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Abstract

Recent advances in proteomics allow the accurate measurement of abundances for thousands of proteins and phosphoproteins
from multiple samples in parallel. Therefore, for the first time, we have the opportunity to measure the proteomic profiles of
thousands of patient samples or disease model cell lines in a systematic way, to identify the precise underlying molecular
mechanism and discover personalized biomarkers, networks and treatments. Here, we review examples of successful use of
proteomics and phosphoproteomics data sets in as well as their integration other omics data sets with the aim of precision
medicine. We will discuss the bioinformatics challenges posed by the generation, analysis and integration of such large data
sets and present potential reasons why proteomics profiling and biomarkers are not currently widely used in the clinical setting.
We will finally discuss ways to contribute to the better use of proteomics data in precision medicine and the clinical setting.
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Introduction

Precision medicine refers to the use of diagnostic, therapeutic
and monitoring strategies for individual patients based on their
molecular profiles [1]. While there has been one promising
example of monitoring molecular data from a single individual
for a long term to assess their health and disease status [2], in
practice, the focus of the community lies mainly in the stratifi-
cation of diseases into subtypes, based on molecular biomarkers
or signatures, i.e. in the molecular taxonomy of disease [3]. The
aim is to use these signatures to assign patients to specific dis-
ease subgroups and administer the most effective therapy for
them. For example, patients with certain variants of TPMT, a
thiopurine methyltransferase, are known to exhibit severe tox-
icity to the most common leukemia chemotherapy drug, thio-
purine [4]. The dosage of the drug for their treatment is thus
currently adjusted, based on TPMT variant screening, to avoid
the toxicity and treat leukemia effectively [5]. Extensive molecu-
lar characterization of gene expression signatures in breast

cancer [6–8] has allowed the development of multigenes assays
that are currently undergoing clinical trials for routine use in
the clinic to guide patient treatment and monitoring [9].

Most efforts to molecularly characterize diseases use genomic-
based methodologies to identify genetic variants, including copy
number variations [10] and differential gene expression [6] associ-
ated with specific disease subtypes [11] (Figure 1). While significant
progress has been made in stratifying patients and diseases, there
has been limited success in using this information in the clinic. In
a recent meta-analysis study of a Phase 1 trial for treating refrac-
tory malignant neoplasms, they found that, while the response
rate using the ‘precision’ biomarker was significantly higher than
in its absence, the median response rate was still only �30% [12].
Systems biology [13] has shown that focusing only on the genomic
and transcriptomic layers of cell function regulation leaves us blind
to other important regulators of cell phenotypes and outcomes. For
example, metabolomics data provide information regarding the
metabolism and energy balance regulation of the cell, and epige-
nomics can reflect the regulation of the gene expression and the
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effect of environmental factors on the cell. The use of these data
sets in precision medicine has been reviewed elsewhere [14, 15].

It is well known that changes in gene expression do not
always reflect changes in protein abundance [16–18]. Proteins are
the major effectors of cell functions through changes in their
posttranslational modifications (PTMs) and abundance, reflected
also on changes in their interactome with effects on cell pheno-
types. It is therefore critical to also consider proteomics, phos-
phoproteomics and other PTM-‘omics’ data sets in our studies to
understand disease development and subtypes, as they can bet-
ter capture the functional state and dynamic properties of a cell.
However, these data sets have not been extensively used in the
precision medicine field because of the time required to run sam-
ples, complexity and dynamic range of proteomics samples, lack
of reproducibility among laboratories, differences between quan-
tification methods and other confounding factors [19, 20].

