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Abstract: Death from tuberculosis has resulted in an increased need for early detection to prevent
a tuberculosis (TB) epidemic, especially in closed and crowded populations. Herein, a sensitive
electrochemical DNA biosensor based on functionalized iron oxide with mercaptopropionic acid
(MPA-Fe3O4) nanoparticle and nanocellulose crystalline functionalized cetyl trimethyl ammonium
bromide (NCC/CTAB) has been fabricated for the detection of Mycobacterium tuberculosis (MTB). In this
study, a simple drop cast method was applied to deposit solution of MPA-Fe3O4/NCC/CTAB onto the
surface of the screen-printed carbon electrode (SPCE). Then, a specific sequence of MTB DNA probe
was immobilized onto a modified SPCE surface by using the 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling mechanism. For better signal amplification
and electrochemical response, ruthenium bipyridyl Ru(bpy)3

2+ was assigned as labels of hybridization
followed by the characteristic test using differential pulse voltammetry (DPV). The results of this
biosensor enable the detection of target DNA until a concentration as low as 7.96 × 10−13 M with
a wide detection range from 1.0 × 10−6 to 1.0 × 10−12 M. In addition, the developed biosensor has
shown a differentiation between positive and negative MTB samples in real sampel analysis.

Keywords: Mycobacterium tuberculosis; iron oxide; nanocellulose crystalline; cetyl trimethylammonium
bromide; DNA biosensor
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1. Introduction

Mycobacterium tuberculosis (MTB) is an infectious bacterium responsible for tuberculosis (TB)
pulmonary disease [1]. In 2018, around 10.0 million people were estimated to have positive symptoms
related to TB (WHO, 2019). According to the report, TB affects people of both sexes of all ages.
The largest group involves men rather than women (aged ≥ 15 years), who accounted for 57% of all the
cases. Among all TB cases, 8.6% were people living with HIV [2,3]. Various efforts have been carried
out to improve TB diagnosis to reduce the number of deaths as set by the World Health Organization
(80% reduction in TB incidence rate per year). These only can be achieved if the high-risk people are
diagnosed correctly. Hence, the most effective treatment regimen should be started as early as possible.
Over the past year, a complete medical evaluation for TB was based on laboratory diagnosis, majorly
depending on the tuberculin skin test [4], chest radiography [5], acid fast bacilli (AFB) staining [6] and
microbial culture [7]. These methods are accessible in developing countries; however, toxic reagents
and more prolonged time of analysis are needed along with highly trained personnel for successful
tests [8]. Furthermore, the implementation of nucleic acid amplification assays such as polymerase
chain reaction (PCR) is limited by high cost and poor performance under extreme field conditions [9].
Therefore, there is a need to develop another fast screening method for in situ and real-time analysis.

Due to its considerable benefits, electrochemical means have become some of the most cost-effective
analytical methods, particularly in sensing applications [10,11]. These advantages include rapid
response, high sensitivity, low cost, and ease of use [12]. In recent years, electrochemical detection
based on DNA hybridization exhibited excellent tools for DNA bioassay. Principally, this approach
mainly relies on the response of current or resistance generated by the oxidation of guanine base
and DNA intercalators [13]. Based on voltammetric methods, a metal complex has always been
used as DNA intercalator for signal measurement between the electrode surface and DNA probes
such as in the measurement of differential pulse voltammetry (DPV) and Squarewave voltammetry
(SWV) [13,14]. Meanwhile, the use of a metal complex, especially tris(bipyridine) ruthenium (II), can be
advantageous for the DNA electrochemical method to amplify the signal to obtain high sensitivity
detection [15,16]. In order to increase the sensitivity of electrochemical biosensors, further modification
is necessary to alter the surface of the electrode, particularly the conductivity of the electrode [17,18].
This can be achieved by tailoring the electrode surface with nanomaterials of high surface area and
high catalytic activity with additional unique biocompatibility behaviour [19,20]. In this context,
Fe3O4 offers tremendous potential advantages in the clinical and medical sensor, as reported in
several studies [21,22]. Since Fe3O4 is highly hydrophobic, surface modification can be made through
covalent bonding or physical adsorption using various biocompatible polymers [23]. Moreover,
the high compatibility of Fe3O4 with other polymers offers a significant potential extent to improve the
electrochemical performances of the respected biosensors. Nanocellulose crystalline (NCC) derived
from biopolymer cellulose is a class of functional nanomaterial which exhibits promising potential
for sensing application improvement. The NCC offers a plethora of outstanding properties, such as
low toxicity, eco-friendly, high surface area, and good biocompatibility that can be functionalized
easily by using different functional groups [24,25]. Previously, the NCC has been composited with
polypyrrole [26], graphene oxide [27], gold nanoparticle [28], and has successfully become a scaffolding
material for immobilization enzymes, DNA and other biomolecules to demonstrate the excellent
synergistic effect that boosted electrochemical performance.

