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Background: Nowadays, predictions of biochemical recurrence (BCR) in localized

prostate cancer (PCa) patients after radical prostatectomy (RP) are mainly based on

clinical parameters with a low predictive accuracy. Given the critical role of apoptosis

in PCa occurrence and progression, we aimed to establish a novel predictive model

based on apoptosis-related gene signature and clinicopathological parameters that can

improve risk stratification for BCR and assist in clinical decision-making.

Methods: Expression data and corresponding clinical information were obtained from

four public cohorts, one from The Cancer Genome Atlas (TCGA) dataset and three from

the Gene Expression Omnibus (GEO) dataset. Weighted gene co-expression network

analysis (WGCNA) was performed to identify candidate modules closely correlated to

BCR, and univariate and multivariate Cox regression analyses were utilized to build the

gene signature. Time-dependent receiver operating curve (ROC) and Kaplan–Meier (KM)

survival analysis were used to assess the prognostic value. Finally, we analyzed the

expression of genes in the signature and validated the results using quantitative real-time

PCR (qRT-PCR).

Results: The novel gene signature we established exhibited a high prognostic value and

was able to act as an independent risk factor for BCR [Training set: P < 0.001, hazard

ratio (HR) = 7.826; Validation set I: P = 0.006, HR = 2.655; Validation set II: P = 0.003,

HR = 4.175; Validation set III: P < 0.001, HR = 3.008]. Nomogram based on the gene

signature and clinical parameters was capable of distinguishing high-risk BCR patients.

Additionally, functional enrichment analysis showed several enriched pathways and

biological processes, which might help reveal the underlying mechanism. The expression

results of qRT-PCR were consistent with TCGA results.

Conclusion: The apoptosis-related gene signature could serve as a powerful predictor

and risk factor for BCR in localized PCa patients after RP.

Keywords: apoptosis-related gene signature, prostate cancer, radical prostatectomy, biochemical recurrence,

prognosis
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INTRODUCTION

Prostate cancer (PCa) remains the second most frequently
diagnosed malignancy in men worldwide (Siegel et al., 2020).
According to the statistics of the American Cancer Society, there
will be 191,930 newly diagnosed PCa cases and about 33,330 men
died of PCa in America in 2020. Due to advances in monitoring
methods and medical examinations, many patients have been
diagnosed with PCa at an early stage. For these clinically localized
PCa patients, evidence-based guidelines recommend radical
prostatectomy (RP) as the primary treatment and most of them
will benefit from this procedure (Attard et al., 2016; Wallis et al.,
2016; Ilic et al., 2017). However, it has been reported that ∼15–
40% of patients will develop biochemical recurrence (BCR) after
RP and finally progress to castration-resistant PCa (Ghadjar et al.,
2018; Teo et al., 2019). For these patients, more active follow-up
and personalized adjuvant therapy, such as androgen deprivation
therapy, chemotherapy, and radiation therapy, should be taken
to improve prognosis. To avoid overtreatment, it is necessary
and meaningful to accurately identify patients with a high
risk of BCR.

Previous studies revealed that Gleason score (GS), prostate-
specific antigen (PSA), surgical margin (SM), and clinical T stage
(cT) were selected as parameters for risk stratification for BCR
after local therapy (Mottet et al., 2017). Nowadays, the availability
of large-scale public databases with gene expression data and
clinical data makes it possible to construct a more accurate
prognostic signature than conventional clinical parameters.
These molecular biomarkers could provide not only additional
prognostic information but also insight into the mechanisms of
BCR in PCa. Apoptosis, also known as programmed cell death,
is involved in several biological and pathological processes, such
as embryonic development, homeostatic maintenance of tissues
and organs, oncogenesis, and tumor progression (Majno and
Joris, 1995; Tang and Porter, 1996). Additionally, alternations
in apoptosis pathways play an important role in resistance
to conventional antitumor therapies, such as radiotherapy,
chemotherapy, and targeted therapy (Lim et al., 2019). In PCa,
two major apoptotic pathways, the death receptor-mediated
pathways (extrinsic pathway) and the mitochondria-mediated
pathway (intrinsic pathway), are involved in the process of tumor
progression and recurrence (Hirata et al., 2009; Khan et al., 2014).
As we know, there is no existing apoptosis-related gene signature
for predicting BCR in localized PCa patients after RP.