Recently, technological developments in instrumentation,
sample preparation and data analysis [20–23] and initiatives to
develop standards for the generation and evaluation of these
data [24–30] have resulted in the availability of high-quality,
reproducible and comprehensive proteomics and phosphoproteo-
mics data sets and protocols to generate such data. For example,
Sharma and colleagues [31] were able to detect 50 000 phospho-
peptides in a single human cancer cell line, and scientists can
routinely and accurately measure thousands of peptides within
short time frames: Hebert et al. [32] were able to measure the
entire yeast proteome comprising peptides from �3980 proteins
in just over 1 h. Hundreds of targeted and global proteomics data
sets are also collected by the CPTAC (Clinical Proteomic Tumor
Analysis Consortium) to contribute to the study of cancer [33].
Therefore, the bioinformatics community must currently address
the challenge of taking advantage of this new layer of information
and integrating it with other valuable omics layers to study the
mechanism of human disease and translate it into actionable
insight in the clinic. Targeted proteomics methods such as SRM/
MRM (Selected/Multiple Reaction Monitoring; [34]) and data-inde-
pendent acquisition methods such as SWATH-MS (Sequential
Windowed Acquisition of All Theoretical Fragment Ion Mass
Spectra) also allow significant reduction in variability during data
acquisition and improved data set quality [35]. For details on the
technological advances that have allowed this revolution in pro-
teomics and PTM-omics data acquisition, we redirect the reader
to numerous existing publications [21, 22, 36–38]. Recent reviews
have discussed proteomics and phosphoproteomics in the con-
text of precision medicine [39, 40]. In this review, we will present
an overview of bioinformatics approaches used to analyze these
data individually as well as integrated with other omics data sets
and will discuss challenges that should be tackled to gain insight

into disease mechanisms and advance the field of precision
medicine.

Proteomics-derived precision biomarkers and
signatures

A major application of proteomics is for the identification of bio-
markers for disease. Biomarkers can be divided in (i) diagnostic to
identify a given type of disease (ii) prognostic to measure the dis-
ease status and (iii) predictive to measure a response to a treat-
ment [41]. Ideally, a biomarker should distinguish the disease
unambiguously and should be detected in an accessible body fluid
such as plasma, blood, serum urine, saliva or cerebrospinal fluids
[42]. For example, the prostate-specific antigen (PSA) is one of the
most famous noninvasive screening biomarkers and is used to
detect prostate cancer [43]. However, a high concentration of PSA
in the blood is also associated with benign prostatic hyperplasia
and prostatitis [44–46]. Thus, even though PSA provides sufficient
sensitivity, it fails in the discrimination between prostate cancer
and other prostate pathologies because of its poor specificity [47].
In recent years, to improve biomarker sensitivity and specificity,
researchers have turned to a combination of biomarkers, i.e. a dis-
ease signature, instead of pursuing an ideal biomarker [48].

Using proteomics characterization of samples from different
stages of luminal-type breast cancer progression, Pozniak et al.
[49] identified differences in components of protein homeosta-
sis and metabolic regulation that can differentiate healthy,
from primary or lymph node-metastasized tumor tissues,
and lymph node-positive and negative breast cancers.
Proteomics-based subtyping of colon and rectal cancer patients
by the CPTAC was also more fine-grained than that based on
transcriptomics data leading to better prediction of patient
prognosis [50]. Combining protein with phosphoprotein abun-
dance measurements using reverse phase protein arrays has
also been used, e.g. for the prediction of ovarian cancer recur-
rence [51]. Numerous studies have showcased the value of
phosphoproteomics data in providing mechanistic information
underlying the disease mechanism [52–54]. For example, phos-
phoproteomics data have been used to discover the mechanism
of resistance of melanoma cells to BRAF inhibitors [52] and of
glioblastoma to mTOR (mechanistic target of rapamycin) inhibi-
tors, leading to the discovery of a novel combination therapy for
the latter [53]. Casado and collegues [55] used phosphoproteo-
mics data on hematological cancer cell lines to assign them to
specific tumor types and potential treatments. They also
studied acute myeloid leukemia primary cells to identify the dif-
ferential activation of kinases in cells that presented different
drug resistance profiles [56]. Excitingly, cell-specific

Figure 1. Example workflow for precision medicine. Multi-omics data are initially collected from patients and integrated to create their individual molecular profiles.

These profiles are then matched to previously defined disease profiles that can guide the selection of treatment. This is achieved either through a match to known bio-

markers, omics signatures or network/pathway signatures. The appropriate drug is then selected based on this match, to improve the chance of successful treatment

and reduce the probability of side effects.
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phosphoproteomics has also been used to study bidirectional
signaling between endothelial cells and tumor cells to under-
stand metastatic mechanisms of tumor cells [54]. Recently,
phosphoproteomics data were used to create mechanistic mod-
els of colorectal cancer cell line-specific drug resistance, sug-
gesting that this could be a viable option also for patients [57]. It
is therefore clear that the proteomics and phosphoproteomics
layer of omics information can provide valuable insight in our
quest towards precision medicine.

