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Abstract: Myeloproliferative neoplasms (MPN) are associated with an increased risk of arterial
and venous thrombosis. Pegylated-interferon alpha (IFN) and hydroxyurea (HU) are commonly
used to treat MPN, but their effect on hemostasis has not yet been studied. The aim of our study
was to determine whether IFN and HU impact the biological hemostatic profile of MPN patients
by studying markers of endothelial, platelet, and coagulation activation. A total of 85 patients
(50 polycythemia vera and 35 essential thrombocythemia) were included: 28 treated with IFN, 35 with
HU, and 22 with no cytoreductive drug (non-treated, NT). Von Willebrand factor, shear-induced
platelet aggregation, factor VIII coagulant activity (FVIII:C), fibrinogen, and thrombin generation with
and without exogenous thrombomodulin were significantly higher in IFN-treated patients compared
to NT patients, while protein S anticoagulant activity was lower. In 10 patients in whom IFN therapy
was discontinued, these hemostatic biomarkers returned to the values observed in NT patients,
strongly suggesting an impact of IFN therapy on endothelial and coagulation activation. Overall,
our study shows that treatment with IFN is associated with significant and reversible effects on the
biological hemostatic profile of MPN patients. Whether they could be associated with an increased
thrombotic risk remains to be determined in further randomized clinical studies.

Keywords: myeloproliferative neoplasms; interferon; prothrombotic markers

1. Introduction

Myeloproliferative neoplasms (MPN) are clonal diseases resulting from the dysregulated
production of mature myeloid cells by hematopoietic stem cells affected by a molecular defect.
BCR-ABL-negative MPN include polycythemia vera (PV), essential thrombocytemia (ET), and primary
myelofibrosis. They are associated with somatic mutations in 3 driver genes: JAK2, CALR, and MPL
in more than 90% of patients. The most frequent one is JAK2V617F mutation [1]. Irrespective to the
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mutation, the hyperactivation of JAK2-STAT signaling has a central role in MPN pathophysiology [2,3].
MPN are characterized by a predisposition to thrombotic events that significantly affect patient
morbidity and mortality. Thrombotic events at diagnosis and during follow up are more frequent in PV
than in ET, with the prevalence of major thrombosis at diagnosis ranging from 19% to 38% and from 7%
to 26%, respectively [4]. In both PV and ET, arterial thrombosis accounts for approximately two-thirds
of events and consists mainly in ischemic stroke and in myocardial infarction. Deep vein thrombosis,
pulmonary embolism, and splanchnic vein thrombosis are the most frequent localizations of venous
events. The pathogenesis of thrombosis is assumed to be multifactorial. An increased number and
abnormal functions of blood cells both contribute to the prothrombotic phenotype. Neoplastic cells
produce cytokines that are responsible for the proinflammatory phenotype of vascular endothelial
cells, contributing to thrombotic risk [5]. JAK2V617F expression by endothelial cells could also
alter their phenotype [6]. Thus, numerous studies have provided evidence that the pathogenesis
of MPN-associated thrombosis involves the activation of platelets (including the production of
procoagulant microvesicles), of neutrophils (including the release of proteolytic enzymes and reactive
oxygen species), of red blood cells and of endothelial cells [7].

Risk stratification in PV and ET has been designed to estimate the likelihood of thrombotic
complications [8]. Predictors of arterial complications include age >60 years, leukocytosis >11 G/L,
prior history of thrombosis, and cardiovascular risk factors [9]. High-risk PV and ET patients require
cytoreductive therapy, while low-risk patients require daily aspirin therapy [8]. Treated PV patients
with hematocrit less than 45% have a lower risk of cardiovascular death and major thrombosis than
patients with higher hematocrit [10]. The first-line drug of choice for cytoreductive therapy, in both PV
and ET, is hydroxyurea (HU), while the second-line drugs of choice include pegylated-interferon alpha
(IFN) [8].

The IFN mechanism of action in MPN has not been completely elucidated. IFN has a direct
pro-apoptotic effect on myeloid progenitors and more particularly on erythroid progenitors in humans
as well as in mouse models. A direct anti-proliferative effect of IFN on stem cells has also been
suggested as well as an immunomodulator effect that enhances the host immune response and restores
efficient immune surveillance. However, there is no clear demonstration of such mechanisms in human
MPN [11]. Interestingly, Prendergast and colleagues described that IFN treatment of mice led to a rapid
stimulation of bone marrow endothelial cells in vivo [12].

