
RESEARCH ARTICLE

Deep learning-based smart speaker to

confirm surgical sites for cataract surgeries: A

pilot study

Tae Keun YooID
1☯*, Ein Oh2☯, Hong Kyu KimID

3, Ik Hee Ryu4, In Sik Lee4, Jung Sub Kim4,

Jin Kuk Kim4

1 Department of Ophthalmology, Aerospace Medical Center, Republic of Korea Air Force, Cheongju, South

Korea, 2 Department of Anesthesiology and Pain Medicine, Seoul Women’s Hospital, Bucheon, South

Korea, 3 Department of Ophthalmology, Dankook University Hospital, Dankook University College of

Medicine, Cheonan, South Korea, 4 B&VIIt Eye Center, Seoul, South Korea

☯ These authors contributed equally to this work.

* eyetaekeunyoo@gmail.com

Abstract

Wrong-site surgeries can occur due to the absence of an appropriate surgical time-out.

However, during a time-out, surgical participants are unable to review the patient’s charts

due to their aseptic hands. To improve the conditions in surgical time-outs, we introduce a

deep learning-based smart speaker to confirm the surgical information prior to cataract sur-

geries. This pilot study utilized the publicly available audio vocabulary dataset and recorded

audio data published by the authors. The audio clips of the target words, such as left, right,

cataract, phacoemulsification, and intraocular lens, were selected to determine and confirm

surgical information in the time-out speech. A deep convolutional neural network model was

trained and implemented in the smart speaker that was developed using a mini development

board and commercial speakerphone. To validate our model in the consecutive speeches

during time-outs, we generated 200 time-out speeches for cataract surgeries by randomly

selecting the surgical statuses of the surgical participants. After the training process, the

deep learning model achieved an accuracy of 96.3% for the validation dataset of short-word

audio clips. Our deep learning-based smart speaker achieved an accuracy of 93.5% for the

200 time-out speeches. The surgical and procedural accuracy was 100%. Additionally, on

validating the deep learning model by using web-generated time-out speeches and video

clips for general surgery, the model exhibited a robust and good performance. In this pilot

study, the proposed deep learning-based smart speaker was able to successfully confirm

the surgical information during the time-out speech. Future studies should focus on collect-

ing real-world time-out data and automatically connecting the device to electronic health rec-

ords. Adopting smart speaker-assisted time-out phases will improve the patients’ safety

during cataract surgeries, particularly in relation to wrong-site surgeries.
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Introduction

Medical errors, such as wrong-site surgeries, can be significantly devastating patients as well as

surgeons. Operating on an incorrect surgical site is the most common medical error [1]. Oph-

thalmic surgeries on the wrong eye could occur owing to the carelessness of surgical partici-

pants. According to previous reports, wrong-site surgeries still continue to occur in the field of

ophthalmology [2]. Recent studies suggests that a preoperative discussion, known as a surgical

time-out, can significantly assist in decreasing the risk of wrong-site surgeries [3]. During a

surgical time-out, the surgical team can confirm the patient’s identity, surgical site, and name

of the procedure. However, time-outs are not always conducted accurately, and surgical errors

continue to occur [4].

Cataract surgery is the most frequently undertaken surgical procedure in developed socie-

ties [5]. Furthermore, patients suffering from age-related cataracts may have concomitant

medical conditions that may increase the risk of medical errors. Considering a significant

number of patients in ophthalmic clinics, without an appropriate time-out, wrong-site surger-

ies may occur as the surgeon may find it difficult to identify each surgical case. The final token

time-out before cataract surgeries can be ineffective if the surgeon and other participants do

not consider it important [6]. Therefore, a consistent use of a preoperative checklist is recom-

mended to confirm the surgical information; however, in reality, the checklist is not used for

every cataract surgery. Moreover, during a time-out, surgical participants are unable to review

patient charts due to their aseptic hands.

Recently, artificial intelligence-based techniques have revolutionized many fields ranging

from medical data analyses to intricate image classification [7,8]. These contributions are not

limited to research as deep learning techniques and highly efficient hardware are being intro-

duced in clinics as well [9]. In addition, deep learning has been applied to speech recognition

and several commercial smart speakers that exhibit a reliable performance in capturing human

voices [10]. Smart speakers can provide virtual assistants with hands-free and voice-only inter-

action for surgeons, who have to ensure that their hands remain aseptic during surgery. How-

ever, application of smart speakers in medical fields is limited due to technical difficulties.