Extracting relevant and reliable features (proteins) from
high-throughput proteomics data is the main challenge for the
biomarkers identification process. One approach is to use those
proteins that are differentially expressed between normal and
disease state [58–62]. More sophisticated methods such as
machine learning and network-based approaches are also used.
Machine learning methods such as support vector machine [63,
64] (SVM), neural networks [65–69], decision tree [67], random
forest [70, 71] and genetic algorithms [72] have been successfully
applied to proteomics data to identify biomarkers for several
cancer types, heart failure and other conditions. Ahn et al. [73]
constructed a 29-plex array platform comprising 29 potential
biomarkers associated with gastric adenocarcinoma. A total of
13 candidate biomarkers were selected by random forest feature
selection algorithm. Random forest and SVM were used to clas-
sify individuals as patients with gastric adenocarcinoma or con-
trols. The algorithms tested on an independent blinded set of
95 gastric adenocarcinoma sera and 51 controls reached a mean
accuracy of 89.2 and 85.6%, respectively. Random forest
generally outperformed SVM, regardless of stage or tumor size;
however, the SVM algorithm performed well for diagnosing
small tumors. Rogers et al. [66] trained a neural network on
either presence/absence of peaks or peak intensity values in
a cohort of patients affected by renal cell carcinoma. Their
model reaches sensitivity and specificity values of 98.3–100%.
However, in an independent validation cohort of 80 cases, the
performances were significantly weaker (sensitivities and spe-
cificities ranged from 41.0 to 76.6%). This highlights the frequent
tendency of machine learning approaches to overfit their func-
tions to noise inherent to the data set rather than the signal.
Appropriate consideration regarding the complexity of the
model and control data sets should thus always be used to
avoid this issue when using such approaches.

High-throughput proteomics data sets are characterized by a
high number of variables/features compared with the total
number of samples available. Hence, the input space includes
many irrelevant or noisy features, which, coupled with the wide
heterogeneity commonly found in biological samples, make it
difficult to identify the truly important biomarkers. To tackle
this problem, dimensionality reduction methods [74], such as
PAM (Prediction Analysis for Microarrays) [75], SVM-RFE
(Support Vector Machine-Recursive Feature Elimination) [48],
SAM (Significance Analysis of Microarrays) [76], are used, in
combination with machine learning methods, to reduce the
noise in the data sets. This is achieved by discarding irrelevant
features and enhances the generalization and the prediction
performance. For reviews of feature selection algorithms, we
redirect the reader elsewhere [77–79].

The lack of reproducibility across different data sets, techni-
cal issues such as the overfitting problem in machine learning
approaches and the intrinsic complexity of human diseases
often prevent promising biomarkers from reaching clinical
application [80]. A promising idea to improve the reproducibility
and the interpretation of the results is to incorporate prior bio-
logical knowledge and different high-throughput data sets to

facilitate our understanding of biological processes at a mecha-
nistic level.

From lists to integrated networks

Uncovering the individual mechanisms of disease development
and progression in different patients will be key to designing
accurate precision therapy strategies. As a first step in that
direction, omics data analysis approaches typically attempt to
identify affected biological processes and functions [49] by using
Gene Ontology [81] or pathway (or other features) enrichment
analyses [82] on the differentially regulated entities of each data
set (e.g. genes, proteins or phosphopeptides). These differen-
tially regulated entities can also be mapped onto existing inter-
action networks or pathway maps to provide a better picture of
the cell processes affected in a specific sample. For example in
the tumor endothelial bidirectional signaling study mentioned
above [54], the authors mapped the affected phosphopeptides
onto KEGG pathway maps [83], to understand the pathways
involved in the transendothelial metastasis of tumors. More
recently, a collection of methods, mostly developed for and
applied to genomics and transcriptomics data sets, has been
developed that take into consideration also the protein interac-
tion network and pathway structure to identify patient-specific
disease-perturbed pathways [84]. The SPIA algorithm (Signalling
Pathway Impact Analysis) combines information on the differ-
ential expression of genes with their influence in a pathway
based on their placement in a pathway topology [85]. HotNet2
[86] and Tied Diffusion Through Interacting Events (TieDIE; [87])
use slightly varied diffusion-based approaches that include a
form of random walk and weighting according to the connec-
tion strength and network topology to propagate the effect of
the perturbation in a given network [88]. There are many other
methods available (the most widely used are reviewed here [84])
using, for example, network propagation [89] and clustering
[90], current flow through the network [91], random walk [92,
93], pathway models [57] or other approaches for identifying
perturbed functional modules or pathways in a network and
using these as signatures to stratify patients or differentiate
cancer model cell lines (Figure 2).