Unexpectedly, HU, but not IFN, was recently reported to enhance the expression of adhesion
molecules at the surface of red blood cells from PV patients, resulting in increased adhesion to
laminin [13]. Thus, it is important to better characterize the effect of both drugs with respect to the
activation of blood cells and coagulation.

Therefore, we evaluated biological markers of coagulation and endothelial activation in MPN
patients who were treated by IFN compared to patients treated by HU and to patients with no
cytoreductive drugs at the moment of inclusion.

2. Results

2.1. Patient Characteristics

Demographic, clinical, and biological characteristics of patients are depicted in Table 1. Among the
85 patients (50 PV and 35 ET), 22 were not treated with any cytoreductive drug (NT) at the inclusion,
35 were treated by HU and 28 by IFN. HU-treated patients were older than NT and IFN-treated patients
(p = 0.001 and 0.0002, respectively). PV was more frequent in HU-and IFN-treated patients than in the
NT group (p = 0.002). Median time from diagnosis to inclusion was 7 years in NT group, 3 years in
HU-treated group, and 10.5 years in IFN-treated group. Cytoreductive therapy had been initiated at
diagnosis in 23/35 (65.7%) and in 8/28 (28.6%) patients from HU- and IFN-treated groups, respectively.
Median time from initiation of treatment to inclusion in the study was not statistically different between
patients treated with HU or IFN. All these patients were treated for at least 4 months and were
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receiving aspirin when included. The median cumulative dose of IFN in IFN-treated patients was
10,800 µg (interquartile range, IQR: 6480–16,470). Four patients with PV were treated by phlebotomy.
Among them, one was also treated by HU. The occurrence of previous thrombotic events (arterial and
venous) was similar between the 3 groups of patients. Bleeding episodes such as epistaxis or bruises
were not statistically different according to treatment. Frequency of the JAK2V617F mutation was in
agreement with previous published data (51% in ET and 98% in PV patients) (Table S1) [1,14] and did
not differ among the NT, HU-treated, and IFN-treated patients. JAK2V617F burden was not statistically
different among the 3 groups of patients according to treatment (mean ± SD: 19 ± 20%, 34 ± 22%,
and 29 ± 25% in NT, HU-treated, and IFN-treated patients, respectively). As expected, platelet count
was higher in ET compared to PV patients (p < 0.0001), and hematocrit and hemoglobin were higher in
PV compared to ET patients (p = 0.001 and p = 0.01, respectively) (Table S1). Blood cell counts were
higher in NT patients compared to treated patients. Platelet count was higher in NT patients compared
to HU- and IFN-treated patients (p = 0.007 and p = 0.0003, respectively). HU-treated patients had also
a significant higher platelet count than IFN-treated patients (p = 0.005). Hemoglobin was higher in
NT and HU-treated patients compared to IFN-treated patients (p = 0.01 and p = 0.03, respectively)
and leukocyte count was significantly higher in NT and HU-treated patients compared to IFN-treated
patients (p = 0.0001 and p = 0.0003, respectively).

Table 1. Demographic, clinical, and biological characteristics of the study population.

Characteristics NT
(n = 22)

HU
(n = 35)

IFN
(n = 28) p-Value

Age, years 55.5 (50–68.5) 72 (62–78) 58.5 (50–66.5) 0.0001
Gender, male 14 (64) 16 (46) 9 (32) 0.08
Disease type

PV 6 (27) 24 (69) 20 (71) 0.002
ET 16 (73) 11 (31) 8 (29)

Time, years:
from diagnosis to inclusion 7 (1–12) 3 (1–11) 10.5 (5–21.5) 0.007
from diagnosis to treatment NA 0 (0–1) 7.5 (1–17.5) <0.0001
from treatment to inclusion NA 3 (0–6) 2 (1.5–3) 0.5

Aspirin dose
75 mg 10 (45.5) 24 (68.5) 22 (79) 0.1
100 mg 11 (50) 9 (26) 5 (18)
160 mg 1 (4.5) 2 (5.5) 1 (3)

