL2 (which are also DNA 
glycosylases) removing the AP residue to yield a 3’-phosphate. The 
phosphatase activity of polynucleotide kinase can generate a 3’-OH 
with the remaining repair steps as above to yield SN-BER.

About 20 years ago, in vitro studies demonstrated a “long-patch” 
pathway (LP-BER)6–8. The key features of LP-BER are the repair 
DNA synthesis of a more extended segment, 2–10 nucleotides  
typically (Figure 1A), and may involve additional DNA polymer-
ases. The extended synthesis prevents the excision of the AP  
residue by Polβ while generating a displaced oligonucleotide 
“flap” that requires enzymes such as the FEN1 nuclease to remove 
it. Ligation then completes the repair. Even for lesions such as  
uracil in DNA, which would seem to be handled effectively by 
SN-BER, a substantial fraction of the repair can occur through this 
pathway in cell-free extracts9. Chemical reduction of an AP site, 
which prevents its removal by Polβ, caused all the repair to go by 
LP-BER, and it was speculated that some unknown modified AP 
lesions might require the pathway7. At least one naturally occur-
ring DNA lesion, 2-deoxyribonolactone, which is generated by 
many oxidants including intracellular free radicals, can be handled 
only by LP-BER10,11. But it is worth noting that virtually all the  
mechanistic details of BER that we know are the result of in vitro 
studies.

Figure 1. BER products and methods to detect repair in vivo. A. The products of base excision DNA repair (BER) pathways. Left, single-
nucleotide BER (SN-BER), which replaces only the lesion (grey star) itself. Right, “long-patch” BER (LP-BER), which replaces the lesion 
plus at least the nucleotide 3’ to it to generate repair patches of 2–10 nucleotides. The question mark indicates the uncertainty about the 
relative contribution of SN-BER and LP-BER in vivo. B. Schematic of the comet assay, with electrophoresis moving more DNA out of the 
cell with damage-related strand breaks (upper) than out of the cell with an intact genome (lower). C. Schematic of single-molecule tracking 
in Escherichia coli. A DNA repair protein is very mobile in the absence of induced damage. DNA-damaging treatment results in longer 
residence times at the lesion sites. The total observation time is <1 second. D. Host-cell reactivation (HCR) assay restoring gene expression 
to result in a detectable product (e.g. fluorescence). The star indicates a DNA lesion.
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In vivo assays to study BER
A few approaches have been employed to investigate BER in vivo. 
These mainly include cell biology and transfection-based meth-
ods such as the comet assay, live cell imaging, and the host-cell  
reactivation assay.

The comet assay, first used by Ostling and Johanson12 and fur-
ther developed by Singh et al.13, is widely used to follow DNA 
damage and repair in mammalian cells. Different versions of the  
assay measure DNA double-strand breaks (the neutral comet 
assay) or single-strand breaks and alkali-labile sites such as AP 
lesions (the alkaline comet assay). After treatment and incuba-
tion, the cells are cast in low-melting agarose and lysed with mild  
detergent in a high-salt buffer. The gentle lysis permeabilizes the 
cells and results in nucleoids, large structures with supercoiled 
DNA loops attached to nuclear matrix14. Breaks in the DNA  
loosen these structures, with denaturation at alkaline pH causing 
further loosening. When the gel-embedded cells are subjected to 
an electrical field, very little DNA moves out into the gel from 
cells not treated with DNA-damaging agents. The looser structures 
in damaged genomes allow more DNA to be electrophoresed out 
of the cells, and it travels further, leading to the formation of the 
eponymous “comets” that are visualized using simple fluorescent 
stains (Figure 1B). The intensity and length of the comet tail rela-
tive to the DNA retained in the nucleus reflects DNA breakage, 
and the reduction of the comet signal indicates repair15. Modifica-
tions of the comet assay to detect some DNA lesions more spe-
cifically include the use of DNA repair enzymes, for example 
Escherichia coli endonuclease III (for oxidized pyrimidines) and  
formamidopyrimidine-DNA glycosylase (for oxidized purines). 
However, each of those enzymes acts on several base lesions, 
and both cleave AP sites by the lyase mechanism. As a somewhat 
inverse application, an in vitro comet assay involves incubating 
DNA nucleoids that contain known amounts of damage with cell-
free extracts to measure the repair capacity of cells providing the 
extracts16,17. That approach is subject to similar limitations of spe-
cificity as the use of enzyme reagents, although the results should 
relate to the overall cellular BER capacity. Further general limita-
tions of the comet assay to measure BER are that no treatment agent 
generates only a single DNA lesion, that some level of BER lesions 
already exists, even in non-treated cells, and that the range of the 
assay is restricted18.

