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Neural prosthetics may provide a promising solution to
restore visual perception in some forms of blindness.
The restored prosthetic percept is rudimentary
compared to normal vision and can be optimized with a
variety of image preprocessing techniques to maximize
relevant information transfer. Extracting the most useful
features from a visual scene is a nontrivial task and
optimal preprocessing choices strongly depend on the
context. Despite rapid advancements in deep learning,
research currently faces a difficult challenge in finding a
general and automated preprocessing strategy that can
be tailored to specific tasks or user requirements. In this
paper, we present a novel deep learning approach that
explicitly addresses this issue by optimizing the entire
process of phosphene generation in an end-to-end
fashion. The proposed model is based on a deep
auto-encoder architecture and includes a highly
adjustable simulation module of prosthetic vision. In
computational validation experiments, we show that
such an approach is able to automatically find a
task-specific stimulation protocol. The results of these
proof-of-principle experiments illustrate the potential of
end-to-end optimization for prosthetic vision. The
presented approach is highly modular and our approach
could be extended to automated dynamic optimization
of prosthetic vision for everyday tasks, given any specific

constraints, accommodating individual requirements of
the end-user.

Introduction

Globally, over 30 million people suffer from blindness
(Stevens et al., 2013). For some forms of blindness,
visual prosthetics may provide a promising solution
that can restore a rudimentary form of vision (Chen,
Wang Fernandez, & Roelfsema, 2020; Fernandez, 2018;
Lewis et al., 2016; Lozano et al., 2020; Riazi-Esfahani,
Maghami, Sodagar, Lashay, & riazi-Esfahani,
2014; Roelfsema, Denys, & Klink, 2018; Shepherd,
Shivdasani, Nayagam, Williams, & Blamey, 2013).
These neural interfaces can functionally replace the eye
with a camera that is connected to the retina (Weiland,
Liu, & Humayun, 2005; Zrenner et al., 2011), thalamus
(Pezaris & Reid, 2007), or visual cortex (Beauchamp &
Yoshor, 2020; Chen et al., 2020; Dobelle, Mladejovsky,
& Girvin, 1974; Tehovnik & Slocum, 2013). Although,
in terms of their entry point in the visual system, these
types of visual prostheses may vary considerably, they
share the same basic mechanism of action: through
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Figure 1. Schematic illustration of a cortical visual
neuro-prosthesis. The visual environment is captured by a
camera and sent to a mobile computer. Electrodes in the brain
implant are selectively activated to stimulate neurons in the
primary visual cortex (V1). Making use of the retinotopic
organization of V1, a controlled arrangement of phosphenes
can be generated to create a meaningful representation of the
visual environment.

electrical stimulation of small groups of neurons, they
evoke a percept of spatially localized flashes of light,
called phosphenes (Brindley & Lewin, 1968; Najarpour
Foroushani, Pack, & Sawan, 2018). In this paper, we
focus on visual implants that reside in the primary visual
cortex (V1), which are reported to have an enormous
potential in future treatment of visual impairment
(Beauchamp et al., 2020; Beauchamp & Yoshor,
2020; Chen et al., 2020; Lewis, Ackland, Lowery, &
Rosenfeld, 2015). Due to the relatively large surface
area, this implantation site allows for stimulation
with many electrodes. By selective stimulation and by
making use of the roughly retinotopical organization of
V1, it is possible to generate a controlled arrangement
of phosphenes in such a way that they may provide a
meaningful representation of the visual environment
(Figure 1; Chen et al., 2020).

Compared to normal vision, the percept that can
be restored with visual prostheses is very rudimentary
and the resolution remains relatively limited, even
with relatively high numbers of electrodes. The limited
amount of information that can be conveyed allows
for only selective visualization of the surroundings.
Therefore, an important role in the optimization
of prosthetic vision will be fulfilled by image
preprocessing techniques. By selective filtering of the
visual environment, image preprocessing may help
to maximize the usefulness and interpretability of
phosphene representations. The choice of filtering is
nontrivial and the definition of useful information
will strongly depend on the context. Therefore,
the implementation and optimization of image
preprocessing techniques for prosthetic vision remain
active topics of scientific investigation.

In previous work, various preprocessing techniques
have been tested for a variety of applications using
simulated prosthetic vision (SPV; Dagnelie et al., 2007;
Parikh, Itti, Humayun, & Weiland, 2013; Srivastava,

Troyk, & Dagnelie, 2009; Vergnieux, Mace, & Jouffrais,
2014). Such preprocessing techniques range from basic
edge-filtering techniques for increasing wayfinding
performance (Vergnieux, Macé, & Jouffrais, 2017) to
more sophisticated algorithms, such as segmentation
models for object recognition (Sanchez-Garcia,
Martinez-Cantin, & Guerrero, 2020), or facial
landmark detection algorithms for emotion recognition
(Bollen, Guclu, van Wezel, van Gerven, & Gucluturk,
2019; Bollen, van Wezel, van Gerven, & Güçlütürk,
2019). The latter two examples underline the potential
benefits of embracing recent breakthroughs in computer
vision and deep learning models for optimization of
prosthetic vision.

Despite the rapid advancements in these fields,
research currently faces a difficult challenge in finding a
general preprocessing strategy that can be automatically
tailored to specific tasks and requirements of the user.
We illustrate this with two issues: first, prosthetic
engineers need to speculate or make assumptions about
what visual features are crucial for the task and the
ways in which these features can be transformed into
a suitable stimulation protocol. Second, as a result
of practical, medical, or biophysical limitations of
the neural interface, one might want to tailor the
stimulation parameters to additional constraints.
Recent work on task-based feature learning for
prosthetic vision suggests that deep learning models can
be used to overcome such issues (White, Kameneva, &
McCarthy, 2019).

In this paper, we present a novel approach that
explicitly exploits the potential of deep learning models
for automated optimization to specific tasks and
constraints. We propose a deep neural network (DNN)
auto-encoder architecture, that includes a highly
adjustable simulation module of cortical prosthetic
vision. Instead of optimizing image preprocessing as
an isolated operation, our approach is designed to
optimize the entire process of phosphene generation in
an end-to-end fashion (Donti, Amos, & Zico Kolter,
2017). As a proof of principle, we demonstrate with
computational simulations that by considering the
entire pipeline as an end-to-end optimization problem,
we can automatically find a stimulation protocol
that optimally preserves information encoded in the
phosphene representation, arriving at results that are
comparable to traditional approaches. Furthermore,
we show that such an approach enables tailored
optimization to specific additional constraints, such
as sparse electrode activation or arbitrary phosphene
mappings.

Methods

In this section, we provide an overview of the
components of the proposed end-to-end deep learning
architecture. Next, we describe four simulation
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experiments that were conducted to explore the
performance of our model with various sparsity
constraints, naturalistic visual contexts and realistic
phosphene mappings.