History of thrombosis
Arterial 6 (27) 8 (23) 4 (14) 0.5
Venous 2 (9) 4 (11) 1 (3) 0.5

History of bleeding 0 (0) 5 (14) 7 (25) 0.04
Mutations

JAK2V617F 15 (68) 29 (83) 23 (82) 0.4
CALR 3 (14) 5 (14) 3 (11)

JAK2 exon 12 1 (4) 0 (0) 0 (0)
MPL 0 (0) 0 (0) 1 (3.5)

Triple negative 3 (14) 1 (3) 1 (3.5)
Blood cell counts
Platelets, 109/L 552 (265–732) 324 (242–437) 194 (151–323) 0.0001

Hemoglobin, g/dL 14.7 (13.4–15.8) 14.5 (13.7–15.7) 13.7 (13–14.5) 0.03
Hematocrit, % 44.1 (39.3–46.1) 44.1 (40.9–46.2) 41.0 (38.1–43.0) 0.048

Leukocytes, 109/L 6.8 (5.9–8.6) 6.1 (5.1–7.5) 4.5 (3.3–5.9) <0.0001

ET: essential thrombocythemia, HU: hydroxyurea, IFN: interferon-treated patients, NA: not applicable, NT: not treated
with a cytoreductive drug at the inclusion, PV: polycythemia vera. Results are presented as number (percentage)
for categorical variables or as median (IQR) for continuous variables; p-value for Chi-square, Mann–Whitney or
Kruskal–Wallis test.
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2.2. Markers of Endothelial Activation Are Increased in IFN-Treated Patients

To analyze the effect of IFN treatment on the activation of the vascular endothelium, we measured
the levels of von Willebrand factor (vWF) that is released from endothelial cells upon activation.
vWF antigen was higher in IFN-treated patients compared to NT and HU-treated patients (p < 0.0001
and p = 0.004, respectively) (Table 2 and Figure 1A). The same results were observed for and vWF
activity (Table 2 and Figure 1B). In a logistic regression analysis, these results remained significant
after adjustment for age, sex, and disease type (ET or PV). In HU-treated patients, vWF antigen and
activity were also significantly higher compared to NT patients (p = 0.002 and p = 0.03, respectively).
No correlation could be observed between IFN dose and vWF antigen or activity. As platelet aggregation
under high shear conditions is dependent of vWF, we evaluated shear-induced platelet aggregation
(SIPA) at 4000 s−1 in all patients. SIPA was higher in IFN-treated patients compared to NT and
HU-treated patients (p = 0.0005 and p = 0.002, respectively), independently of age, sex, and disease
type. No difference was observed between HU-treated and NT patients (Table 2 and Figure 1C).

Table 2. Biomarkers of endothelial activation according to cytoreductive treatment group.

Biomarkers NT
(n = 22) *

HU
(n = 35)

IFN
(n = 28) * p-Value

vWF antigen, % 101 (70–143) 161 (113–202) 201 (158–298) <0.0001
vWF activity, % 103 (64–141) 139 (104–168) 178 (141–240) 0.0001

SIPA, % * 10.6 (2.0–16.7) 13.0 (5.8–23.5) 30.4 (13.0–46.1) 0.0004

ET: essential thrombocythemia, HU: hydroxyurea, IFN: interferon-treated patients, NT: not treated with
a cytoreductive drug at the inclusion, PV: polycythemia vera, SIPA: shear-induced platelet aggregation,
vWF: von Willebrand factor. Results are presented as median (IQR); p-value for Kruskal–Wallis test. * Due to
missing points, SIPA results from 19 NT and 27 IFN-treated patients are presented.

Figure 1. Von Willebrand factor antigen (A), von Willebrand factor activity (B), and platelet aggregation
induced by high shear at 4000 s−1 (SIPA, C) in NT, HU-, and IFN-treated patients. Post-hoc pairwise
comparisons of parameters were performed using Mann–Whitney test (* p < 0.05, ** p < 0.01, *** p < 0.001)
and logistic regression analysis adjusted on age, sex, and disease type (ET or PV) (Ψ p < 0.05, ΨΨ p < 0.01).