In this present study, we reported the development of electrochemical DNA biosensor based on
Fe3O4 functionalized by 3-mercaptopropionic acid (MPA) through carboxyl (–COOH) functional group
(MPA-Fe3O4) and followed by composited with nanocellulose crystalline/cetyl trimethyl ammonium
bromide (NCC/CTAB) and, finally became MPA-Fe3O4/NCC/CTAB on screen printed carbon electrode
(SPCE). To achieve this goal, negatively charged MPA-Fe3O4 and positively charged NCC/CTAB
were incorporated through ionic interaction as a matrix for conductivity enhancement, promoting
an electron transfer and subsequently act as an immobilization platform for DNA. Although the
detection mechanisms are already known, however, the use of nanoparticles polymer composites
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based on MPA-Fe3O4/NCC/CTAB with the use of Ru(bpy)3
2+ as an electrochemical indicator has not

yet been reported in any MTB assay. Therefore, the present study can also be considered as improving
knowledge in the development of electrochemical DNA sensor. Furthermore, their interaction with
the Ruthenium complex was able to differentiate between complementary, non-complementary and
mismatch DNA for better sensitivity and selectivity of MTB detection.

2. Results

2.1. The Field Emission Scanning Electron Microscopy (FESEM) Analysis

FESEM results revealed that the morphology of the Fe3O4 in Figure 1A shows an agglomerated
and a spherical shape. Interestingly, functionalization with MPA has changed its structure to the
bundling structure of nanowire compared to uncapped Fe3O4 (Figure 1B). Subsequently, in Figure 1C,
FESEM image shows NCC morphology in the presence of CTAB displayed a nanocrystal aggregated
in the form of bundles with a width of approximately 50 nm and a length of 200 nm.
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Figure 1. Field emission scanning electron microscopy (FESEM) images of the: (A) Fe3O4;
(B) mercaptopropionic acid (MPA-Fe3O4); (C) nanocellulose crystalline functionalized cetyl trimethyl
ammonium bromide (NCC/CTAB); (D) MPA-Fe3O4/NCC/CTAB.

2.2. Electrochemical Characterization

To evaluate the interface properties of modified electrode, cyclic voltammetry (CV) was used in an
electrochemical system to study acceleration electron transfer between the electrochemical probe and
the electrode. In this study, CV experiments were carried out in 5 mM of (Fe(CN)6

3/Fe(CN)6
4) in 0.1 M

KCl consist of five different modified electrodes of (a) bare SPCE, (b) SPCE/Fe3O4, (c) SPCE/MPA-Fe3O4,
(d) SPCE/NCC/CTAB, and, (e) SPCE/MPA-Fe3O4/NCC/CTAB with scan rate 100 mV/s (Figure 2).
The bare electrode of SPCE (curve a) exhibited a well-defined oxidation and reduction peaks in
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which the semi-reversible curve of Fe(CN)6
3/Fe(CN)6