Model description

The end-to-end model consists of three main
components: an encoder, a phosphene simulator,
and a decoder (Figure 2). Given an input image, the
encoder is designed to find a suitable stimulation
protocol, which yields an output map. The value of
each element in this stimulation protocol represents the
stimulation intensity of one electrode in the stimulation
grid. The encoder follows a fully convolutional DNN
architecture. In all layers, apart from the output layer,
leaky rectified linear units are used as the activation
function and batch normalization is used to stabilize
training (Table 1). At this time, cortical visual prostheses
do not allow for systematic control over phosphene
brightness (Najarpour Foroushani et al., 2018; Troyk et
al., 2003). Therefore, in this paper, we assume binary
instead of graded electrode activation. The Heaviside
step function is used as the activation function in the
output layer to obtain quantized (binary) stimulation
values. A straight-through estimator (Yin et al., 2019)
was implemented to maintain the gradient flow during
backpropagation.

In the second component of our model, a phosphene
simulator is used to convert the stimulation protocol
that is created by the encoder to an SPV representation.
This component has no trainable parameters and uses
predefined specifications to realistically mimic the
perceptual effects of electrical stimulation in visual
prosthetics. Phosphene simulation occurs in three steps:
first, each element in the 32×32 stimulation protocol is
mapped onto prespecified pixels of a 256×256 image,
yielding the simulated visual field. Phosphenes are
mapped onto a rectangular grid, of which the positions
were distorted by a random factor between −0.25 and

Figure 2. Schematic representation of the end-to-end model
and its three components. (a) The phosphene encoder finds a
stimulation protocol, given an input image. (b) The personalized
phosphene simulator maps the stimulation vector into a
simulated phosphene vision (SPV) representation. (c) The
phosphene decoder receives a SPV-image as input and
generates a reconstruction of the original image. During
training, the reconstruction dissimilarity loss between the
reconstructed and original image is backpropagated to the
encoder and decoder models. Additional loss components,
such as sparsity loss on the stimulation protocol, can be
implemented to train the network for specific constraints.

0.25 times the phosphene spacing in both horizontal
and vertical direction. Second, the phosphene intensities
were multiplied with a prespecified random gain value
between 0.5 and 1.5 to mimic natural variation in
brightness. Third, the obtained image is convolved

Type In Out Size Stride Pad Normalization Activation

1 Conv 1 8 3 1 1 BN LReLU
2 Conv + Pool 8 16 3/2 1 1 BN LReLU
3 Conv + Pool 16 32 3/2 1 1 BN LReLU
4 Res 32/32 32/32 3/3 1/1 1/1 BN/BN LReLU/LReLU
5 Res 32/32 32/32 3/3 1/1 1/1 BN/BN LReLU/LReLU
6 Res 32/32 32/32 3/3 1/1 1/1 BN/BN LReLU/LReLU
7 Res 32/32 32/32 3/3 1/1 1/1 BN/BN LReLU/LReLU
8 Conv 32 16 3 1 1 BN LReLU
9 Conv 16 1 3 1 1 - Step

Table 1. Architecture of the encoder component. Conv, convolutional layer; Res, residual block; Pool, max-pooling layer; BN, batch
normalization; LReLU, leaky rectified linear unit.
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Type In Out Size Stride Pad Normalization Activation

1 Conv 1 16 3 1 1 BN LReLU
2 Conv 16 32 3 1 1 BN LReLU
3 Conv 32 64 3 2 1 BN LReLU
4 Res 64/64 64/64 3/3 1/1 1/1 BN/BN LReLU/LReLU
5 Res 64/64 64/64 3/3 1/1 1/1 BN/BN LReLU/LReLU
6 Res 64/64 64/64 3/3 1/1 1/1 BN/BN LReLU/LReLU
7 Res 64/64 64/64 3/3 1/1 1/1 BN/BN LReLU/LReLU
8 Conv 64 32 3 1 1 BN LReLU
9 Conv 32 1 3 1 1 - Sigmoid

Table 2. Architecture of the decoder component. Conv, convolutional layer; Res, residual block; Pool, max-pooling layer; BN, batch
normalization; LReLU, leaky rectified linear unit.

with a gaussian kernel to simulate the characteristic
perceptual effects of electrical point stimulation. In
the current experiments, we use a phosphene spacing
of eight pixels, and a sigma value of 1.5 pixels for the
gaussian kernel.

The third component of our model is the decoder.
The decoder is an image-to-image conversion model
that is based on a residual network architecture (He,
Zhang, Ren, & Sun, 2016), which is known for its useful
training properties (Ebrahimi & Abadi, 2018; Huang,
Wang, Tao, & Zhao, 2020). Furthermore, residual
networks demonstrate computational similarities with
recurrent networks that are found in the biological
visual system (Kubilius et al., 2019; Liao & Poggio,
2016; Schrimpf et al., 2018). Batch normalization
and activation with leaky rectified linear units is
implemented in all layers of the model, except for the
output layer, which uses sigmoid activation and no
batch normalization (Table 2). The decoder component
is designed to “interpret” the SPV representation by
converting it into a reconstruction of the original input.
Our end-to-end architecture implements an auto-
encoder architecture, where the SPV representations
can be seen as a latent encoding of the original input
(or some transformation thereof) (Bengio, Courville,
& Vincent, 2013). In this view, the efficient encoding
of the rather complex visual environment into a
relatively rudimentary phosphene representation can
be considered a dimensionality reduction problem in
which we aim to maximally preserve the information
that is present in the latent SPV representation.

Experiments and results

Model performance was explored via four
computational experiments using different datasets.
In each experiment, a different combination of loss
functions and constraints was tested, as explained
below. To quantify reconstruction performance, we
report suitable image quality assessment measures.

Unless stated otherwise, we report the mean squared
error (MSE), the structural similarity index (SSIM;
Wang, Bovik, Sheikh, & Simoncelli, 2004), and either
the peak signal to noise ratio (PSNR) or the feature
similarity index (FSIM; Zhang, Zhang, Mou, & Zhang,
2011) between the reconstruction and the input image,
as evaluated using the Scikit-image library (version
0.16.2) for Python (Van Der Walt et al., 2014). Where
MSE and PSNR are image quality assessment metrics
that operate on pixel intensity, SSIM and FSIM are
popular alternatives that better reflect perceptual
quality (Preedanan, Kondo, Bunnun, & Kumazawa,
2018). In addition to these performance metrics, we
report the average percentage of activated electrodes as
a measure for sparsity. Furthermore, to visualize the
subjective quality of encodings and reconstructions, we
display a subset of images with the corresponding SPV
representations and image reconstructions.

Training procedure

The end-to-end model was implemented in PyTorch
version 1.3.1, using a NVIDIA GeForce GTX 1080
TI graphics processing unit (GPU) with CUDA driver
version 10.2. The trainable parameters of our model
were updated using the Adam optimizer (Kingma
& Ba, 2015). The end-to-end model was treated as a
single system (i.e. all components of the model were
trained simultaneously). To account for potential
convergence of the model parameters toward local
optima (i.e. to reduce the likelihood that a suitable
parameter configuration of the network is missed due
to a combination of a specific weights initialization
and learning rate), a “random restarts” approach
was used. That is, each model was trained five times,
each time randomly starting with a different weight
initialization. The results only show the best performing
one out of these five models (i.e. the one with the
lowest loss on the validation dataset), unless stated
otherwise.
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Experiment 1: SPV-based reconstruction of
visual stimuli

The objective of the first experiment was to test
the basic ability of the proposed end-to-end model
to encode a stimulus into regular, binary phosphene
representations, and decode these into accurate
reconstructions of the input image. For this purpose,
we trained the model on a self-generated dataset
containing basic black and white images with a
randomly positioned lowercase alphabetic character.
Each image in the dataset is 128×128 pixels, and
contains a randomly selected character, displayed in
one of 47 fonts (38 fonts for the training dataset and 9
fonts for the validation dataset). The model was trained
to minimize the (pixel-wise) MSE.