The concepts and methodologies can also be applicable to
proteomics data sets; however, there are some issues that
should be considered both when using these methods for tran-
scriptomics/genomics data and when attempting to apply them
to proteomics and phosphoproteomics data sets. Specifically,
most of them tend to use existing interactome data and anno-
tated pathway data, which are currently incomplete and biased
toward highly expressed proteins [94–96]. This issue is further
exacerbated, when trying to apply them to proteomics data
sets, by the fact that these also inherently contain this bias.
Moreover, our knowledge of tissue-specific interactions and
their rewiring in different cellular states or conditions is cur-
rently limited [97, 98]. Such rewiring also occurs in disease and
may vary across patients, and therefore, the use of generic net-
works and pathways for precision medicine applications may
not be ideal. Finally, another issue to consider when applying
such methods to proteomics and phosphoproteomics data sets
is that they tend to have a much smaller coverage of the entire
proteome than other respective omics data sets, depending on
the instrument or technology used and the dynamic range of
the abundances in the sample [99, 100]. It would therefore be
useful to develop computational approaches that are tailored
specifically to proteomics and phosphoproteomics data sets to
account for these associated data characteristics.
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In the past few years, there have been a number of such meth-
ods developed. They mainly focus on accurately estimating the
activity of diverse kinases in the systems under study to highlight
the context-specific signaling networks that are active in each
context. The most widely used method is the kinase–substrate
enrichment analysis method [56], which calculates the kinases
activity based on the differential abundance of their known sub-
strates. Other methods include IKAP (inference of kinase activities
from phosphoproteomics; [101]), which uses a machine learning
approach, KARP (kinase activity ranking using phoshphoproteo-
mics data; [102]), which calculates the relative phosphorylation of
a kinase‘s substrates versus the total phosphorylation in the data
and KinasePA (Perturbation analysis; [103]) and CLUE (CLUster
Evaluation; [104]), which require perturbation or time series data.

A few different approaches have been extensively benchmarked
by Hernandez-Armenta and colleagues [105].

As proteomics and phosphoprteomics data sets provide a
direct picture of the cell’s functional state, inclusion of prior
knowledge in these methods, such as motifs or interaction inter-
faces, known enzyme–substrate relationships and effects of
mutations on protein structure and function, can also help better
understand the effect of perturbations on the functional network.

Data integration approaches

Despite the wealth of information that proteomics and phos-
phoproteomics data can provide, it still represents only one
layer of cell function and regulation. Thus, to truly understand

Figure 2. Different methods used in biomarker discovery. (A) Differentially expressed method, (B) machine learning method, (C) network-based method DE, differen-

tially expressed; NN, neural network; RF, random forest; DT, decision tree; GA, genetic algorithm; NBS, network-based stratification; RW, random walk.
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cell function in-depth, it is critical to consider as many as possi-
ble layers of cell function regulation [13]. This is especially true
in the context of precision medicine where different layers of
cell regulation may be important for each patient, and addi-
tional clinical information must also be included in the analysis.
Therefore, one major challenge that our community is currently
trying to solve is that of effective data integration of the less
mature proteomics and phosphoproteomics layers of informa-
tion with other omics data sets that have been more extensively
studied and integrated in recent years.