4 peak was observed. Modification SPCE with
Fe3O4 (curve b) showed an increase in the anodic peak current from 70.68 to 99.60 µA. Interestingly,
functionalization of Fe3O4 with MPA on the SPCE (curve c) showed raises of current, 22.40 µA. On the
other hand, after the modification with cationic surfactant of CTAB, as a nonconductive material, NCC
displayed increasing peak current (curve d). Subsequently, after deposition of MPA-Fe3O4/NCC/CTAB
on SPCE, a large increase in peak current (177.18 µA) was observed. For comparison, bare SPCE
has been studied using the same basic protocol. In this case, the CVs in 5.0 mM [Fe(CN)6]4−/3−

solution containing 0.1 M KCl at different scan rates were used. The electroactive surface area of
SPCE/MPA-Fe3O4/NCC/CTAB modified electrode was calculated based on the Randles–Sevcik equation
ip = 2.69 × 105 n3/2AD1/2Cv1/2, where ip = maximum current (ampere), n = number of electron transfer
(in this work n = 1), D = diffusion coefficient (cm2/s) of [Fe(CN)6]3−/4− solution (7.6 × 10−6 cm2/s),
A = electrode area (cm2), C = concentration (mole·cm−3) and v = scan rate (mV/s) [29]. As a result, the
calculation electroactive surface area of the SPCE/Fe3O4/NCC/CTAB modified electrode to be 0.167 cm2

as compared to the bare SPCE of 0.076 cm2. Moreover, the additional information from the plotted
graph of anodic and cathodic peak currents against the square root of the scan rate displayed the
linearity of the plots (R2 = 0.998).
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Figure 2. Cyclic voltammograms behavior: (A) (a) bare SPCE, (b) SPCE/Fe3O4, (c) SPCE/MPA-Fe3O4,
(d) SPCE/NCC/CTAB and (e) SPCE/MPA-Fe3O4/NCC/CTAB in 5.0 mM K3Fe(CN)6/0.1 M KCI with scan
rate, 100 mV/s; (B) Plot of anodic and cathodic peak current (Ip) vs. square root of scan rate (V 1/2) of
bare SPCE, and; (C) SPCE/MPA-Fe3O4/NCC/CTAB.
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2.3. Electrochemical Performance of Fabricating Electrochemical DNA Biosensor

Figure 3 shows current measurements in the presence of Ru(bpy)3
2+, which consist of

SPCE/MPA-Fe3O4/NCC/CTAB/EDC/NHS (curve a), SPCE/MPA-Fe3O4/NCC/CTAB/EDC/NHS/DNA
(curve b), SPCE/MPA-Fe3O4/NCC/CTAB/EDC/NHS/DNA-DNA (curve c), respectively. In the absence
of DNA, Ru(bpy)3

2+ displayed the oxidation signal at 1.1 V and reduction signal at 0.8 V (curve a).Molecules 2020, 25, x FOR PEER REVIEW 5 of 14 
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2.4. Selectivity and Sensitivity of the Developed Electrochemical DNA Sensor

Subsequently, the selectivity property of developed biosensor (curve a) was further investigated
with single stranded DNA (ssDNA) (curve b), mutation DNA (curve c), non-complementary DNA
(curve d) and complementary DNA (curve e) using DPV analysis as shown in Figure 4. It is pertinent
to note that the peak current produced esulted from the Ru(bpy)3

2+ oxidation peak. As can be seen,
the lowest peak current was observed on the DPV signal in the absence of DNA target on the modified
electrode (curve a). Furthermore, various concentrations of ssDNA (1.0 × 10−6 M to 1.0 × 10−12 M) were
initially hybridized on the modified electrode. Subsequently, the current changes in DPV were recorded
in Ru(bpy)3

2+. Comparison between previous electrochemical studies using various nanomaterials
and biomolecules, based on the screen-printed electrode for tuberculosis detection, is summarized in
Table 1.
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Figure 4. Differential pulse voltammetry (DPV) curve for oxidation of Ru(bpy)3
2+:

(A) (a) SPCE/MPA-Fe3O4/NCC/CTAB/EDC/NHS, (b) SPCE/MPA-Fe3O4/NCC/CTAB/EDC/NHS/DNA
probe, (c) SPCE/Fe3O4/NCC/CTAB/ EDC/NHS/mutation-DNA, (d) SPCE/MPA-Fe3O4/NCC/CTAB/

EDC/NHS/non-complementary-DNA, (e) SPCE/MPA-Fe3O4/NCC/CTAB/ EDC/NHS/DNA-DNA target,
in TE buffer (pH 8) containing 25µM Ru(bpy)3

2+; (B) DPV curve at different concentration of complementary
target DNA. Inset is a linear relationship between the DPV peak current (Ip) and the different concentrations
of complementary DNA (from a to g were 1.0 × 10−6 M to 1.0 × 10−12 M) in TE buffer pH 7.