Recently, a research group demonstrated the use of a smart speaker for interventional radiol-

ogy procedures [11]. This device could capture a human voice and provide information about

the intervention device sizing. It showed a potential to assist surgeons during a sterile proce-

dure. However, there has been no report of a smart system that can confirm surgical informa-

tion using a time-out procedure to improve safety.

Here, we introduce a deep learning-based smart speaker to confirm the surgical informa-

tion during a time-out. Especially, we focus on the accurate detection of the surgical site and

confirm the surgical site by comparing it with the patient’s information before the start of the

surgery. This paper presents a pilot study designed for the deep learning-based assessment of

speech recognition during a time-out in a cataract surgery and the development of a smart

speaker to assist with a hands-free time-out.

Methods

Overview

In this study, we designed a smart speaker that confirmed the surgical information based on a

human voice. Fig 1 demonstrates the illustration of this proposed approach. The experimental

process complied with the declaration of Helsinki. The approval of the ethics committee was

not required because the researchers used a public database and voice data recorded by the

authors to build the proposed deep learning model. There were no human or animal
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experiments undertaken in this pilot study. The Speech Commands dataset that was used in

this study was collected by Google and released publicly, and it is available at the website

https://www.tensorflow.org/tutorials/sequences/audio_recognition [12]. In addition, recorded

voice and noise data are available as Mendeley Data repositories (http://dx.doi.org/10.17632/

rwh74vrz8y).

Training dataset

The dataset for the deep learning model is sourced from a short speech vocabulary that

includes 16 target words, unknown words, and background noise. Detailed information about

target word dataset is presented in Table 1. The Speech Commands dataset is chosen as the

Fig 1. A deep learning-based smart speaker in ophthalmic surgery to confirm surgical information.

https://doi.org/10.1371/journal.pone.0231322.g001

Table 1. Sound dataset for the target words.

Words N Total size (MB) Source Purpose

Time-out 451 58.1 Recorded by the authors Start time-out

Right 2,367 71.2 Open dataset [12] Surgery site

Left 2,353 71.0 Open dataset [12] Surgery site

One 2,370 71.1 Open dataset [12] Patient ID

Two 2,373 71.3 Open dataset [12] Patient ID

Three 2,356 70.9 Open dataset [12] Patient ID

Four 2,372 71.4 Open dataset [12] Patient ID

Five 2,357 71.1 Open dataset [12] Patient ID

Six 2,369 71.6 Open dataset [12] Patient ID

Seven 2,377 71.6 Open dataset [12] Patient ID

Eight 2,352 70.7 Open dataset [12] Patient ID

Nine 2,364 71.3 Open dataset [12] Patient ID

Zero 2,376 71.8 Open dataset [12] Patient ID

Cataract 484 60.1 Recorded by the authors Procedure

Phacoemulsification 606 84.0 Recorded by the authors Procedure

Intraocular lens 462 58.3 Recorded by the authors Procedure

aResearchers recorded the target words provided by the text-to-voice tools.

https://doi.org/10.1371/journal.pone.0231322.t001
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primary data for speech recognition [12]. This dataset consists of over 65,000, one-second

audio recordings of more than 30 short words. The selected subset of the Speech Commands

included the words left, right, one, two, three, four, five, six, seven, eight, nine, and zero. The

remaining 18 words of the Speech Commands dataset, including backward, bed, go, dog, tree,

on, and learn, were categorized as the “unknown” class. The “background” class consisted of

one-second sound files that were randomly extracted from the background noise and silent

sounds of the Speech Commands dataset. In the experiments, we attempted to add additional

short words from various text-to-voice tools. Detailed information about the text-to-voice pro-

cess is presented in S1 Fig. Researchers recorded the target words such as time-out, cataract,
phacoemulsification, and intraocular lens, with varying accents, speed, and voice tones pro-

vided by the text-to-voice tools. As the voice interface relied on keyword spotting to initialize

the interactions in most devices, “time-out” was assigned as a keyword to initialize the auto-

mated detection. Finally, a dataset that consists of the same word spoken by different people

was compiled for training and validation. The Speech Commands dataset provides basic noise

data including background sounds from white noise, pink noise, exercise, and doing the

dishes. Additional noise from the operating room, including vital monitoring sound and back-

ground sound of surgery, were also added to the noise database. The noise recordings were

captured using Samsung Galaxy S10 and AKG headphones.