Another approach to assess DNA repair in vivo is fluorescence 
microscopy, notably techniques such as fluorescence recovery after 
photobleaching and single-molecule tracking via super-resolution  
microscopy19. The dynamics of FEN1 at sites of DNA dam-
age following laser irradiation have been investigated using the  
photobleaching approach20. Quantification can be difficult in stud-
ies such as this, as the numbers of lesions and protein molecules 
per focus are unknown. This problem can be resolved using super- 
resolution microscopy, which allows tracking of individual  
molecules in real time inside cells21. Uphoff et al.22 employed a 
combination of single-molecule tracking and photoactivated locali-
zation (Figure 1C) to evaluate the DNA synthesis and ligation 
steps of BER in bacteria. Fluorescent-tagged DNA polymerase I 
and DNA ligase were used to measure the reaction rates, spatial 

distribution, and diffusion characteristics of the proteins in methyl  
methanesulfonate-damaged and in undamaged cells. These meth-
ods can provide insight into the kinetics of specific proteins, overall 
repair rates, and the organization of repair processes in vivo. Similar 
to the comet assay, which also allows us to assess the repair capacity 
of individual cells, the single-cell imaging approach enables resolu-
tion of the molecular heterogeneity in DNA repair among cells19,23.
However, one must be cognizant of the fact that the measure-
ments are done under experimental conditions which are different  
from actual physiological settings. Moreover, it is important to 
verify that the florescent-tagged proteins behave similarly to the 
endogenous proteins19,24.

The host-cell reactivation (HCR) assay is another method to moni-
tor cellular repair activity, and it can be employed using viruses 
or transfected plasmid molecules. The phenomenon was first 
used to explain the survival of a UV-irradiated bacteriophage in 
host cells treated with UV and helped lay the groundwork for the  
discovery of nucleotide excision repair25. Later, it was adapted 
to study the repair capacity of cells by transfecting them with  
plasmids26–28. Instead of survival, the plasmid transfection assay 
reports the reactivation of expression of a reporter gene (e.g. luci-
ferase) that is blocked by DNA damage and restored by repair 
dependent on the cellular machinery (Figure 1D). Depending 
on the type of damage introduced in the DNA, specific repair  
systems can be probed. This approach has been extensively 
used to study the repair of UV-induced damage via nucleotide  
excision repair in mammalian cells27. The HCR assay has also 
been used to study the reactivation of viruses treated with mono-
functional methylating agents29,30. Plasmid DNA treated with oxi-
dizing agents such as methylene blue plus visible light has been  
employed to study the BER capacity of eukaryotic cells31. The 
approach is not well suited to provide any mechanistic details on 
how the repair processes in the cell take place, although it can 
be coupled with known genetic deficiencies to test some models. 
Indeed, a multiplexing approach has been developed to assess 
multiple DNA repair pathways simultaneously by using plasmids 
encoding fluorescent proteins with different excitation and emis-
sion maxima, which also allows the use of flow cytometry for the 
quantification32.