Table 1. Comparison between the present work and other reported techniques for the detection of
tuberculosis (TB) developed on screen-printed electrode.

Nanomaterial 1 Bio- Molecule Inter- Calator Limit of Detection Real Sample Reference

Gr/ppy/SPCE DNA MB 7.8 × 10−7 M No [30]
RGO/TNCC/SPCE PNA MB 1 × 10−13 M Yes [25]

Gr/ppy/SPG Antibody - 5 ng/mL Yes [31]
CdSe/ZnS

QD/SiNP/SPCE Antibody H2O2 1.5 × 10−10 g/mL No [32]

MPA-Fe2O3/NCC/
CTAB/SPCE DNA Ru(bpy)3

2+ 7.96 × 10−13 M Yes This work

1 Gr/ppy/SPCE (graphene/polypyrrole/screen printed carbon electrode); RGO/TNCC/SPCE (reduced graphene
oxide/TEMPO-nanocellulose/screen printed carbon electrode); SPG (screen printed gold); CdSe/ZnS QD/SiNP/SPCE
(cadmium selenide/zinc sulfide quantum dots/silica nanoparticles).
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2.5. Detection of PCR Product of Mycobacterium Tuberculosis

Several samples of Mycobacterium tuberculosis from PCR amplified product was tested as DNA
target by using the developed electrochemical biosensor for applicability studies. In Figure 5A,
the result from analyzed agarose gel electrophoresis separation showed a fragments band at 157 bp
was an indication of positive results related to MTB. Each line from agarose gel represent positive
control (D1), negative control (D2), negative MTB sample (D3), MTB samples (D4, D5, D6 and D7),
and Mycobacterium other than tuberculosis (MOTT), such as Staphylococcus aureus (D8), respectively.
Subsequently, the same sample was evaluated by the fabricated DNA biosensor for real time setting,
and the current produced was compared, as presented in Figure 5B,C. As a result, the DPV response
showed an increase in the peak current using a positive control sample (Curve D1) and MTB positive
samples (Curve D4, D5, D6, and D6) compared to ssDNA probe (Curve D0).
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Figure 5. (A) Gel electrophoresis photographs of polymerase chain reaction (PCR) products obtained
from D1 to D8; (B) DPV response for detection of D1 to D8 and; (C) DPV peak currents responding to
the PCR products which was obtained from D1 to D8.

3. Discussion

3.1. The Field Emission Scanning Electron Microscopy (FESEM) Analysis

Figure 1A exhibited a result which is similar to the observation reported by previous study [33].
The bundling structure (Figure 1B) suggests the other way around forming Fe3O4 slender structures
like nanowire array without the need for any precipitation and a subsequent microwave hydrothermal
process, as reported in the previous study [34]. The agglomeration of the nanocrystals (Figure 1C) might
be due to the evaporation of water during the sample preparation [35]. Subsequently, the morphology
of the resulting composites of MPA-Fe3O4/NCC/CTAB showed the bulky nanoparticle agglomerated
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together (Figure 1D). This could be due to intermolecular forces that mediated the interaction between
the molecules of the nanoparticles.