LI = 1
N

∑N

n=1

∥∥x(n) − x̂(n)∥∥2 (1)

between the intensities of the input image x(n) and the
output reconstruction x̂(n) over all training examples
1 ≤ n ≤ N.

The results of Experiment 1 for the best performing
model out of the five random restarts are displayed
in Figure 3. As can be observed, the reconstruction
loss is successfully minimized until convergence after
39 epochs. The performance metrics on the validation
dataset indicate that the model is capable of adequately
reconstructing the input image from the generated
SPV representation (MSE = 0.018, SSIM = 0.139,
and PSNR = 17.59). Notably, the model adopted an
encoding strategy where the presence of the alphabetic
character (white pixels) is encoded with the absence
of phosphenes and vice versa, resulting in an average
electrode activity (percentage of active electrodes)
of 95.65%. Such an “inverted” encoding strategy
was found for two out of the five random restart
initializations and observed for all 234 images in the
validation dataset.

Experiment 2: Shaping phosphene vision via
constrained optimization

In the second experiment, we assess whether our
model allows the inclusion of additional constraints. To
exemplify this advantage of our proposed approach,
we chose to evaluate the effects of adding a sparsity
loss term. Considering the potentially adverse
effects of electrical stimulation (Lewis et al., 2015;
McCreery, Agnew, Yuen, & Bullara, 1988), one might
want to introduce such a sparsity requirement that
constrains the stimulation protocol, limiting the neural
degradation by enforcing minimal energy transfer to
neural tissue. Let s = (s1,…,sM) denote a stimulation
vector representing the stimulation pattern for M
electrodes. We define sparsity as the L1 norm on the

Figure 3. Results of Experiment 1. The model was trained to
minimize mean squared error loss. (a) The training curves
indicating the loss on the training dataset and validation
dataset during the training procedure. (b) Visualization of the
network input (left) the simulated prosthetic vision (middle)
and the reconstruction (right).

stimulation protocol:

LS = 1
N

∑N

n=1

∥∥s(n)∥∥ (2)

where s(n) is the stimulation vector for the n-th training
example. The objective is to minimize the total loss:

Ltotal = (1 − κ )LI + κ LS (3)

where LI is the pixel-wise reconstruction loss and the
parameter κ can be adjusted to choose the relative
weight between the reconstruction loss and sparsity
loss. We evaluated 13 values of κ, again each time using
the random restarts approach, testing five different
weight initializations. We performed a regression
analysis on the overall percentage of active electrodes
and the reconstruction performance (MSE) to evaluate
the effectiveness and the decrease in performance,
respectively.

The results for three of the κ-parameters are
displayed in Figure 4. As can be observed, adding
additional sparsity loss by increasing the κ parameter
resulted in an overall lower percentage of active
phosphenes. For larger values of κ, the reconstruction
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Figure 4. Results of Experiment 2. The model was trained on a combination of mean squared error loss and sparsity loss. The 13
different values for sparsity weight κ were tested. (a) Visualization of the results for three out of the 13 values for κ . Each row displays
the performance metrics for the best-performing model out of five random restarts, and one input image from, the validation dataset
(left), with the corresponding simulated phosphene representation (middle) and reconstruction (right). (b) Regression plot displaying
the sparsity of electrode activation and the reconstruction error in relation to the sparsity weight κ . The red circles indicate the
best-performing model for the corresponding sparsity condition, as visualized in panel a.

quality dropped. In contrast to the results of
Experiment 1, addition of a sparsity loss led to
phosphene patterns that more naturally encode the
presence of pixels by the presence of phosphenes
(instead of vice versa).

Experiment 3: End-to-end phosphene vision for
naturalistic tasks

In the third experiment, the model was trained
on a more complex and naturalistic image dataset.
To this end, we made use of the ADE20k semantic
segmentation dataset (Zhou et al., 2017; Zhou et al.,
2019). Compared with the synthetic character dataset,
which we used for the aforementioned experiments, one
of the key challenges of such naturalistic stimuli is that
instead of merely foreground objects on a plain dark
background, the images contain abundant information.
Here, not all features may be considered relevant, and
therefore the task at hand (implemented by a loss
function) should control which information needs to
be preserved in the phosphene representations. Note
that the proposed end-to-end framework allows for
optimization to virtually any type of task that can be
formalized as a loss function. However, with the current
experiments, we merely aimed to demonstrate the
basic principle by exploring the encoding strategies for
three different types of image reconstruction tasks. We
compared the pixel-basedMSE reconstruction task that
was used in the first experiment with two other types of
reconstruction tasks: first, an unsupervised perceptual
reconstruction task (see related work by, Johnson,
Alahi, and Fei-Fei (2016), Ledig et al. (2017)) which, in
contrast to the pixel-wise MSE-based reconstruction
task, aims to only preserve high-level perceptual

features. Second, a supervised semantic boundary
reconstruction task to evaluate the additional value of
using labeled supervision to specify which information
needs to remain preserved in the reconstructions.

The perceptual reconstruction task was formulated
with the aim of minimizing higher-level perceptual
differences between the reconstruction and the input
image. These more abstract perceptual differences are
defined in feature-space, as opposed to the more explicit
per-pixel differences which were used in the previous
experiments. The feature loss is defined as

LP = 1
NK

∑N

n=1

∑K

k=1

∥∥ϕd
k

(
x(n)) − ϕd

k
(
x̂(n))∥∥2 (4)

where N is the number of training examples, ϕ d(x(n) )
and ϕ d(x̂(n) ) are the d-th layer feature maps extracted
from the input image and the reconstruction image
using the VGG16 model pre-trained on the ImageNet
dataset (Simonyan & Zisserman, 2015) and K is the
number of feature maps of that layer. For lower
values of d, the perceptual loss reveals more explicit
differences in low-level features such as intensities and
edges, whereas for higher values of d the perceptual
loss focuses on more abstract textures or conceptual
differences between the input and reconstruction (Zeiler
& Fergus, 2014). We chose d equal to 3 as an optimal
depth for the feature loss, based on a comparison
between different values (see Figure 5).