2.3. IFN Treatment Does Not Activate Platelets In Vivo

To analyze the effect of IFN treatment on platelet activation in vivo, the exposure of P-selectin,
a granule secretion marker, and activated GPIIbIIIa at the platelet surface was measured. No difference
was observed between the 3 groups of patients, and levels remained in the normal ranges (Table 3).
To further examine platelet activation status, we determined the level of circulating platelet–monocyte
aggregates (PMA) and platelet–neutrophil aggregates (PNA) in the 3 groups of patients according to
treatment. Percentages of aggregates remained in the normal ranges and did not differ among the
3 groups.
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Table 3. Markers of in vivo platelet activation according to cytoreductive treatment group.

Markers NT
(n = 22)

HU
(n = 35)

IFN
(n = 28) p-Value

P-selectin, % 1.2 (0.4–1.6) 1.2 (0.4–2.0) 0.7 (0.3–1.6) 0.6
Activated GpIIbIIIa, % 0.4 (0.1–2.8) 1.8 (0.6–5.6) 1.2 (0.4–3.4) 0.055

PMA, % 6.8 (5.2–10.2) 9.0 (6.4–15.0) 8.0 (6.4–9.4) 0.2
PNA, % 7.8 (6.3–10.0) 9.4 (7.6–11.7) 7.5 (6.4–9.2) 0.08

ET: essential thrombocythemia, HU: hydroxyurea, IFN: interferon-treated patients, NT: not treated with
a cytoreductive drug at the inclusion, PMA: platelet–monocyte aggregates, PNA: platelet–neutrophil aggregates,
PV: polycythemia vera. Results are presented as median (IQR); p-value for Kruskal–Wallis test.

2.4. IFN Treatment Does Not Modify Biological Response to Aspirin Treatment

Since aspirin could influence the profile of platelet activation markers, we verified the compliance
of patients and tested the effectiveness of aspirin in inhibiting arachidonic acid-induced platelet
aggregation. A total of 12 patients were not evaluable, because of too recent aspirin intake.
Biological efficacy of aspirin was not different between the 3 groups of patients according to treatment
(Table S2).

2.5. IFN-Treated Patients Display A Hypercoagulable Profile

To investigate the hemostatic balance between anti- and pro-coagulant parameters, we first
measured pro-coagulant factors such as factor VIII coagulant activity (FVIII:C) and fibrinogen,
and anticoagulant proteins such as protein S, protein C, and antithrombin. FVIII:C was significantly
higher in IFN-treated patients compared to NT and HU-treated patients (p = 0.003 and p < 0.0001,
respectively) (Table 4 and Figure 2A). Furthermore, fibrinogen was slightly but significantly higher in
IFN-treated patients compared to NT patients (p = 0.004) (Table 4 and Figure 2B). Conversely, protein S
was significantly lower in IFN-treated patients compared to NT patients (p < 0.0001) and to HU-treated
patients (p < 0.0001) (Table 4 and Figure 2C). In a logistic regression analysis, these results remained
significant after adjustment for age, sex, and disease type. Levels of protein C and antithrombin were
in the normal range without difference among the 3 groups of patients (Table 4).

Figure 2. Levels of VIII:C (A) fibrinogen (B) and protein S activity (C) in NT, HU- and IFN-treated
patients. Post-hoc pairwise comparisons of parameters were performed using the Mann–Whitney test
(* p < 0.05, ** p < 0.01, *** p < 0.001) and logistic regression analysis adjusted for age, sex, and disease
type (ET or PV) (Ψ p < 0.05, ΨΨ p < 0.01, ΨΨΨ p < 0.001).
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Table 4. Pro- and anti-coagulant factors according to cytoreductive treatment group.

Factors NT
(n = 22)

HU
(n = 35)

IFN
(n = 28) p-Value

VIII:C, % 109 (68–136) 155 (107–178) 176 (145–208) <0.0001
Fibrinogen, g/dL 3.1 (2.4–3.6) 3.4 (3.0–3.9) 3.6 (3.2–3.9) 0.02

Protein S, % 85 (73–104) 90 (73–100) 62 (50–70) <0.0001
Protein C, % 103 (96–123) 124 (101–130) 117 (93–128) 0.4

Antithrombin, % 108 (101–111) 106 (101–118) 111 (103–119) 0.3

ET: essential thrombocythemia, HU: hydroxyurea, IFN: interferon-treated patients, NT: not treated with
a cytoreductive drug at the inclusion, PV: polycythemia vera. Results are presented as median (IQR); p-value for
Kruskal–Wallis test.