Sattler and co-workers utilized HCR to demonstrate LP-BER  
in vivo33. The indirect approach developed by them was based on 
evaluating the expression of a reporter gene encoding a fluorescent 
protein following the repair of a single base lesion on the tran-
scribed strand. Mismatches were also inserted to produce a stop 
codon read from the transcribed strand and placed at various posi-
tions 3’ to the lesion. With this experimental design, repair synthe-
sis beyond the lesion would also correct the stop codon mismatch 
downstream, indicative of LP-BER. While interesting, this approach 
has several shortcomings, including, most importantly, the presence 
of the nearby mismatch. In addition to producing distortion of the  
DNA structure near the lesion, the mismatches would likely  
impair ligation during SN-BER, with the effect greatest for the  
mismatches closest to the lesion. The method did not allow direct  
measurement of SN-BER. While the experiments were done in a 
human tumor line deficient in the MLH1 protein, residual mismatch 
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binding or repair, or other repair processes, may well interfere with 
the interpretation.

All the transfection-based assays suffer from a common  
shortcoming: they do not account for the effects of packaging 
DNA in the nucleus into chromatin. DNA lesions in a nucleosome 
are, in general, processed more slowly than they are in the corre-
sponding free DNA, sometimes by a large difference34–36. Control-
ling nucleosome positioning in cells is feasible in some cases, but 
the fundamental problem of producing a unique DNA lesion for 
BER, at a known position, would remain a challenge. In princi-
ple, it would also be possible to construct molecules for HCR with  
assembled nucleosomes and including positions from which nucleo-
somes are excluded. It would be important to confirm that the 
nucleosomes remain in position after being transfected into cells.

Need for other in vivo assays
BER has been extensively studied in vitro. It is clear, though, that 
there is a dearth of effective techniques and assays enabling the 
evaluation of the two BER subpathways in vivo. The assays dis-
cussed above can provide information on the general cellular repair 
capacity and some kinetics of BER as well as the basis of genetic 
tests of the roles for specific proteins in vivo. However, none of 
these approaches can address the basic question of what the rela-
tive contribution of SN-BER and LP-BER is inside cells. As noted 
earlier, most in vitro studies show SN-BER to be the predominant 
pathway for some lesions37–39. Rather unexpectedly, Mosbaugh’s 
group found LP-BER to be the preferred pathway for uracil repair 
in mouse fibroblast extracts9. We also found that LP-BER predomi-
nated in the repair of even a normal AP site in mouse fibroblast 
extracts10. But the proportion can vary depending on the type of 
cell extract and other conditions, so it is hard to know what the  
in vivo distribution is. Although it seems very likely that LP-BER 
does occur in vivo, its existence in cells needs to be verified. To 
address these issues and provide deeper insights into the mechanis-
tic roles of individual DNA repair proteins, improved in vivo assays 
for BER need to be developed.

It has not been possible to follow the repair of an individual base 
lesion in genomic DNA for some of the technical reasons already 
discussed. A next-best approach would be to transfect cells with 
a plasmid DNA molecule containing a defined single lesion for 
BER. In other words, HCR but with a twist to allow analysis that 
would unambiguously distinguish the SN- and LP-BER products 
generated in cells. We are trying to develop such a method based 
on mass labeling. This approach depends on designing a plasmid 
substrate with a site-specific BER lesion, accompanied by nucle-
otides labeled with stable “heavy” isotopes at various positions 
around the site. These plasmids will be transfected into cells under  
conditions not allowing plasmid replication, with an incubation 
to permit repair and recovery for analysis. Oligonucleotides iso-
lated from the repaired DNA are resolvable by mass spectrom-
etry, depending on the number of heavy nucleotides replaced by 
normal-mass ones during the processing in vivo. Although the  
lesion nucleotide itself would not be mass labeled, SN-BER would 
be observed as the loss of sensitivity to lesion-specific enzymes 
(e.g. uracil-DNA glycosylase) in the recovered DNA molecules. 
In this way, one could directly measure the amounts of SN- and  
LP-BER, including a direct assessment of the repair patch size. 
The approach is not without technical challenges, but it has the  
potential to address some of the questions we have raised by being 
applied to a number of well-defined lesions and in various cell 
backgrounds.
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