In the supervised semantic boundary reconstruction
task, the objective was not to minimize the differences
between reconstruction and input image. Instead, we
aimed to provide labeled supervision that guides the
model toward preserving information of semantically
defined boundaries. Here, the objective was to minimize
the differences between the output prediction of
the decoder and processed semantic segmentation
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Figure 5. Comparison between different values of d for the
perceptual reconstruction task that was used in Experiment 3,
where d indicates the layer depth for the VGG-based feature
loss.

target labels of the ADE20K dataset. The semantic
segmentation labels that are provided with the
dataset were converted to a binary segmentation
map representing the boundaries between semantic
categories (i.e. boundary pixels have a value of 1
and non-boundary pixels contain the value 0). The
reconstruction loss was formalized as the weighted
binary cross entropy (BCE), defined as:

LB = − 1
NJ

∑N

n=1

∑J

j=1

(
wz(n)j log

(
x̂(n)
j

)

+ (1 − w)
(
1 − z(n)j

)
log

(
1 − x̂(n)

j

))
(5)

where z(n)j is the ground truth boundary segmentation
label for pixel j of example n and w is a constant
that is introduced for counterbalancing the unequal
distribution of non-boundary compared to boundary
pixels. In our experiments, w is set equal to 0.925,
matching the inverse ratio of boundary pixels to
non-boundary pixels. Both for the perceptual loss
and the BCE loss we included a sparsity loss as in
Experiment 2.

In addition to the three training conditions for our
proposed end-to-end model, we included separate
conditions where the decoder was trained on SPV
representations that were generated using conventional
image processing to facilitate a quantitative comparison.
These reference SPV images were generated using
Canny edge detection (Canny, 1986) and a deep
learning-based contour detection method, called
holistically nested edge detection (Xie & Tu, 2017).
Differences in reconstruction performance were tested
for significance using a paired t-test on the minibatches
of the validation dataset. The significance level α was
set to 0.05 and adjusted with a Bonferroni correction to
correct for multiple comparisons.

The results of Experiment 3 are displayed
in Figure 6, Figure 7, and Table 3. Both for the
perceptual reconstruction tasks and the supervised
semantic boundary reconstruction task, the model
seems to have adopted a different phosphene encoding

strategy compared to the intensity-based reconstruction
task. The average MSE is significantly lower in
the intensity-based reconstruction task, and the
average FSIM is significantly higher in the perceptual
reconstruction task. In the supervised semantic
boundary condition, 69.7% of the boundary pixels were
classified correctly.

Compared to the reconstructions of the SPV-
encodings using existing approaches, our end-to-end
model achieved adequate reconstruction performance:
our model scored the highest performance for the
intensity-based reconstruction (MSE, SSIM, and
FSIM) and the perceptual reconstruction (SSIM and
FSIM). In the semantic boundary reconstruction task,
our model scored average for the accuracy, sensitivity,
specificity, and precision, and had the largest area under
the receiver-operator curve (AUC) compared to the
other models.

Experiment 4: Modular phosphene simulation

Similar to earlier work in the field of simulated
prosthetic vision (Bollen, Guclu, et al., 2019; Bollen, van
Wezel, et al., 2019; Dagnelie et al., 2007; Parikh et al.,
2013; Sanchez-Garcia et al., 2020; Vergnieux et al., 2017;
Vergnieux et al., 2014), the previous experiments in this
study are performed using a basic simulation of cortical
prosthetic vision, with homogeneously distributed,
equally-sized phosphenes. In reality, however, the exact
phosphene coverage that is achieved in prosthetic vision
will depend on many factors, including the electrode
placement and the cortical anatomy of the patient,
which is variable across people. Both early human trials
(Brindley & Lewin, 1968), as well as recent animal
studies (Schiller, Slocum, Kwak, Kendall, & Tehovnik,
2011) have shown that individual phosphenes elicited
by stimulation in V1 have different sizes, which increase
with foveal eccentricity. Srivastava et al. (Srivastava
et al., 2007; Srivastava, et al., 2009) developed a
more biologically plausible simulation of phosphene
vision that explicitly models this effect of cortical
magnification for a specific electrode configuration.

In the fourth experiment of our study, we examine
an extension of our approach to validate the capacity
of our model to optimize for such customized,
more realistic, phosphene mappings. Again, we train
our end-to-end model, using the ADE20k dataset
on the semantic boundary reconstruction task, as
described in the previous experiment. However, rather
than same-sized phosphenes, placed on a distorted
rectangular grid, this time, we use a phosphene map that
is inspired by the aforementioned studies of Srivastava
et al. (2007, 2009), who simulate phosphenes in the
lower left quadrant of the visual field, with phosphene
densities and phosphene sizes adjusted in relation to the
eccentricity in the visual field to simulate the effect of
cortical magnification. For the phosphene simulation,
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Figure 6. Results of Experiment 3. The model was trained on naturalistic stimuli, comparing three reconstruction tasks. (a) Original
image. (b) Pixel intensity-based reconstruction task with MSE loss (see Equations 1–3). (c) Perceptual reconstruction task, using VGG
feature loss (see Equation 4; d is set equal to 3). (d) Semantic boundary reconstruction task, using weighted BCE loss (see Equation 5)
between the reconstruction and the ground truth semantic boundary label (i.e. a binary, boundary-based, version of the ground truth
label from the dataset). (e) Simulated prosthetic percept after conventional image preprocessing with (left) Canny edge detection
(Canny, 1986) and (right) holistically nested edge detection (Xie & Tu, 2017).

Figure 7. Receiver-operator curves for the semantic boundary
prediction task in Experiment 3. Our proposed end-to-end
method is compared against existing approaches: Canny edge
detection (Canny, 1986) and holistically nested edge detection
(Xie & Tu, 2017). The specificity (1 - False Positive Rate),
sensitivity and area under the curve (AUC) of the thresholded
predictions are also provided in Table 3.

we formalize a custom phosphene map as a set of n
pre-defined 256×256 greyscale images, {P1, P2, …,
Pn}, that each display a single Gaussian-shaped
phosphene at a specific location. In our experiment,
the number of phosphenes n is set to 650, 488, or 325.
For each image Pi, we generated a phosphene at polar
angle φi ∼ U (π, 3

2π ), eccentricity ri = xi + 2x2i with

xi ∼ U (0, 1) and size σ i = 2ri + 1. After conversion to
Cartesian coordinates, Pi covers a square area in the
lower left quadrant, bounded by corners (0, − 1) and
(− 1, 0). Note that the described procedure reflects an
arbitrary example mapping, which may be replaced to
yield any prespecified set of phosphenes. The final SPV
image (the output of the simulator) is calculated by
taking a weighted sum over all images in the phosphene
map:

SPV =
∑n

i=1
wi Pi wi ∈ {0, 1} (6)

Here, w denotes the stimulation protocol which is
the output of the encoder. Note that in order to
facilitate the simulation of an arbitrary number of
freely distributed phosphenes, the encoder is equipped
with a fully connected output layer on top of the
architecture which is shown in Table 1. In contrast with
convolutional layers, spatial information is lost in a fully
connected artificial neural network layer. To preserve
spatial coherence between phosphene encodings and
the training images, we introduce a regularization
term to the cost function, that drives the network
to activate phosphenes that correspond with bright
regions of the training images and vice versa. This
spatial regularization loss is calculated as the BCE loss
(see Equation 5) between the output of the encoder and
the pixels in the training target, sampled at the location
of the phosphene center.