Next, we used a global thrombin generation assay with or without the addition of recombinant
thrombomodulin in plasma. In the absence of thrombomodulin, the thrombin peak (Table 5 and
Figure 3A) and velocity index (Table 5 and Figure 3C) were significantly higher in HU- (p = 0.02) and in
IFN-treated patients (p = 0.03 and p = 0.04, respectively) compared to NT patients. In a logistic regression
analysis, these results were not significantly different anymore, suggesting that thrombin generation
results were dependent of age, sex, and/or disease type. Neither thrombin peak nor velocity differed
between HU- and IFN-treated patients. No difference was evidenced for the endogenous thrombin
potential (ETP) among the 3 groups (Table 5 and Figure 3B). As expected, adding thrombomodulin to
the plasma markedly inhibited thrombin generation as indicated by the lower peak and ETP values
(Table 5 and Figure 3D–E) compared to the results obtained in the absence of thrombomodulin. In the
presence of thrombomodulin, thrombin peak (Table 5 and Figure 3D), ETP (Table 5 and Figure 3E),
and velocity index (Table 5 and Figure 3F) were significantly higher in HU- (p = 0.02, p = 0.04 and
p = 0.02, respectively) and in IFN-treated patients (p = 0.01, p = 0.02 and p = 0.01, respectively) compared
to NT patients. No difference was evidenced between HU- and IFN-treated patients (Table 5 and
Figure 3D–F).

Figure 3. Thrombin generation in the plasma of NT, HU- and IFN-treated patients in the absence (A–C)
and in the presence (D–F) of thrombomodulin. Peak of thrombin (A,D), ETP (B,E), and velocity (C,F).
Post-hoc pairwise comparisons of parameters were performed using the Mann–Whitney test. * p < 0.05.
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Table 5. Parameters of thrombin generation according to cytoreductive treatment group.

Parameters NT
(n = 22)

HU
(n = 35)

IFN
(n = 28) p-Value

Without thrombomodulin
Peak, nM 154 (107–192) 205 (147–243) 197 (142–266) 0.04

ETP, nM.min 1080 (879–1218) 1215 (1021–1428) 1194 (975–1422) 0.2
Velocity, nM/min 42 (21–60) 58 (38–90) 61 (37–90) 0.049

With thrombomodulin
Peak, nM 42 (11–110) 89 (53–162) 115 (68–192) 0.02

ETP, nM.min 215 (78–552) 397 (274–653) 525 (321–887) 0.03
Velocity, nM/min 13.0 (3.0–43.0) 32 (18–76) 40 (25–80) 0.02

ET: essential thrombocythemia, ETP: endogenous thrombin potential, HU: hydroxyurea, IFN: interferon-treated
patients, NT: not treated with a cytoreductive drug at the inclusion, PV: polycythemia vera. Results are presented as
median (IQR); p-value for Kruskal–Wallis test.

2.6. Discontinuation of IFN Treatment Restores Hemostatic Parameters to Normal Levels

To further validate our hypothesis that the elevation of plasma pro-coagulant biomarkers in
IFN-treated patients was directly related to IFN therapy, we took advantage of the discontinuation of
IFN treatment in some patients. A total of 10/28 IFN-treated patients (5 ET and 5 PV) discontinued
IFN treatment because of side effects (n = 4), hematological or molecular response (n = 5), or personal
preference (n = 1).

Biological parameters were tested at least 6 months after IFN discontinuation. Interestingly,
vWF antigen and activity, FVIII:C, fibrinogen, and protein S activity returned to levels similar to those
observed in NT patients and were significantly different from levels observed during IFN treatment.
vWF antigen decreased significantly from 182% (153–273%) to 92% (78–104%) (p = 0.002), vWF activity
from 172% (135–228%) to 92% (82–128%) (p = 0.002), FVIII:C from 158% (128–217%) to 112% (74–141%)
(p = 0.004), fibrinogen from 3.7 (3.4–4.6) to 3.1 (2.8–3.4) g/L (p = 0.004), and protein S activity increased
from 62% (48–75%) to 87% (77–111%) (p = 0.002) (Figure 4A–F).