3.2. Electrochemical Characterization

The modified SPCE with Fe3O4 (curve b) was able to facilitate the electron transfer kinetics
in order to offer much higher conductivity [36]. Furthermore, the functionalization of Fe3O4 with
MPA (curve c) was able to assist electron acceleration to the electrode surface. On the other hand,
the SPCE modification with CTAB and NCC exhibited the synergistic effect between MPA-Fe3O4 and
NCC/CTAB to facilitate the electron transfer kinetics of Fe(CN)6

3/Fe(CN)6
4 (curve e). In addition,

a further experiment was performed to calculate the real electroactive area, an important parameter to
be considered in the development of electrochemical DNA biosensor. The results from CV demonstrate
that CTAB was able to provide conductive properties to NCC in order to accelerate the electron
transfer on the electrode surface. As previously reported, the introduction of the CTAB surfactant has
increased the dispersion of cellulose nanocrystals (CNCs) and the dispersive effect of nanoparticles
increases the conductive probability [27,37]. The results also show that the electroactive surface
area of SPCE/MPA-Fe3O4/NCC/CTAB was increased by approximately 54.5% compared to the bare
SPCE. This increment shows the ability of the developed electrochemical for providing a wide area
platform [32] for DNA immobilization; thus, it can influence the sensitivity of detection [18,38].
Furthermore, the linearity of the plots has suggested that the electron transfer occurred was due to the
diffusion-controlled electron transfer process [27,39].

3.3. Electrochemical Performance of Fabricating Electrochemical DNA Biosensor

The use of Ru(bpy)3
2+ as the electrochemical indicator was expected to be able to distinguish

between single stranded DNA (ssDNA) and double stranded DNA (dsDNA) to achive a highly sensitive
response from the developed biosensor. As previously reported, there are at least three DNA-binding
modes with metal complexes available, consisting of electrostatic attraction, intercalation, and groove
binding [40,41]. In this study, the interaction between positive charges of Ru(bpy)3

2+ and negative
charges of DNA could occur with combinations of all of these modes. Furthermore, the increase in
the peak current after the DNA hybridization suggested that Ru(bpy)3

2+ binds to the groove of the
DNA duplex in which the interaction occurred between the Ru(bpy)3

2+ and the phosphate backbone,
indicating the intercalation of long-range guanine oxidation in DNA duplexes [42].

3.4. Selectivity and Sensitivity of the Developed Electrochemical DNA Sensor

The drastically increased DPV peak current was observed after DNA immobilization on the
modified electrode indicating successful Ru(bpy)3

2+ intercalation into the DNA (curve b). Furthermore,
the highest peak current was shown after hybridization with the complementary target DNA (curve e),
indicating that a large amount of Ru(bpy)3

2+ interacted with dsDNA through the binding modes
mechanism, as mentioned in Section 3.3. Moreover, it is apparent from this study that the binding
between DNA and mutation DNA (curve c) resulting in an insignificant increase in current due to
non-specific binding. This result shows the ability of the developed electrochemical biosensor to
discern the DPV signal between complementary DNA, mutation DNA, and non-complementary DNA
in the presence of Ru(bpy)3

2+. The results also show that the oxidation peak increased linearly with
the increased concentration of complementary target DNA correspond with the linear calibration
curve obtained in Figure 4B [Y = 0.6936 log (X) + 11.47] where Y is the peak current and log (X) is the
logarithm of the target DNA concentration with a correlation coefficient of R2 = 0.9896. Meanwhile,
the limit of detection (LOD) was calculated based on 3σ/S [18] where σ is the relative standard
deviation (RSD) of blank (n = 3) and S represents slope of calibration curve with the LOD obtained
was 7.96 × 10−13 M. The reproducibility of the fabricated DNA sensor was evaluated by using an eight
replicate system with the RSD value calculated to be at 3.87% (n = 8). The results indicate that the
method is consistent within the error limit and meaningful for the designed biosensor. Furthermore,
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the stability study of the fabricated DNA sensor displayed a good result after it was stored at 4 ◦C
for 7 days with minimum loss of activity. The comparison results from Table 1 clearly indicate that
the developed DNA biosensor displayed a good analytical performance if compared to the previous
reported electrochemical biosensor in terms of the limit of detection.