As a preprocessing step, to reduce the imbalance between the classes, we oversampled the

recorded target words of time-out, cataract, phacoemulsification, and intraocular lens. How-

ever, we partitioned the word dataset such that the audio from the same recording did not

straddle the training and validation dataset split [13]. During data presentation, a short-time

Fourier transform was conducted to compute the spectrograms. Due to the addition of our

recorded audio, the spectrogram parameters of MATLAB audio project were tuned to avoid

calculation errors. Moreover, we performed data augmentation to build a robust, trained

model. Data augmentation is a widely used approach to boost the generalization of deep learn-

ing models and prevent overfitting [14]. We augmented data with the help of oversampling by

amplifying sound waves and resizing the mel-spectrograms. Using MATLAB, we randomly

scaled input sound data within the range of [−20%, +20%], translated the mel-spectrogram by

up to 10 frames forward or backward in time, and scaled the mel-spectrograms along the time

axis within a range of [-20%, +20%]. The mixed sound z was generated using z = (1-w)�x + w�y
where x is the audio of the original sample and y is the signal of the noise data. We randomly

scaled the mixed noise weight w within the range of [0, 0.5]. The final data distribution dia-

gram is presented in S2 Fig.

Training algorithm

Initially, training and validation were conducted using MATLAB 2019a (Mathworks, Natick,

MA, USA). The code for the deep learning model was based on MATLAB’s underlying audio

processing project "Speech Command Recognition Using Deep Learning". The overview and

detailed code of this project may be available at the official MATLAB website https://www.

mathworks.com/help/deeplearning/examples/deep-learning-speech-recognition.html. These

project codes assisted us in easily building a deep learning model for audio processing. We

modified this speech recognition code to train a deep learning model for detecting the target

words. Fig 2 represents the detailed framework of our deep learning and hardware model used

to build a smart speaker. Mel-spectrograms were converted to 40-by-98-pixel images, and the

deep learning model used them as input data. We used a deep convolutional neural network

with 5 blocks that were composed of convolution layers, batch normalization, activation func-

tion (ReLU), and MaxPooling. To avoid overfitting of the deep learning model, the last fully
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connected layers were constrained via the drop-out technique (drop-out probability = 0.2).

This architecture is widely used in CovNet-related models for audio event detection [15], and

detailed layers and parameters are described in Fig 2. The training process was conducted

using the Adam optimizer with a mini-batch size of 128 [16]. The initial learning rate was set

at 0.0002, and the learning rate decayed every 20 epochs at an exponential rate of 0.1. The

number of maximum epochs was set at 25 empirically. To detect the target words, the output

threshold was set at 0.9. If the network output did not meet the threshold value, the word

detection flag was not activated. The computer used in this study was equipped with NVIDIA

GEFORCE GTX1060 3 GB GPU for transfer learning and with an Intel core i7 processor to

train the deep learning models. After building the deep learning model, using a desktop com-

puter, we implemented the smart speaker using LattePanda (LattePanda, Shanghai, China),

which is a mini development single board computer [17], and Jabra Speakerphone 410 (Jabra

GN, Portlabnd, Oregon, USA). MATLAB was installed in the mini board to run the trained

deep learning model. The fully trained deep learning model in the desktop was copied to Latte-

Panda and was operated under a MATLAB environment for the real-time experiments.

Real-time experiments

The confirmation of a time-out requires accurate recognition of the keywords associated with

the surgery and comparison between the recognized words and real surgical information. In

this research, we assumed that the actual surgical information was input in the device before

the operation. Once the surgical speech words were recognized, the system changed the flag

variables linked to the patient’s identity and surgical site. In the case of an inconsistency

between the recognized words (for example, left versus right), we chose the word that exhibited

a higher probability as obtained by the deep learning model. The detailed codes for the

real-time analysis are also presented in MATLAB’s underlying audio processing project.