Figure 4. von Willebrand factor antigen (A), von Willebrand factor activity (B), platelet aggregation
induced by high shear at 4000s−1 (SIPA, C), VIII:C (D) fibrinogen (E) and protein S activity (F) during
IFN treatment and after IFN discontinuation in 10 patients. Comparison between the 2 groups was
performed using Wilcoxon matched pairs test. ** p < 0.01.
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3. Discussion

This observational single-center cohort study aimed to evaluate the impact of IFN and HU on the
biological hemostatic profile of MPN patients. Here, we report that IFN therapy, and to a lesser extent
HU treatment, are associated with significantly higher levels of pro-thrombotic markers compared
to NT patients, independently of age, sex, and disease type. Most clinical studies have reported a
complete and sustained molecular response in 35% of MPN patients after IFN administration [11,15],
but there is currently no clinical data on the potential side effects of IFN on hemostasis.

IFN alpha is able to activate the MAP kinase pathway responsible for inflammation [16]. It has
been demonstrated that there is a synergistic effect of IFN alpha and Toll-like receptor 4 ligands in
the development of atherosclerotic plaque [17]. In mouse models, IFN alpha treatment led to a rapid
stimulation of bone marrow endothelial cells in vivo [12], promoting inflammation. In the present
study, we show that vWF antigen and activity were significantly higher in IFN-treated patients than in
NT patients. These results are consistent with those reported in patients treated by IFN for hepatitis,
who presented similarly higher vWF levels, suggesting an activation of endothelial cells in vivo [18].

SIPA in high shear rate conditions is able to reproduce stenotic arteries and is usually correlated
to vWF level [19]. Consistent with the high levels of vWF found in our study, SIPA was also higher in
IFN-treated patients. We also evaluated platelet activation markers. The exposure of P-selectin and
activated GPIIbIIIa as well as platelet–leucocyte aggregate levels remained low and were similar among
groups. Since the frequency of biological resistance to aspirin was comparable among the 3 treatment
groups, we can assume that these results were not influenced by aspirin. Overall, these data are not
in favor of in vivo platelet activation in our cohort and are discrepant with data from other studies
reporting elevated markers of platelet activation in MPN patients [20]. This could be explained by two
hypotheses: (i) NT patients had a low level of disease progression and (ii) cytoreductive therapy was
efficient in the treated groups.

Aside from vWF, FVIII is the only coagulation factor upstream of thrombin generation that
was higher in IFN-treated patients and to a lesser extent in HU-treated patients compared to NT
patients, probably because FVIII circulates associated to vWF. Interestingly, fibrinogen level was also
significantly higher in these patients, suggesting an inflammatory state. However, C-reactive protein
was not statistically different among groups, which was probably because of its shorter half-life as
compared to fibrinogen. We reported an elevation of thrombin generation in HU- and IFN-treated
patients compared to NT patients. Similar results were observed in a previous study comparing PV, ET,
and controls [21]. In two other studies, a decrease in thrombin generation in MPN patients compared
to controls was observed but with much higher tissue factor concentrations (up to 6.8 pM) [22,23].
In order to assess the effectiveness of the protein C/protein S anticoagulant pathway, thrombomodulin
was added to the thrombin generation assay [24]. The elevation of thrombin generation in HU- and
IFN-treated patients was even more significant in the presence of thrombomodulin. This could be
explained by the reduced levels of free protein S as previously reported in a global coagulation study in
MPN patients compared to controls [25]. These data suggest a pro-coagulant imbalance in IFN-treated
patients compared to HU-treated and NT patients, even though we could not find any correlation
between protein S levels and thrombin generation parameters in the presence of thrombomodulin,
which was possibly due to the limited number of patients studied.