There is currently no standard or optimal approach to data
integration, and several methods have been developed (for
reviews, see [106–108]). Here, we will focus on the main
approaches used thus far to integrate proteomics data sets with
other omics or clinical data. Depending on the data sets they
integrate, methods can be divided into homogenous, where the
data sets contain the same type of data but from different sour-
ces, and heterogeneous, where multiple data sets with different
data types are integrated. These methods can either integrate
the layers of information in a step-wise fashion or in a single
step to generate an integrated model of the system under study.

For example Drake et al. [109], used a step-wise approach to
integrate genomic, transcriptomic and phosphoproteomics data
to identify patient-specific networks that are affected in pros-
tate cancer and suggest potential precision treatments for these
patients. Specifically they first used the data sets to broadly
identify the pathways, transcription factors and kinases that
are likely active in their samples and then applied their
diffusion-based algorithm, TieDie [87], to pinpoint the different
functional modules and pathways that are affected in the differ-
ent patients. In this study, they also showed that the integration
of phosphoproteomics was able to uncover pathways that
would have otherwise been missed underlining the importance
of including this level of information in precision medicine
approaches. By applying this pipeline on three different pros-
tate cell lines as validation, they were able to support their
results either through evaluation of their predicted drug sensi-
tivity or through gene essentiality studies.

Rudolph and colleagues [110] integrate protein interaction
networks with phosphoproteomics data and evolutionary con-
servation to define signaling functionalities for proteins in a
data set and delineate the active signaling pathways in a given
phosphoproteomics data set. A recent systematic search for
algorithms to reconstruct signaling pathways from phospho-
proteomics [111] has shown that integration with prior knowl-
edge yields the best results.

The most promising methods that integrate data sets in a
single step include principle component analysis (PCA) [112] (or
factor analysis)-based and nonnegative matrix factorization
(NMF)-based [113, 114] approaches, as they are able to integrate
diverse and large data sets and perform effective dimensional-
ity reduction to allow easy downstream machine learning [115]
or network-based [113] analyses and creation of models that
represent the system under study.

The major issue with PCA-based approaches is the difficulty
in interpretation of the biological mechanism underlying the
different factor associations. Therefore, different supervised
[116] or unsupervised [117] approaches can be used to choose
the appropriate factors and help the results interpretation.
These can include implementation of linear discriminant analy-
sis [116], Bayesian classifiers [118], SVMs [119] and K-nearest
neighbor [120] approaches after the PCA analysis. Liu et al. [118]
integrated microRNA, mRNA and proteomics data into a joint
matrix. They then used factor analysis and linear discriminant

analysis to extract the molecular mechanism of cancer in differ-
ent cell lines. The integrated approach identified clinically rele-
vant markers and outperformed the analyses performed on the
separate data sets.

While matrix factorization methods such as NMF and varia-
tions have been routinely applied to genomics and transcrip-
tomics data [113, 121, 122], they have only recently been applied
to proteomics data sets. For example, Yuan et al. [123] used pair-
wise NMF between omics data sets and clinical data to study
the utility of using these omics data integration approaches in
the clinic. In the subgroups, which they identified by combining
proteomics and clinical data, they were able to identify—among
other biomarkers and activated pathways—an additional
patient subgroup that might also benefit from MEK (Mitogen-
activated protein kinase kinase) targeting therapies.

A great advantage of matrix factorization approaches for
proteomics and phosphoproteomics data sets is that they can
also be used to impute missing data points [124]. This can be
valuable for these data sets, as they inherently do not provide
comprehensive measurements of all the components that
might be present in other omics data types such as transcrip-
tomic or genomic data sets. Other approaches for data imputa-
tion that can be applied in proteomics and phosphoproteomics
data use nonlinear optimization approaches [125, 126].

Another integration approach that has been applied to the
proteomics data is based on a multiple extension co-inertia
analysis to identify the relationships among different omics
data sets. Meng et al. [127], for example, integrated the tran-
scriptome and proteome profiles of cells in the NCI-60 cancer
cells. Using the integrated model, they found that the extrava-
sation signaling pathway plays a fundamental role in leukemia;
the same pathway was not identified in the single data set
analyses.