The model successfully converged to an optimal
solution and the results of Experiment 4 are displayed
in Figure 8. The reconstruction performance, reflected
by the AUC score, was significantly different among
the various phosphene resolutions (see Figure 8a).
The overall reconstruction performance was lower
compared to Experiment 3 (see Figure 7).
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Intensity reconstruction Perceptual reconstruction Semantic boundary prediction

Processing model MSE SSIM FSIM MSE SSIM FSIM Acc. Sens. Spec. Prec. AUC

End-to-end (ours) 0.034 0.554 0.719 0.064 0.541 0.761 0.697 0.722 0.695 0.165 0.785
Canny 0.055 0.443 0.672 0.061 0.454 0.581 0.598 0.774 0.583 0.134 0.746
HED 0.056 0.454 0.708 0.059 0.458 0.588 0.757 0.571 0.772 0.173 0.724

Table 3. Performance metrics for Experiment 3. MSE, mean squared error; FSIM, feature similarity index; SSIM, structural similarity
index; Acc., accuracy, defined as the proportion of correctly classified pixels; Sens., sensitivity, defined as the proportion of boundary
pixels that were correctly identified as such; Spec., specificity, defined as the proportion of non-boundary pixels that were correctly
identified as such. AUC, area under the receiver-operator curve.
Significant highest performances are indicated in bold.

Figure 8. Results of Experiment 4. The model was trained on
naturalistic stimuli with a customized phosphene mapping.
(a) Reconstruction performance for the different phosphene
resolutions (AUC: area under the receiver-operator curve).
(b) Visualization of the phosphene coverage for each resolution
(left: 650 phosphenes, middle: 488 phosphenes, and right: 325
phosphenes). (c) Validation examples for the training condition
with 650 phosphenes.

Discussion

In this paper, we present and evaluate a novel
deep learning approach for end-to-end optimization
of prosthetic vision. Below, we provide a general

discussion of the proposed method and the results of
our validation experiments, reflecting on the earlier
hypothesized automated and tailored optimization
abilities. Furthermore, we list some of the limitations
of the current study and provide directions for future
research.

Automated optimization

Our end-to-end model is based on an autoencoder
architecture, and aims to make use of their well-
described ability to efficiently encode information into
a low-dimensional latent representation (Bengio et al.,
2013). Instead of optimizing image preprocessing
as an isolated operation, our approach is designed
to automatically optimize the entire process of
phosphene generation for a given task. The results from
Experiment 1 demonstrate that the model successfully
converges to an optimal encoding strategy for a latent
representation that consisted of a 32×32 binary
simulated phosphene pattern. The model achieved
adequate reconstruction performance, as indicated by
the low MSE of 0.018 on the validation dataset. Note,
that in the unconstrained setting, the model merely
maximizes information transfer and has no knowledge
about practical requirements, such as sparsity.
Therefore, the possible phosphene encoding strategies
that may be found by the model are not limited to
ecologically useful solutions. This is exemplified by the
“inverted” phosphene encoding strategy with a large
average electrode activity of 95.65%. Here, finding
an undesirable phosphene encoding strategy can be
considered an expected consequence of an imprecise
learning objective. To guide the model toward useful
latent SPV representations, in experiments 2 and 3,
we implement additional regularizing constraints
(sparsity), and explore different optimization tasks, as
discussed below.

An important requirement for automated
optimization with deep learning, is that all
components of the artificial neural network make
use of differentiable operations. In this paper,
we contribute a basic implementation of a fully
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differentiable phosphene simulation module, including
a straight-through estimator for quantized phosphene
activation. Further studies could adapt or extend this
implementation to test automated optimization for
different phosphene simulations, for instance, varying
the number of electrodes, and the positions of the
phosphenes.

Tailored optimization to sparsity constraints

Implementing additional constraints in the
optimization procedure may provide a general solution
to account for practical, medical, or biophysical
limitations of the prosthetic device. For instance,
the inflammatory response of brain tissue is a
major concern that limits the long-term viability of
cortical electrode implants (Fernández, Alfaro, &
González-López, 2020; Polikov, Trresco, & Reichert,
2005) and these adverse effects may partly be avoided
by limiting the chronic electrical stimulation itself
(Lewis et al., 2015; McCreery et al., 1988). The results
of Experiment 2 demonstrate that implementation
of such a sparsity constraint may help to regularize
the electrode activity. Comparing the results with
Experiment 1, we can observe that even with a low
value for the sparsity parameter κ, the new objective
function causes the model to find a more ecologically
useful encoding strategy. Notably, a larger sparsity
weight κ results in fewer active electrodes, but also
in impaired reconstruction performance. Choosing a
balanced value for κ, depending on the needs of the
patient, can be seen as a part of a tailored optimization
approach of image preprocessing in prosthetic
vision.

Importantly, the proposed method enables the
implementation of virtually any type of additional
constraint that can be incorporated in the optimization
procedure. Other examples of biophysical limitations
for prosthetic vision, besides sparse electrode activation,
could include minimal distance for simultaneously
activated electrodes, maximal spread of electrode use, or
minimal temporal separation. Future research focusing
on such biophysical limitations could extend the
proposed method to include such or other constraints
in the optimization procedure.

Task-specific optimization for naturalistic
settings

Due to the relative complexity, and the presence of
non-relevant information, the encoding of naturalistic
scenes into phosphenes remains a challenge and it
requires task-dependent processing. This challenge
is explicitly addressed by the proposed end-to-end
approach.

In Experiment 3, we tested three different
reconstruction tasks. The results indicate that for
different tasks the model converges to a different
optimal encoding strategy, which may indicate
task-specific optimization. The higher FSIM and
the lower MSE in the perceptual reconstruction
task, compared to the intensity-based reconstruction
task, indicate that information about the higher-level
perceptual features is favored over pixel-intensity
information. Similarly, when the model was trained
with BCE-loss to reconstruct the processed target labels
from the ADE20k dataset, only semantic boundary
information was preserved.

The phosphene encodings that were found by the
model in this condition are comparable to those
found with traditional preprocessing approaches
(see Figure 6e), and yield similar reconstruction quality
(see Table 3) compared to edge detection (Canny, 1986)
or holistic contour detection (Xie & Tu, 2017). Note
that a variation on these approaches is investigated
in Sanchez-Garcia et al. (2020), who demonstrated
that preprocessing with semantic segmentation may
successfully improve object recognition performance in
simulated prosthetic vision (compared to preprocessing
with conventional edge detection techniques). Different
from the aforementioned traditional strategies, the
proposed end-to-end architecture, merely requires
supervision to the output reconstructions and the labels
do not directly control the phosphene representations
themselves. The proposed end-to-end method takes
the advantages of existing deep learning approaches
(such as supervision with large precisely labeled data
sets) to achieve comparable results. In addition to that,
our proposed method provides a generalized approach
that opens the possibility for task-specific and tailored
optimization.