Importantly, we found that vWF antigen and activity, protein S activity, FVIII:C, and fibrinogen
returned to levels observed in NT patients, when patients interrupted IFN treatment for at least
6 months. These data support the causal effect of IFN treatment in the modification of these biological
parameters and thus in the generation of a potential pro-thrombotic tendency.

This study has certain limitations in addition to the limited number of patients included. First,
the patients of our cohort were in a steady state explaining why some markers such as platelet activation
markers were not different between groups, in contrast to previous studies [20–23,26]. Moreover,
treatment by aspirin in all patients could have minimized their platelet activation profile. Second,
as only two patients presented thrombotic events after treatment initiation, the association between
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thrombosis and treatment could not be established. Finally, the low number of IFN-treated patients
with calreticulin (CALR) mutation did not allow for subgroup analysis of pro-thrombotic biomarkers
according to the mutational status in IFN-treated patients.

4. Materials and Methods

4.1. Patients

Between January 2012 and February 2014, 85 patients referred to the Unit of Cellular Biology
at Saint-Louis hospital in Paris were enrolled in this study. PV and ET patients were diagnosed
according to WHO criteria. Blood samples were collected in the Department of Biological Hematology
in Bichat hospital. The INSERM Ethics Evaluation Committee (CEEI/IRB) approved the protocol
(IRB00006477, opinion number 11–106). All patients provided a written informed consent. At the
moment of inclusion, patients were receiving treatment with HU or IFN for at least 4 months or were
not treated with any cytoreductive drug. None of the patients was taking anticoagulant or antiplatelet
therapy other than aspirin.

4.2. Genotyping MPN Mutations

JAK2V617F mutation was detected using the Ipsogen JAK2 MutaQuant kit (Qiagen, Courtaboeuf,
France) according to manufacturer’s instructions. A high resolution melting (HRM) method was used
to detect JAK2 exon 12 mutations as previously described [27]. Screening for the presence of CALR
mutations was performed as previously described [28]. Finally, p.W515L and p.W515K MPL mutations
were detected using Ipsogen MPL W515L/K MutaScreen kit (Qiagen, Courtaboeuf, France) according
to the manufacturer’s instructions.

4.3. Platelet Rich and Poor Plasma Preparation

Blood samples were collected in vacuum tubes (Greiner-Bio One, Les Ulis, France) containing
citrate (0.109 M) for platelet and coagulation studies or EDTA for blood cell count. Platelet-rich plasma
(PRP) was obtained by centrifugation of whole blood at 120 g for 15 min at room temperature.
Platelet-poor plasma (PPP) was isolated by the double centrifugation of blood samples at 2500 g for
15 min at 18 ◦C and stored at 80 ◦C until further analysis.

4.4. Von Willebrand Factor (vWF) Measurements

vWF activity was determined by vWF Ristocetin Cofactor (vWF:RCo) assay using light transmission
aggregometry (ChronoLog Havertown, PA, USA). PPP was incubated with lyophilized platelets
(Hyphen BioMed, Neuville sur Oise, France) and ristocetin (1.2 mg/mL) (Diagnostica Stago, Asnières,
France). Results were expressed as percentage of vWF activity compared to reference plasma.
vWF antigen was measured by ELISA (Asserachrom vWF antigen, Diagnostica Stago) following
manufacturer’s instructions.

4.5. Shear-Induced Platelet Aggregation (SIPA)

Shear experiments were performed on PRP by means of a coaxial cylinder-shearing device
at 4000 s−1 as previously described [29]. SIPA was measured on an EPICS XL flow cytometer
(Beckman Coulter, Villepinte, France). The results of platelet aggregation were expressed as percentage
of disappearance of single platelets (DSP): DSP = [(n0-n)/n0] × 100, when n0 represents the single
platelet population of non-sheared control sample and n represents that of the sheared sample.

4.6. Coagulation Parameter Measurements

Fibrinogen (Dade Thrombin reagent, Siemens, Marburg, Germany), factor VIII coagulant (FVIII:C)
(Factor VIII deficient plasma, Siemens), protein S activity (Staclot Protein S, Diagnostica Stago),
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protein C anticolagulant activity (Cryocheck Clot C, Cryopep, Montpellier, France), and antithrombin
(Stachrom AT III, Diagnostica Stago) were measured on a STA-R Analyser (Diagnostica Stago).