Fig 2. Deep learning architecture and application of LattePanda to build a smart speaker.

https://doi.org/10.1371/journal.pone.0231322.g002
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To validate our model in consecutive speeches during time-outs, we generated the time-out

script by randomly selecting the status of the surgical participants. The patient’s 5-digit identity

numbers were generated randomly, and the left or right surgical site was also chosen ran-

domly. The option for surgery was selected among cataract, vitrectomy, and intravitreal injec-

tion, which are the most common ophthalmic surgeries. Two types of time-out script are

presented in S3 Fig, and one of them was selected randomly. During the experiments, we eval-

uated the accuracy of our deep learning model across multiple generated time-out speeches,

using the smart speaker without a desktop computer. The time-out speeches were recorded

based on the generated script by text-to-speech tools. We played 200 time-out audio clips and

compared the recognized words and surgical information in the time-out script. If the device

correctly recognized all instances of the word “time-out”, the patient’s 5-digit identity number,

surgical site, and whether it was a cataract surgery or not, the audio was classified as a correct

case. Because cataract surgery could be referred to in various synonyms, we categorized the

audio as a cataract surgery case if the audio had at least one of the words “cataract”, “phacoe-
mulsification”, and “intraocular lens”. In additional experiments using the web-based sources,

the speech audios were streamed using the speaker of Samsung Galaxy 10. The experiments

were performed at three different distances (0.5 m, 1.0 m and 1.5 m) between audio source

and speakerphone to explore the effect of distance. To perform a comparative study using

another device, we also adopted an additional speakerphone, which is a part of the Kakao

Mini-C (KAKAO Corp., Jeju, South Korea).

Results

We successfully trained the deep learning model by using the training dataset after the data

augmentation. In total, 33,819 short-word audio clips were used for the training and 4778 clips

were used for the validation of the model. Fig 3 demonstrates the training process and valida-

tion result. After 6600 training iterations (25 epochs) of the deep learning model, the training

process was stopped to avoid over-fitting. The time taken to complete the training was 61 min.

The confusion matrix presented in Fig 3 indicates that the total accuracy was 96.3% for the val-

idation set. An example of several target words being detected by the deep learning model is

demonstrated in S1 Video.

Fig 3. Training and validation results. (A) Learning Curves of the Deep Learning Model. (B) Confusion Matrix to present Classification Results for Validation Dataset.

https://doi.org/10.1371/journal.pone.0231322.g003
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We found that our deep learning architecture and training epochs were appropriate to

enable the best performance (Table 2). The deep learning model without batch normalization

and that without dropout performed weaker than our network model. According to this result,

the final deep learning model having batch normalization and drop-out layers with 25 training

epochs was not over-parameterized.

Additional binary classification tests were performed to explore the robustness and perfor-

mance of detection using test dataset (Table 3). Binary classification indexes were calculated

using the output probability ratio of the two target words. We observed that the deep learning

model outperformed random forest and support vector machine. In the “left” versus “right”
problem, the sensitivity and specificity were 96.8% and 97.7%, respectively. When we tried to

classify “three” from “tree,” which was included in the “unknown” class, the performance

showed a sensitivity of 95.8% and specificity of 94.8%. Although it is a common pair of mispro-

nounced words, we found that the classification performance was reliable.

The real-time experiment, using our developed smart speaker, is presented in Fig 4. The

surgical information and script were randomly generated for each trial. The deep learning

approach was applied to 200 time-out audio clips recorded by text-to-speech tools, as

described in the previous section. The final results of the deep learning model indicate a robust

and good detection of the target words in the controlled setting. When we adopted Samsung

Table 2. Validation accuracy according to different deep learning architectures and training epochs.

Models Epochs Accuracy (%)

Deep learning (CNN) 10 92.5

25 96.3

50 96.1

Deep learning (CNN without batch normalization) 10 88.2

25 93.5

50 94.0

Deep learning (CNN without dropout) 10 92.1

25 95.5

50 92.9

CNN, Convolutional neural network

https://doi.org/10.1371/journal.pone.0231322.t002

Table 3. Binary classification results to explore the robustness and outcome of detection using the test dataset.