The VGG feature loss and BCE loss that were
implemented in this paper were not chosen only because
of their well-established application in optimization
problems (Asgari Taghanaki, Abhishek, Cohen,
Cohen-Adad, & Hamarneh, 2021; Zhang, Isola, Efros,
Shechtman, & Wang, 2018) but also because they
represent basic functions that are normally performed
in the brain. The feature representations found in
deep neural networks illustrate a similar processing
hierarchy to that of the visual cortex (Güçlü & van
Gerven, 2015; Yamins, Hong, Cadieu, Solomon,
Seibert, & DiCarlo, 2014) and boundary detection is
one of these processing steps needed for segregation
of objects from background (Roelfsema, Lamme,
Spekreijse, & Bosch, 2002). Although many details
about the downstream information processing of direct
stimulation in V1 are yet to be discovered, we know that
conscious awareness of a stimulated percept requires
coordinated activity across a whole network of brain
areas (Bosking, Beauchamp, & Yoshor, 2017). By acting
as a digital twin, a well-chosen reconstruction task may
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mimic the downstream visual processing hierarchy,
enabling direct optimization of visual prosthetics to the
biological system. Still, fully optimizing the interaction
between prosthetic stimulation and the downstream
visual processing, requires a deep understanding of the
biological networks involved. The proposed end-to-end
approach is designed in a modular way and future
research can extend the concept with virtually any
reconstruction model and task.

Tailored optimization to realistic phosphene
mappings

The precise characteristics of the artificial percept
that can be generated with visual prosthetics will depend
on many factors, including the electrode placement
and the visual cortex of the patient. By including a
more realistic simulation module with customized
phosphene mapping, we explored the potential of our
end-to-end method to optimize for specific phosphene
configurations.

The results of Experiment 4 indicate that our
end-to-end approach can successfully optimize
phosphene encoding for arbitrary configurations. A
reduction of the number of available phosphenes
from 650 to 488 or 325 phosphenes was associated
with reduced reconstruction performance. The overall
reconstruction performance with the customized
phosphene mapping was lower compared to the regular
phosphene mapping that was used in Experiment 3.
This reduction may partly be explained by the reduced
number of phosphenes. However, this was not formally
tested. Possibly, the extension of our model to arbitrary
phosphene mappings forms an inherently more
challenging task.

Knowledge about the perceived phosphene coverage,
which is unique for every patient, can be informative
for finding a suitable encoding strategy (Buffoni,
Coulombe, & Sawan, 2005; Kiral-Kornek, Savage,
O’Sullivan-Greene, Burkitt, & Grayden, 2013). By
including a customizable phosphene simulation module
in our end-to-end architecture, we aim to provide a tool
that can be used for tailored optimization to implant-
or patient-specific characteristics.

Limitations and future directions

Some limitations of the present study provide
directions for future research. First, the subjective
quality of the phosphene representations is not
addressed in the current study. Future research could
compare the phosphene encoding strategies found
by our proposed model, to existing preprocessing
approaches from the current literature, using behavioral
experiments. Second, the simulated prosthetic vision

that was used in the current study is still a simplified
model of the reality, and it does not address several
stimulation dynamics, such as pulse frequency,
inter-stimulation interval, and interactions between
electrodes. Accurate simulation of these characteristics
requires further adaptations to our phosphene
simulator. In addition, it may be worthwhile to
simulate different type of implants. For instance, due to
inadvertent activation of underlying axon pathways,
phosphenes generated with retinal prostheses may
demonstrate distorted shapes that vary across subjects
and even individual electrodes (Beyeler et al., 2019).
Third, in this paper, the model is trained on static
images. Future approaches could extend our end-to-end
model to process dynamical stimuli, resembling an
even more naturalistic setting and addressing dynamic
aspects of the stimulation. Finally, the optimization
tasks that were used in the current paper remain
basic. Future work could extend the current approach
with other or more complex tasks. For instance, with
reinforcement learning strategies (see White et al.,
2019), the model could be extended to perform tasks
that more closely related to the everyday actions that
need to be performed by the end-user, such as object
manipulation (Levine, Finn, Darrell, & Abbeel, 2015)
or object avoidance (LeCun, Muller, Ben, Cosatto, &
Flepp, 2005).

Conclusion

In this paper, we present a novel deep learning-based
approach for automated and tailored end-to-end
optimization of prosthetic vision. Our validation
experiments show that such an approach may help to
automatically find a task-specific stimulation protocol,
considering an additional sparsity requirement. The
presented approach is highly modular and could be
extended to dynamically optimize prosthetic vision for
everyday tasks and requirements of the end-user.

Keywords: prosthetic vision, deep learning, computer
vision, end-to-end optimization

Acknowledgments

Supported by a grant (NESTOR) of the Dutch
Organization for Scientific Research (NWO).

Commercial relationships: none.
Corresponding author: Jaap de Ruyter van Steveninck.
Email: jaap.deruyter@donders.ru.nl.
Address: Department of Artificial Intelligence, Donders
Institute for Brain, Cognition and Behaviour, Radboud
University, Heyendaalseweg 135, 6525 AJ Nijmegen,
The Netherlands.



Journal of Vision (2022) 22(2):20, 1–14 de Ruyter van Steveninck, Güçlü, van Wezel, & van Gerven 12

References

Asgari Taghanaki, S., Abhishek, K., Cohen, J. P.,
Cohen-Adad, J., & Hamarneh, G. (2021). Deep
semantic segmentation of natural and medical
images: A review. Artificial Intelligence Review,
54(1), 137–178.

Beauchamp, M. S., Oswalt, D., Sun, P., Foster, B. L.,
Magnotti, J. F., & Niketeghad, S. et al. (2020).
Dynamic stimulation of visual cortex produces
form vision in sighted and blind humans. Cell,
181(4), 774–783.

Beauchamp, M. S., & Yoshor, D. (2020). Stimulating
the brain to restore vision. Science, 370(6521),
1168–1169.

Bengio, Y., Courville, A., & Vincent, P. (2013).
Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(8), 1798–1828.

Beyeler, M., Nanduri, D., Weiland, J. D., Rokem, A.,
Boynton, G. M., & Fine, I. (2019). A model of
ganglion axon pathways accounts for percepts
elicited by retinal implants. Scientific Reports, 9(1),
1–16.

Bollen, C. J. M., Guclu, U., van Wezel, R. J. A.,
van Gerven, M. A. J., & Gucluturk, Y. (2019).
Simulating neuroprosthetic vision for emotion
recognition. 2019 8th International Conference on
Affective Computing and Intelligent Interaction
Workshops and Demos (ACIIW), 85–87.

Bollen, C. J. M., van Wezel, R. J. A., van Gerven, M.
A. J., & Güçlütürk, Y. (2019). Emotion recognition
with simulated phosphene vision. Proceedings of the
2nd Workshop on Multimedia for Accessible Human
Computer Interfaces - MAHCI ’19, 1–8.

Bosking, W. H., Beauchamp, M. S., & Yoshor, D.
(2017). Electrical stimulation of visual cortex:
Relevance for the development of visual cortical
prosthetics. Annual Review of Vision Science, 3(1),
141–166.