3.5. Detection of PCR Product of Mycobacterium Tuberculosis

The developed electrochemical biosensor was exposed to PCR product from real sample MTB.
Compared to traditional PCR, the developed electrochemical biosensor does not require a step of
visualization of amplified products by gel electrophoresis, which may be time-consuming and costly.
Following the preparation step for electrode hybridization, as mentioned in Section 4.9, it can be seen
that the higher peak current produced resulted from complementary binding between the ssDNA
probe and MTB-positive sample on the modified electrode. Meanwhile, the DPV response for D2, D3,
and D8 samples resulted in a decreased current response compared to D1, D4, D5, D6 and D7 sample
indicated to the lack of hybridization occurred between DNA probe and PCR product. In the absence
of the hybridization case, this is possibly due to the non-specific interaction, which is in agreement with
the DPV analysis using synthetic DNA (Figure 4A). The results from this study show that a significant
DPV response was obtained to distinguish a signal between positive and negative MTB and, therefore,
the fabricated electrochemical DNA sensor demonstrated good potential for selectivity and effectively
detection toward the MTB from the PCR product.

4. Materials and Methods

4.1. Reagents

Iron oxide (Fe3O4) was obtained from Materials Synthesis and Characterization Laboratory, Institute of
Advanced Technology, Universiti Putra Malaysia (ITMA). Tris (2,2′-bypridyl) dichlororuthenium(II)
hexahydrate (Ru(bpy)2+), cetyltrimethylammonium bromide (CTAB), ethylenediaminetetraacetic
acid (EDTA), Tris HCI NH2C(CH2OH)3 · · · HCl, potassium ferricyanide (K3[Fe(CN)6]), and
N-hydroxysuccinimide (NHS) were obtained from Sigma-Aldrich (Steinheim, Germany). Cellulose
nanocrystalline (NCC) was purchased from the Process Development Centre, University of Maine.
N-ethyl-N-(3-(dimethylaminopropyl) carbodiimide (EDC) was bought from Fluka (Switzerland).
3-mercaptopropanoic acid (MPA) was purchased from R & M chemicals. All other chemicals were of
analytical reagent grade. Meanwhile, synthesized oligomers were purchased from 1st Based Laboratory
Sdn. Bhd., Malaysia and based on sequences listed in Table 2 below:

Table 2. Oligonucleotide sequences used in this works.

Name of the DNA Strand DNA Sequences

Amine Probe DNA 5′-/5AmMC12/CTC GTC CAG CGC CGC TTC GG-3′

Target DNA 5′-CCG AAG CGG CGC TGG ACG AG-3′

non-complementary DNA 5′-TTT GGT ATT ATT GTT CAT GT-3′

Mutation DNA 5′-CTC GTC CAG CGC CIC TTC GG-3′

Primer MTB Forward 5′-CGT GAG GGC ATC GAG GTG GC-3′

Primer MTB Reverse 5′-GCG TAG GCG TCG GTG ACG AA-3′

4.2. Real Sample Application

The genomic DNA of the MTB was extracted from the sputums of patients who were diagnosed
with TB (positive), which were provided by the Institute for Medical Research (IMR), Malaysia. In order
to amplify the obtained products, polymerase chain reaction (PCR) was carried out using the mixture
of primers, as stated in Table 1. After 30 cycles of PCR, the products obtained were identified by
running 5 µL of a PCR mixture in 1.0% agarose gel for 45 min and were examined under ultraviolet
light. The agarose gel electrophoresis for the positive TB sample revealed products at fragment sizes of
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157 bp, while no band appears to indicate a negative result. Meanwhile, denatured single-stranded
DNA (ssDNA) was obtained by heating dsDNA in a water bath between 50 and 60 ◦C for 10 min,
followed by rapid cooling in an ice bath.

4.3. Preparations of Stock Solutions

DNA oligomers (100 µM) were prepared in Tris EDTA (TE) buffer solution containing 10 mM
Tris-HCI and 1 mM EDTA (pH 8.0), labeled as “stock solution” and kept frozen at−20 ◦C. When required,
probe DNA, target DNA, non-complimentary DNA and mutation DNA were defrosted, and diluted
concentrations were prepared using TE buffer containing 20 mM NaCI.