4.7. Platelet Activation Markers

In vivo platelet activation was evaluated by measuring the surface expression of P-selectin (CD62P)
and activated GPIIb/GPIIIa (PAC-1) by flow cytometry. Briefly, diluted whole blood was incubated
with fluorescein isothiocyanate (FITC)-conjugated anti-CD62P or PAC-1 (Beckman Coulter, Villepinte,
France) for 30 min in the dark. Samples were analyzed with an EPICS XL flow cytometer. Platelets were
gated on forward and side scatter and the percentage of P-selectin and PAC-1-positive platelets were
obtained after subtracting the percentage of positive platelets obtained with the FITC-conjugated
isotype control for CD62P (IgG1) and PAC-1 (IgM), respectively.

4.8. Platelet–Leukocyte Complexes

Whole-blood platelet–leukocyte complexes were counted by flow cytometry. Briefly, PMA were
defined as the proportion of monocytes labeled with anti-CD14-FITC (Beckman Coulter) positive for
phycoerythrin (PE)-conjugated anti-CD41 (Beckman Coulter) and PNA were defined as the proportion
of neutrophils labeled with phycoerythrin-cyanine 5(PC5)-conjugated anti-CD45 (Beckman Coulter)
positive for anti-CD41-PE. Samples were analyzed with an EPICS XL flow cytometer.

4.9. Thrombin Generation Assay

Thrombin generation was measured on PPP using calibrated automated thrombogram (CAT,
Diagnostica Stago) as previously described [30]. In PPP, thrombin generation was triggered by 1 pM
tissue factor and 4 mM phospholipids (PPP-Reagent LOW, Diagnostica Stago) in the absence or in
the presence of rabbit thrombomodulin (American Diagnostica, 4 nM). The following parameters
were quantified: peak (maximal thrombin concentration, in nM of thrombin), velocity (slope of
thrombin generated in nM of thrombin/min), and ETP (total amount of thrombin generated, in nM of
thrombin/min).

4.10. Evaluation of Biological Efficacy of Aspirin

Arachidonic acid-induced platelet aggregation was studied in PRP by light transmittance
aggregometry after the addition of 1.25µM arachidonic acid (Chrono-Par, Chrono-Log corp. Havertown,
PA, USA). Resistance to aspirin was defined by maximal platelet aggregation >20% tested at trough
level just before the daily intake of aspirin. Platelet count in PRP was adjusted to 600 G/L with PPP if
the platelet count in native PRP was above.

4.11. Statistical Analysis

Categorical variables are presented as number with percentage. Continuous variables were tested
for normality distribution with the Kolmogorov–Smirnov test and are expressed median with IQR
(25th–75th percentiles). Comparisons among the 3 groups were performed using Kruskal–Wallis test
for continuous variables and Chi-square test for categorical variables. Post-hoc pairwise comparison
of parameters was performed using the Mann–Whitney test and logistic regression analysis was used
to adjust for age, sex, and disease type (PV or ET). A comparison of biological parameters during
IFN treatment and after IFN discontinuation was performed with the Wilcoxon matched pairs test.
Analysis of correlation was performed using Spearman’s rank correlation coefficient. For all of the
statistical analyses, a value of p < 0.05 was considered statistically significant. GraphPad Prism 5
(GraphPad Software) was used for all analyses.
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5. Conclusions

Overall, our study shows that the treatment with IFN is associated with significant and reversible
effects on the biological hemostatic profile of MPN patients. The elevation of pro-thrombotic biomarkers
in MPN patients treated with IFN should be considered at least a biological side effect of this treatment.
Thus, our study points out that caution should be taken and further preventive antithrombotic therapy
other than aspirin alone could be required in IFN-treated patients with additional common thrombotic
risk factors such as FV Leiden or FII G20210A mutation and/or with cardiovascular risk factors. Indeed,
previous data from an open-label trial showed an elevated number of thrombotic events in IFN-treated
patients [31]. Randomized studies are required to determine the incidence of thrombosis in PV and ET
patients treated with IFN compared to HU.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/4/992/s1,
Table S1: Biological characteristics of ET and PV patients, Table S2: Biological resistance to aspirin according to
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