Brindley, G. S., & Lewin, W. S. (1968). The sensations
produced by electrical stimulation of the visual
cortex. The Journal of Physiology, 196(2), 479–493.

Buffoni, L. X., Coulombe, J., & Sawan, M. (2005).
Image processing strategies dedicated to visual
cortical stimulators: A survey. Artificial Organs,
29(8), 658–664.

Canny, J. (1986). A computational approach to
edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-8(6), 679–
698.

Chen, X., Wang, F., Fernandez, E., & Roelfsema, P. R.
(2020). Shape perception via a high-channel-count

neuroprosthesis in monkey visual cortex. Science,
370(6521), 1191–1196.

Dagnelie, G., Keane, P., Narla, V., Yang, L., Weiland, J.,
& Humayun, M. (2007). Real and virtual mobility
performance in simulated prosthetic vision. Journal
of Neural Engineering, 4(1), S92–S101.

Dobelle, W. H., Mladejovsky, M. G., & Girvin, J. P.
(1974). Artificial vision for the blind: Electrical
stimulation of visual cortex offers hope for a
functional prosthesis. Science, 183(4123), 440–444.

Donti, P. L., Amos, B., & Zico Kolter, J. (2017).
Task-based end-to-end model learning
in stochastic optimization. arXiv, https:
//arxiv.org/abs/1703.04529.

Ebrahimi, M. S., & Abadi, H. K. (2018). Study of
residual networks for image recognition. arXiv,
https://arxiv.org/abs/1805.00325.

Fernandez, E. (2018). Development of visual
Neuroprostheses: Trends and challenges.
Bioelectronic Medicine, 4(1), 12.

Fernández, E., Alfaro, A., & González-López, P. (2020).
Toward long-term communication with the brain in
the blind by intracortical stimulation: Challenges
and future prospects. Frontiers in Neuroscience, 14,
681.

Güçlü, U., & van Gerven, M. A. J. (2015). Deep neural
networks reveal a gradient in the complexity of
neural representations across the ventral stream.
Journal of Neuroscience, 35(27), 10005–10014.

He, K., Zhang, X., Ren, S., & Sun, J. (2016).
Deep residual learning for image recognition.
In Proceedings of the IEEE Computer
Society Conference on Computer Vision and
Pattern Recognition (Vols. 2016 December),
https://doi.org/10.1109/CVPR.2016.90.

Huang, K., Wang, Y., Tao, M., & Zhao, T. (2020). Why
do deep residual networks generalize better than
deep feedforward networks? – A neural tangent
kernel perspective. Advances in Neural Information
Processing Systems, 33, 2698–2709.

Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual
losses for real-time style transfer and super-
resolution. arXiv, https://arxiv.org/abs/1603.08155.

Kingma, D. P., & Ba, J. (2017). Adam: A
method for stochastic optimization. arXiv,
https://arxiv.org/abs/1412.6980.

Kiral-Kornek, F. I., Savage, C. O., O’Sullivan-
Greene, E., Burkitt, A. N., & Grayden, D. B.
(2013). Embracing the irregular: A patient-
specific image processing strategy for visual
prostheses. 2013 35th Annual International
Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), 3563–3566,
https://doi.org/10.1109/EMBC.2013.6610312.

https://arxiv.org/abs/1703.04529
https://arxiv.org/abs/1805.00325
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/EMBC.2013.6610312


Journal of Vision (2022) 22(2):20, 1–14 de Ruyter van Steveninck, Güçlü, van Wezel, & van Gerven 13

Kubilius, J., Schrimpf, M., Kar, K., Hong, H.,
Majaj, N. J., & Rajalingham, R. et al. (2019).
Brain-Like Object Recognition with High-
Performing Shallow Recurrent ANNs. arXiv,
https://arxiv.org/abs/1909.06161.

LeCun, Y., Muller, U., Ben, J., Cosatto, E., &
Flepp, B. (2005). Off-road obstacle avoidance
through end-to-end learning. Advances in
Neural Information Processing Systems,
https://proceedings.neurips.cc/paper/2005.

Ledig, C., Theis, L., Huszar, F., Caballero, J.,
Cunningham, A., & Acosta, A. et al. (2017).
Photo-realistic single image super-resolution
using a generative adversarial network. 2017
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017-January (12), 105–114,
https://doi.org/10.1109/CVPR.2017.19.

Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2015).
End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 17, 1–40.

Lewis, P. M., Ackland, H. M., Lowery, A. J., &
Rosenfeld, J. V. (2015). Restoration of vision in
blind individuals using bionic devices: A review
with a focus on cortical visual prostheses. Brain
Research, 1595, 51–73.

Lewis, P. M., Ayton, L. N., Guymer, R. H., Lowery, A.
J., Blamey, P. J., & Allen, P. J. et al. (2016). Advances
in implantable bionic devices for blindness: A
review. ANZ Journal of Surgery, 86(9), 654–659.

Liao, Q., & Poggio, T. (2016). Bridging the
gaps between residual learning, recurrent
neural networks and visual cortex. arXiv,
https://arxiv.org/abs/1604.03640v2.

Lozano, A., Suárez, J. S., Soto-Sánchez, C., Garrigós,
J., Martínez-Alvarez, J. J., Ferrández, J. M., . . .
Fernández, E. (2020). Neurolight: A deep learning
neural interface for cortical visual prostheses.
International Journal of Neural Systems, 30(9),
1–18.

McCreery, D. B., Agnew, W. F., Yuen, T. G. H., &
Bullara, L. A. (1988). Comparison of neural
damage induced by electrical stimulation with
faradaic and capacitor electrodes. Annals of
Biomedical Engineering, 16(5), 463–481.

Najarpour Foroushani, A., Pack, C. C., & Sawan,
M. (2018). Cortical visual prostheses: From
microstimulation to functional percept. Journal of
Neural Engineering, 15(2), 021005.

Parikh, N., Itti, L., Humayun, M., & Weiland, J.
(2013). Performance of visually guided tasks using
simulated prosthetic vision and saliency-based cues.
Journal of Neural Engineering, 10(2), 026017.

Pezaris, J. S., & Reid, R. C. (2007). Demonstration of
artificial visual percepts generated through thalamic

microstimulation. Proceedings of the National
Academy of Sciences, 104(18), 7670–7675.

Polikov, V. S., Tresco, P. A., & Reichert, W. M. (2005).
Response of brain tissue to chronically implanted
neural electrodes. Journal of Neuroscience Methods,
148(1), 1–18.

Preedanan, W., Kondo, T., Bunnun, P., & Kumazawa,
I. (2018). A comparative study of image quality
assessment. 2018 International Workshop on
Advanced Image Technology, IWAIT 2018, 1–4,
https://doi.org/10.1109/IWAIT.2018.8369657.

Riazi-Esfahani, M., Maghami, M., Sodagar, A.,
Lashay, A., & Riazi-Esfahani, H. (2014). Visual
prostheses: The enabling technology to give sight
to the blind. Journal of Ophthalmic and Vision
Research, 9(4), 494.

Roelfsema, P. R., Denys, D., &Klink, P. C. (2018). Mind
reading andwriting: The future of neurotechnology.
Trends in Cognitive Sciences, 22(7), 598–610.