Other than the missing data points that were discussed
above, one of the major challenges for integrating proteomics
and phosphoproteomics with other omics data sets is the
inconsistent annotation and reporting of such data sets and
analysis pipelines. This, in combination with the dynamic
nature of the proteome and phosphoproteome, can result in the
introduction of noise to the integrative models used to study a
disease or a patient. As unified data collection and standardiza-
tion processes are being developed for use of these data in the
clinic, consistent methods to record the associated meta-data
for this information that can be used in conjunction with exist-
ing methods for genomic and other omic data sets need to also
be developed.

In recent years, there have been bioinformatics platforms
and methods developed to reduce the variability from the data
acquisition and analysis processes. Examples for this are the
ProHits [128] and OpenMS [129]. ProHits is a software platform
that is used mainly for interaction proteomics and provides a
variety of options for data management and analysis that are
systematically tracked to ensure the downstream reproducibil-
ity of the analysis pipelines. OpenMS is an open-source suite of
analysis software for mass spectrometry data allowing the
implementation of different pipelines and analyses procedures
in a transparent and scalable way. These kinds of platforms
ensure the reproducibility of the analyses pipelines. Methods
for ensuring reproducibility during data acquisition are also
important. For example, the TRIC (Transfer of Identification
Confidence; [130]) algorithm, developed for SWATH-MS-tar-
geted proteomics, uses a clever alignment approach to reduce
the variability in peak picking and quantification across mass
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spectrometry runs. Other similar software has been previously
compared by Navarro et al. [131].

The inherent variability of proteomics and phosphoproteo-
mics data sets can also be a confounding factor in data integra-
tion efforts. It has been shown in single-cell studies that the
noise and sample variability significantly decrease when a spe-
cific cell response is activated compared with a static state,
because of regulatory coordination [132]. Therefore, acquiring
nonstatic data points, where possible, will reduce data variabil-
ity and increase the signal to noise ratio. Additionally, single-
cell technologies, providing single-cell measurements of protein
or phosphoprotein abundance, have the potential to mitigate
the data variability issue and improve the use of these data for
understanding disease development.

From networks to mechanistic models

For use of proteomics and phosphoproteomics in the clinic, it is
important to provide mechanistic information for a disease
beyond the pathways and functional modules that have been
affected. Halasz et al. [133] used phosphoproteomics data sets
and a probabilistic framework to create a mechanistic and exe-
cutable model of the rewiring that occurs in signal transduction
pathways in cancer cells. They were able to identify a cell line-
specific feedback loop for inhibition of IRS1 by p70S6K in color-
ectal cell lines and to perform stimulations to identify ways to
increase their sensitivity to TRIC (TCP-1 ring complex) inhibi-
tors. Eduati et al. [57] used dynamic logic models and phospho-
proteomics data to study the colorectal cell line-specific
mechanism of drug resistance and a identified novel drug com-
bination that can be used to overcome it.

Such models can be invaluable in the clinic to not only
understand the mechanism of disease but also to simulate and
predict the outcome of a treatment on specific patient groups or
even individuals, depending on the available models.

Challenges for clinical application

While the proteomics and phosphoproteomics layers of func-
tional regulation provide valuable insight into disease develop-
ment and mechanism, there are still some challenges that need
to be tackled before they can be readily applied for stratification
of patients, even if data quality and bioinformatics challenges
discussed above are tackled.

One of the major challenges is that most current ‘omics’
data analyses provide results that are not readily interpretable
or actionable. For example, while identifying that a handful of
pathways are affected in a specific patient subgroup may sug-
gest the administration of specific kinase inhibitors as therapy,
it does not necessarily uncover the full mechanism of a disease.
There have been successful examples, such as the work of Zeevi
and colleagues [134] that used omics data, clinical data and
machine learning to devise an actionable change in personal-
ized nutrition to regulate post-meal glucose levels, without an
in-depth understanding of the mechanism at play. However, in
most situations, lack of mechanistic information regarding a
disease’s development, makes it difficult to identify the causal
targets for therapy at a reliability level that is appropriate for
precision therapies in the clinic. As new methods for proteo-
mics data analysis develop, our community needs to take this
into consideration: rather than providing ‘big picture’ represen-
tations of affected cell processes in a disease, there is a need for
producing reliable ranked targets or biomarkers by probability
of being effective [135–137] or ranked testable hypotheses to

help decide on one, alongside an easy-to-interpret explanation
for their selection. This requires an in-depth understanding of
cell processes and their interactions.