AUC Accuracy (%) Sensitivity (%) Specificity (%)

Problem 1: “Left” versus “Right” (Index = Pleft/Pright)

Deep learning (CNN) 0.996 97.3 96.8 97.7

Random forest 0.991 95.7 96.4 94.9

SVM using RBF kernel 0.978 93.1 91.8 94.3

Problem 2: “Three” versus “Tree” (Index = Pthree/Punknown)

Deep learning (CNN) 0.988 95.3 95.8 94.8

Random forest 0.896 82.4 87.0 77.7

SVM using RBF kernel 0.885 83.6 82.0 85.1

Problem 3: “Time-out” versus “Unknown” (Index = Ptime-out/Punknown)

Deep learning (CNN) 0.990 95.1 93.6 96.6

Random forest 0.980 92.9 95.4 90.3

SVM using RBF kernel 0.983 93.5 90.9 96.0

AUC, area under the receiver operating characteristic curve; RBF, radial basis function; SVM, support vector machine.

https://doi.org/10.1371/journal.pone.0231322.t003
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Galaxy 10 as a sound source, the deep learning-based smart speaker achieved an accuracy of

93.5% with 0.5-m distance between the sound source and Jabra speakerphone. The accuracy of

detecting patient’s surgical site was 94%, and it was the lowest compared to the accuracy of detect-

ing the remaining surgical information. In this experiment, the accuracy of detection of the surgi-

cal site and procedure was 100%. We observed that the sound detection performance decreased

with a longer distance of 1.5 m. The highest accuracy of 99.0% was observed with AKG head-

phones. When Kakao Mini-C was used as a sound source, the accuracy was 94.5% at a distance of

0.5 m, and the results were similar to those of the experiment with Samsung Galaxy 10.

The application of the deep learning model was not limited to the author’s voice dataset.

Additionally, we also validated our deep learning model by using the time-out speech gener-

ated by the web translator sourced from https://papago.naver.com (S2 Video). Our model was

successfully able to initialize the detection process on the time-out sign, identify the patient

identity number, and confirm the surgical site and procedure. Another example, using a video

clip from YouTube, is presented in Fig 5. In this case, for a non-ophthalmologic surgery (as

shown in the video), we found that the deep learning model could only detect the time-out

sign and surgical site. By considering the probabilities of the target words, the deep learning

model was able to accurately classify the real-time input speech data.

Discussion

This research deals with a challenging audio processing task that arises in operation rooms for

cataract surgeries. Adopting the smart speaker-assisted time-out phase will improve the

Fig 4. The real-time experiment using our developed smart speaker. (A) We generated the time-out script by selecting surgical status randomly. (B) The accuracy of

the deep learning model using Samsung Galaxy 10 as a sound source. (C) The accuracy of the deep learning model using Kakao Mini-C as a sound source.

https://doi.org/10.1371/journal.pone.0231322.g004

PLOS ONE Smart speaker for cataract surgeries

PLOS ONE | https://doi.org/10.1371/journal.pone.0231322 April 9, 2020 8 / 12

https://papago.naver.com/
https://doi.org/10.1371/journal.pone.0231322.g004
https://doi.org/10.1371/journal.pone.0231322


patients’ safety during cataract surgeries, especially considering the risk due to wrong-site sur-

geries. To the best of our knowledge, this proposed work is the first trial to develop a smart

speaker for use in operation rooms. We believe that this work presents the first step forward in

the development of smart operation rooms and will guide the following research associated

with medical smart speakers. However, the accuracy was dependent on the distance and type

of device. The performance of speech recognition should be further improved.

The smart speaker presented in this study can assist in the surgical timeout under reliable

surveillance. A previous study highlighted that surgical safety checklists for every case can

improve surgical outcomes [3]. This device can act as a safety monitor to confirm whether the

time-out for surgical checklist was conducted before surgery [18]. If the surgeon and partici-

pants do not perform a time-out before the surgery, our device may caution them against

neglecting the time-out. Thus, the smart operation room system that uses this device can sig-

nificantly contribute to reducing human errors and increasing the safety of patients. This

framework can extend to the confirmation of an intraocular lens in cataract surgeries or abla-

tion depth in corneal refractive surgeries. As the selection of the incorrect power of an intraoc-

ular lens is reported as the most common error in ophthalmic surgery, future studies should

consider including the lens information during a time-out [6]. Additionally, displaying visual

information on screen about surgery along with audio information will improve the confirma-

tion during time-out. We believe that a smart operation room will be able to combine informa-

tion from various sources, and audio will play an important role in reducing the occurrence of

wrong site surgery.