Roelfsema, P. R., Lamme, V. A. F., Spekreijse, H., &
Bosch, H. (2002). Figure - Ground segregation in a
recurrent network architecture. Journal of Cognitive
Neuroscience, 14(4), 525–537.

Sanchez-Garcia, M., Martinez-Cantin, R., & Guerrero,
J. J. (2020). Semantic and structural image
segmentation for prosthetic vision. PLoS One,
15(1), e0227677.

Schiller, P. H., Slocum,W.M., Kwak,M. C., Kendall, G.
L., & Tehovnik, E. J. (2011). New methods devised
specify the size and color of the spots monkeys
see when striate cortex (area V1) is electrically
stimulated. Proceedings of the National Academy of
Sciences of the United States of America, 108(43),
17809–17814.

Schrimpf, M., Kubilius, J., Hong, H., Majaj, N.
J., Rajalingham, R., & Issa, E. B. et al. (2018).
Brain-score: Which artificial neural network for
object recognition is most brain-like? BioRxiv,
https://doi.org/10.1101/407007.

Shepherd, R. K., Shivdasani, M. N., Nayagam, D. A.
X., Williams, C. E., & Blamey, P. J. (2013). Visual
prostheses for the blind. Trends in Biotechnology,
31(10), 562–571.

Simonyan, K., & Zisserman, A. (2015). Very deep
convolutional networks for large-scale image
recognition. arXiv, https://arxiv.org/abs/1409.1556.

Srivastava, N. R., Troyk, P. R., & Dagnelie, G. (2009).
Detection, eye–hand coordination and virtual
mobility performance in simulated vision for a
cortical visual prosthesis device. Journal of Neural
Engineering, 6(3), 035008.

Srivastava, N. R., Troyk, P. R., Towle, V. L., Curry, D.,
Schmidt, E., & Kufta, C. et al. (2007). Estimating
phosphene maps for psychophysical experiments

https://arxiv.org/abs/1909.06161
https://proceedings.neurips.cc/paper/2005
https://doi.org/10.1109/CVPR.2017.19
https://arxiv.org/abs/1604.03640v2
https://doi.org/10.1109/IWAIT.2018.8369657
https://doi.org/10.1101/407007
https://arxiv.org/abs/1409.1556


Journal of Vision (2022) 22(2):20, 1–14 de Ruyter van Steveninck, Güçlü, van Wezel, & van Gerven 14

used in testing a cortical visual prosthesis device.
Proceedings of the 3rd International IEEE EMBS
Conference on Neural Engineering, 130–133,
https://doi.org/10.1109/CNE.2007.369629.

Stevens, G. A., White, R. A., Flaxman, S. R., Price,
H., Jonas, J. B., & Keeffe, J. et al. (2013). Global
prevalence of vision impairment and blindness.
Ophthalmology, 120(12), 2377–2384.

Tehovnik, E. J., & Slocum, W. M. (2013). Electrical
induction of vision. Neuroscience & Biobehavioral
Reviews, 37(5), 803–818.

Troyk, P., Bak, M., Berg, J., Bradley, D., Cogan, S., &
Erickson, R. et al. (2003). A model for intracortical
visual prosthesis research. Artificial Organs, 27(11),
1005–1015.

Van Der Walt, S., Schönberger, J. L., Nunez-Iglesias,
J., Boulogne, F., Warner, J. D., & Yager, N. et al.
(2014). Scikit-image: Image processing in python.
PeerJ, 2014(1), e453.

Vergnieux, V., Mace, M. J.-M., & Jouffrais, C.
(2014). Wayfinding with simulated prosthetic
vision: Performance comparison with regular and
structure-enhanced renderings. 2014 36th Annual
International Conference of the IEEE Engineering
in Medicine and Biology Society, 2585–2588,
https://doi.org/10.1109/EMBC.2014.6944151.

Vergnieux, V., Macé, M. J. M., & Jouffrais, C. (2017).
Simplification of visual rendering in simulated
prosthetic vision facilitates navigation. Artificial
Organs, 41(9), 852–861.

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli,
E. P. (2004). Image quality assessment: From
error visibility to structural similarity. IEEE
Transactions on Image Processing, 13(4),
https://doi.org/10.1109/TIP.2003.819861.

Weiland, J. D., Liu, W., & Humayun, M. S. (2005).
Retinal prosthesis. Annual Review of Biomedical
Engineering, 7, 361–401.

White, J., Kameneva, T., & McCarthy, C. (2019).
Deep reinforcement learning for task-based
feature learning in prosthetic vision. Proceedings
of the Annual International Conference
of the IEEE Engineering in Medicine and
Biology Society, EMBS, 2019, 2809–2812,
https://doi.org/10.1109/EMBC.2019.8856541.

Xie, S., & Tu, Z. (2017). Holistically-nested edge
detection. International Journal of Computer Vision,
125(1–3), 3–18.

Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon,
E. A., Seibert, D., & DiCarlo, J. J. (2014).
Performance-optimized hierarchical models predict
neural responses in higher visual cortex. Proceedings
of the National Academy of Sciences of the United
States of America, 111(23), 8619–8624.

Yin, P., Lyu, J., Zhang, S., Osher, S., Qi, Y., & Xin, J.
(2019). Understanding straight-through estimator
in training activation quantized neural nets. arXiv,
https://arxiv.org/abs/1903.05662.

Zeiler, M. D., & Fergus, R. (2014). Visualizing
and understanding convolutional networks.
Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 8689
LNCS(PART 1), 818–833, https://doi.org/10.1007/
978-3-319-10590-1_53.

Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011).
FSIM: A feature similarity index for image
quality assessment. IEEE Transactions on Image
Processing, 20(8), 2378–2386.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., &
Wang, O. (2018). The unreasonable effectiveness
of deep features as a perceptual metric. arXiv,
https://arxiv.org/abs/1801.03924.

Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso,
A., & Torralba, A. (2017). Scene parsing through
ADE20K dataset. In Proceedings - 30th IEEE
Conference on Computer Vision and Pattern
Recognition, CVPR 2017 (Vols. 2017-January),
https://doi.org/10.1109/CVPR.2017.544.

Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S.,
Barriuso, A., . . . Torralba, A. (2019). Semantic
understanding of scenes through the ADE20K
dataset. International Journal of Computer Vision,
127(3), 302–321.

Zrenner, E., Bartz-Schmidt, K. U., Benav, H., Besch,
D., Bruckmann, A., Gabel, V.-P., . . . Gekeler, F.
et al. (2011). Subretinal electronic chips allow blind
patients to read letters and combine them to words.
Proceedings of the Royal Society B: Biological
Sciences, 278(1711), 1489–1497.

https://doi.org/10.1109/CNE.2007.369629
https://doi.org/10.1109/EMBC.2014.6944151
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/EMBC.2019.8856541
https://arxiv.org/abs/1903.05662
https://doi.org/10.1007/978-3-319-10590-11053
https://arxiv.org/abs/1801.03924
https://doi.org/10.1109/CVPR.2017.544