Recent years have seen the collaborations between compu-
tational biologists and clinicians or basic-science biologists dra-
matically increase, because of the advent of large-scale data
sets and systems biology. The importance, however, of under-
standing basic biological processes in-depth to be able to under-
stand disease mechanisms underlines the need for increased
collaboration also between clinicians and basic research scien-
tists. Interdisciplinary collaborations, including clinical data to
take snapshots of the disease ‘omics’ profile, and iterations of
computational analysis and basic biology for in-depth mecha-
nistic studies of relevant cell processes, can lead to a detailed
understanding and models of disease development, thus help-
ing better stratify patients according to their disease subtype
mechanism and design more knowledge-based treatments.
Proteomics and phosphoproteomics data sets, as described
above, can provide mechanistic insight into cell processes and
are therefore ideal for inclusion in such studies to provide test-
able mechanistic hypotheses. Of course, the major disadvant-
age of such three-level approaches is that it takes time to
perform in-depth studies of cell processes; however, as our
knowledgebase of cell processes, their cross-talk and their role
in different diseases increases, this will prove to be a worth-
while investment in the long run and might be the only way to
truly achieve the goal of precision medicine across multiple
diseases.

An additional challenge is presented when associating iden-
tified affected cell processes with specific disease phenotypes
or clinical data. Currently, most studies use patient survival
data as the patient phenotype and associate omics signatures
with remission or survival rates [138]. More detailed and stand-
ardized phenotyping of patients can provide a better under-
standing of the causal cell processes of a disease and can
improve diagnosis and tracking both of its progression and the
effects of treatment and other issues that might affect a
patient’s quality of life [138]. As more omics data from patients
are being generated, standardized protocols for systematically
recording the phenotype of the relevant cells—if possible—and
wider availability of in-depth patient clinical characteristics to
data scientists beyond survival rate will also provide a signifi-
cant contribution toward our community‘s goal of precision
medicine. Ethical considerations to ensure patient anonymity
and privacy need to also be taken into account in the develop-
ment of these protocols as well as in the process of data sharing
[140, 141].

The standardization of analysis pipelines and representation
of results also present an issue for the routine application of
proteomics protocols in the clinic. Whether the outcome of
patient data analysis is the identification of a biomarker or a
disease signature, robust quality control and analysis tools
needs to be readily available to clinicians as well as accurate
protocols for sample acquisition and results interpretation. This
is critical to provide reproducible, high-quality precision care
for patients across different hospitals and treatment centers.
Proteomics and phosphoproteomics-specific data analysis pipe-
lines have only recently started to be systematically developed
and included in precision medicine studies [109]. Therefore, as
the field matures, we expect to see significant progress in their
standardized use across laboratories, institutes and eventually
in the clinics.
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Future directions

Proteomics and phosphoproteomics have recently emerged as a
new layer of patient omics information in the field of precision
medicine. Technological advancements and community efforts
to standardize protocols and achieve robust and reproducible
results [24–30] have contributed greatly to the utility of this data
type in large-scale studies of disease and patient stratification.
Their major strength lies in the fact that they give a picture of the
actual workforce of the cell and are thus highly suited for study-
ing the mechanism of disease development and progression.
Other than the data reproducibility issue that the community is
now efficiently tackling, one of the main challenges from a bioin-
formatics perspective that still prevents the wide-spread use of
proteomics and phosphoproteomics data is the need for effective,
data type-specific methods to extract the valuable knowledge it
encodes and to integrate it efficiently with other large-scale data
sets and prior knowledge. There are significant efforts made in
this direction, and as the field matures, and more PTMs are also
included, we expect it to provide great insight into the develop-
ment of disease and help improve stratification of patients and
design of precision approaches to their treatment and monitor-
ing. Additionally, proteomics and phosphoproteomics data, like
transcriptomics, encode highly dynamic information. Therefore,
to accurately highlight differences in disease mechanisms and
functional networks, and to reduce data variation, it is optimal to
collect data sets on stimulation or perturbation rather than in a
static state. This is currently impractical in a clinical setting,
where we rely on a single sample from a usually untreated
patient, but it could prove useful when performing, for example,
window of opportunity trials where novel drugs are tested on
patients before the standard treatment to evaluate their effect on
untreated individuals [142, 143].