4.4. Instrumentation

Screen printed carbon electrodes (SPCEs) were purchased from Dropsens (Asturias, Spain),
and consisted of the working electrode (carbon), reference electrode (Ag), and auxiliary electrode (carbon).
Voltammetric measurements were obtained using the Autolab (Ecochemie, Utrecht, The Netherlands)
potentiostat incorporated with a general-purpose electrochemical system (NOVA 1.11).

4.5. Preparation of MPA-Fe3O4

The capping process was based on previous work with slight modification [28]. Firstly, 1 wt% of
Fe3O4 was mixed with MPA using a mole ratio of 1:30 in deionized water and shaken for overnight.
The particles were washed and dried at room temperature. MPA-Fe3O4 (5 mg) was dissolved with
1 mL deionized water and mixed.

4.6. Preparation of NCC/CTAB

Modification of NCC with CTAB was prepared as previously described with slight
modifications [43]. Firstly, 1 g NCC (1 wt% suspension at pH 10 adjusted using 1 M NaOH) along with
1 wt% aqueous CTAB solution with 2:1 ratio between CTAB to sulfur was prepared. The suspension of
NCC was added slowly to the CTAB solution, and the foamy mixture was maintained at 60 ◦C for 3 h
and left stirring overnight at room temperature. Afterwards, the samples were washed to remove the
unbound CTAB by centrifugation at 10,000 rpm for 10 min.

4.7. Preparation of MPA-Fe3O4/Ncc/Ctab

The solution of MPA-Fe3O4 and NCC/CTAB was mixed well-using volume ratio of 1:1. Prior to
the SPCE modification, 7 µL MPA-Fe3O4/NCC/CTAB was prepared using drop casting method on the
SPCE and dried at room temperature overnight.

4.8. Immobilization of DNA Probe onto Modified SPCE/MPA-Fe3O4/Ncc/Ctab

The modified SPCE was immersed in 5 mM EDC and 2 mM NHS containing 50 mM PBS (pH 5.2)
for 10 min at room temperature. Subsequently, 2 µL of probe DNA (10 µM) was dropped onto
the surface of modified SPCE and incubated at room temperature for 1 h. The electrode was then
washed with TE buffer for 30 s. The washed electrode was denoted as SPCE/MPA-Fe3O4/NCC/

CTAB/EDC/NHS/DNA throughout.

4.9. Hybridization of DNA

Subsequent process was performed by hybridized 2 µL of complementary ssDNA on
SPCE/MPA-Fe3O4/NCC/CTAB/EDC/NHS/DNA probe as above with desired concentration and
incubated for 25 min at room temperature. The successful hybridize complimentary DNA on the
modified SPCE was washed with TE buffer (pH 7) and purged with nitrogen gas (N2). Subsequently,
electrochemical signals of ruthenium bypridyl (Ru(bpy)3

2+) bound to signal DNA were measured
by differential pulse voltammetry (DPV). Hybridization was monitored using different target DNA
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concentrations ranging from 1.0 × 10−7 to 1.0 × 10−13 M, followed by non-complimentary DNA,
mutation DNA, and DNA from clinical samples (from IMR). The fabrication procedure of the DNA
electrochemical biosensor can be viewed as illustrated in Scheme 1.
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5. Conclusions

The present study demonstrated a sensitive electrochemical DNA biosensor platform based on
a new composite nanomaterial. The combination of MPA-Fe3O4 and NCC/CTAB was successfully
prepared for the immobilization of the capture probe to be hybridized with the complementary target
DNA of MTB. Detection of complementary target DNA ranging from 1.0 × 10−12 to 1.0 × 10−6 M was
obtained with a limit of detection of 7.96 × 10−13 M. The DPV analysis showed that the fabricated
DNA electrochemical biosensor exhibited high sensitivity and specificity with the synthetic DNA and
also the clinical sample from the PCR product (MTB). The developed biosensor also demonstrated
a differentiation to the interferences such as negative MTB, Mycobacterium other than tuberculosis,
and the respiratory-related bacterial sample such as Staphylococcus aureus. These characteristics make
the fabricated biosensor an attractive alternative for the in site application and can provide a promising
platform for rapid diagnosis of tuberculosis.
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