With advances in digital health technologies, the smart speaker will revolutionize medical

fields. The major features of the smart device system include a connection to the network,

ubiquity, embedded intelligence, and programmability [19]. A previous study suggested that

the smart system using voice-controlled technology presents new opportunities for the care of

diabetic patients having complications in their lower extremities [20]. Considering the aseptic

conditions during an interventional radiology procedure, a machine learning smart speaker

was developed to provide device information to the clinicians [11]. A more comprehensive

study, using a smart speaker, was performed to predict cardiac arrests by using real-world 9-1-

1 audio [13]. As the presence of agonal breathing is associated with cardiac arrest, this study

attempted for the prediction of cardiac arrest by using the support vector machine technique.

Our study focused on the surgical time-out to reduce medical errors and improve patients’

Fig 5. Example of the developed smart speaker using a video from YouTube.

https://doi.org/10.1371/journal.pone.0231322.g005
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safety. Thus, in the near future, an artificial intelligence-based smart speaker might lead to

major changes in medical fields.

Deep learning could play an important in directly predicting the words to confirm the

patient’s information. In a previous study, spectrograms and a binary classification model

combining a deep learning feature extractor and support vector machine, were used [13]. Sim-

ilarly, in our study, mel-spectrograms and a multi-categorical classification model to detect

various target speeches, were used, with the help of deep learning. Although the number of

classes was 18, the detection accuracy was sufficient to justify applying the trained model for

real-time word detection. Our deep learning architecture was based on CovNet-related model

for audio event detection [15], and it was unable to consider the semantic relationship between

words As our work did not utilize natural language processing (NLP) or recurrent neural net-

work (RNN), there is a lot of potential to improve the performance. RNN is highly efficient in

predicting sequential data due to dependency building in neighboring words [21]. Therefore, a

more comprehensive recognition for a time-out might be conducted by combining our deep

learning model and RNN.

Recent development of open access deep learning techniques, publicly available audio

vocabulary, and lightweight hardware allows us to conveniently build a smart speaker. In our

experience, it was not difficult to implement a deep learning model in a small-sized develop-

ment board such as LattePanda and Raspberry series, and these boards are easily accessible.

Especially, the AIY Voice Kit released by Google in 2017, is an inexpensive and powerful tool

that can be used to build a smart speaker [22]. This device is based on Raspberry. Therefore, it

can be programmed even with minimal Python coding expertise. Moreover, we used Latte-

Panda, which runs a full version of Windows 10 and MATLAB 2019a. Therefore, the trained

deep learning model using MATLAB 2019a, could easily be imported into the device. As this

device can be connected to a monitor screen via a high definition multimedia interface, the

surgical information and time-out status can be visualized for surgeons and other participants.

We believe that the deep learning-based small device will play a significant role in the future of

smart operation rooms.

The current pilot study has several limitations. First, a number of voice datasets recorded

by the authors produced fundamental limits. Most deep learning researchers agree that a small

amount of data is insufficient to test the effectiveness [14]. We used audio data augmentation

in order to overcome this challenge. In addition, there was an absence of an external validation

dataset to confirm the performance of the classification models. Second, our sound dataset was

obtained in a limited controlled condition, although various background noises were used. A

key challenge to this system is accessing the real-world data of surgical time-outs. To overcome

this challenge, in the future, real time-out voice data has to be collected from operation rooms.

Third, our study showed that the patient’s data and surgical information has to be entered

manually in this system prior to the time-out phase. In this pilot study, we focused on the accu-

rate detection of target words and confirmation of the surgical site. To achieve a smart opera-

tion room system in a hospital, medical data should be automatically imported to the device.

We are currently planning a further study to address these limitations and enable the model to

automatically update the electronic medical records.

Conclusion

Even though wrong-site surgeries are rare, they have been a serious problem in ophthalmol-

ogy. Therefore, a new strategy that utilizes artificial intelligence techniques, which is auto-

mated, reliable, and low-cost, needs to be considered. In this pilot study, our deep learning-

based smart speaker was able to successfully confirm surgical information during the time-out
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speech. Future studies should focus on collecting real-world time-out data and automatically

connecting the device to electronic health records. By building a technologically advanced sur-

gery room system to confirm the surgery site by using the deep learning-based smart speaker,

future technologies can reduce the number of medical errors and improve the quality of life

for patients as well as surgeons.
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