Currently, the bulk of population-level omics data is being col-
lected to study cancer for precision oncology applications. Clearly,
for precision medicine to become widely applicable more focus
should be placed on characterizing also other diseases and their
subtypes. These cancer studies, nevertheless, provide a unique
learning opportunity for our community: we can use this rich
data set to define what is the best way to maximize the orthogo-
nal information we acquire from all these different omics layers,
to estimate how many data sets are sufficient for characterizing a
disease and potentially to identify the minimal components that
one needs to measure in a cell to get the global signaling, gene
regulation and metabolic status from a sample. From a proteo-
mics perspective, such information can dramatically reduce the
cost and variability of a study, making it even more applicable for
clinical applications, for example through an educated design of
targeted proteomics or phosphoproteomics approaches.

Of the drugs that are tested in clinical trials only 1 in 10 suc-
cessfully go to the market [144]. This presents a huge financial
burden for the pharmaceutical companies and the public.
Bioinformatics approaches that effectively integrate omics data
with in-depth clinical data can help guide many aspects of clinical
trials to improve the chances of their success (for a recent review,
see [145]): analysis of patients’ omics data can help to guide the
selection of targets and associated drugs and the appropriate
group to which a drug can be administered with improved chance
of success. Bioinformatics data storage and automated analysis
pipelines can also make this knowledge available to future stud-
ies. At later stages, side effects or outcomes of the trial can be
associated with specific molecular signatures in the patients to
understand their mechanisms and design approaches to circum-
vent them. Indeed, these methods are already in use, and there

are already guidelines in place to guide the design of clinical trials
using omics data sets [146]. Thus, as an increased amount of clini-
cal records and associated omics data sets become available to
scientists, bioinformatics approaches will play an important role
in guiding clinical trials with an increased success rate.

In an ideal precision medicine scenario, we would be able to
create a widely used and robust clinical tool that can guide doc-
tors with respect to the data required from a patient to provide
his subdisease mechanism and guide the choice of therapy and

monitoring. While we are several decades away from such a tool,
and indeed from widespread use of any precision medicine
approaches at all, it is nevertheless becoming increasingly clear
that understanding at the molecular level and creating dynamic
mechanistic models of cell functions during disease development
and progression are critical for the success of precision medicine.

Precision medicine for all is still a long-term goal for our
community. However, the field is rapidly progressing, and it cer-
tainly does not seem as far-fetched as it did 10 years ago. Even
not taking into consideration the improvement in global quality
of life, studies have demonstrated the cost–benefit of applying
such approaches in the clinic [147].

Programs such as the St Jude Children’s Research Hospital
Pharmacogenomics of Anticancer Agents Research 4Kids
(PG4Kids) program [148] and the Icahn School of Medicine
at Mount Sinai Clinical Implementation of Personalized
Medicine through Electronic Health Records and Genomics-
Pharmacogenomics (CLIPMERGE PGx) program [149] can provide
valuable knowledge regarding the practical prerequisites for
real life precision medicine implementation. Additionally, excit-
ing developments in preclinical studies include the use of
patient-derived xenograph mouse models of disease (e.g. at

the Jackson Laboratory), for testing precision therapies. We
expect current and future advances in proteomics and phos-
phoproteomics data collection and analysis to greatly improve
our understanding of disease development and progression
also contributing to improved implementation of precision
medicine in real world applications.

Key Points

• Precision medicine aims to tailor diagnostic, therapeutic
and monitoring approaches to specific patient subgroups.

• Proteomics and phosphoproteomics data sets can pro-
vide mechanistic insight into disease development and
are thus valuable for precision medicine approaches.

• Major challenges presented by these data include the
lack of data robustness and standardization as well as
the limited proteome and phosphoproteome coverage.

• Methods that are developed specifically for these data
types as well as their effective integration with other
data sets can mitigate the issues.
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