Considering the important role of apoptosis in the progression
and recurrence of PCa, we aimed to establish a novel apoptosis-
related prediction model to improve risk stratification of BCR in
localized PCa patients after RP. These results might contribute
to a better understanding of the underlying mechanism of BCR,
including the role of apoptosis.

MATERIALS AND METHODS

Publicly Available Datasets and
Apoptosis-Related Genes
All relevant datasets were identified by comprehensively
searching NCBI Gene Expression Omnibus (GEO) datasets

before May 10, 2020. The search strategy consisted of
the following keywords: “Homo sapiens” and “Series” and
“Expression profiling by array” and “prostate cancer” and
(“recurrence” or “recurrent”). Expression data along with all
available clinical information were retrieved for PCa patients
from The Cancer Genome Atlas (TCGA). The inclusion criteria
were as follows: (1) biospecimens were collected from patients
with localized PCa undergoing RP, (2) containing at least
50 samples in each dataset, and (3) including both clinical
parameters (PSA, cT, SM, or GS) and outcomes (BCR).

After screening, four independent cohorts were eventually
included in our research, containing a total of 688 PCa samples
along with corresponding clinical information. Among them, one
cohort was from TCGA database and three cohorts were from the
GEO database. The RNA-seq data of 379 patients were accessed
from TCGA, and RNA-seq data of 106 patients from GSE54460
were produced with the Affymetrix Human Exon 1.0 ST Array.
Additionally, the microarray data of 92 patients from GSE70769
and 111 patients from GSE70768 were from the same research
(Ross-Adams et al., 2015), which were produced with the same
chip platform (Illumina HumanHT-12 V4.0 Array). Probe IDs
were mapped to gene symbols based on the relevant annotation
information, and expression measurements of all probes linking
to the same gene symbol were averaged to obtain a single
value. The list of apoptosis-related genes was extracted from the
Molecular Signature Database v7.1 (https://www.gsea-msigdb.
org/gsea/msigdb/index.jsp). The search strategy consisted of
the following keywords: “apoptosis” or “apoptosis” and “Homo
sapiens.” Eventually, 181 gene sets containing 2,411 unique genes
were included in the list (Supplementary Material 1). TCGA
cohort was taken as a training set, while the other three cohorts
were used for validation. All RNA-seq data and microarray data
were normalized and log2 transformed with the manufacturer-
provided R packages.

Candidate Selection and Signature
Construction
The expression data of 2,411 apoptosis-related genes in the
training set were used to construct a scale-free co-expression
network with the weighted gene co-expression network analysis
(WGCNA) R package (Langfelder and Horvath, 2008). First,
hierarchical clustering analysis of PCa patients with different
clinical characteristics (BCR, GS, and cT) was performed, based
on the expression of apoptosis-related genes, to detect outliers.
Next, the fit soft threshold power (β) was screened to ensure
the construction of scale-free networks based on the Pearson’s
correlation coefficient between apoptosis-related genes. In this
study, β = 3 (details in Supplementary Material) was selected to
build a scale-free network. The topological overlapmatrix (TOM)
was constructed based on the adjacency, and the corresponding
dissimilarity (1-TOM) was used as the distance measure, with
a minModuleSize of 30, to assign apoptosis-related genes into
different modules via hierarchical clustering analysis. Unassigned
genes were categorized into a gray module. Then, we identified
the modules that were significantly correlated with the clinical
traits based on two parameters, module eigengenes and gene
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significance. Among non-gray modules, the modules with the
highest absolute correlations with BCR were chosen as candidate
modules for further analysis. Univariate Cox regression analysis
was performed to screen for prognostic apoptosis-related genes
in the candidate module, and the latter were enrolled in the
multivariate Cox regression analysis to establish the prognostic
risk model. The risk score was calculated as follows:

Riskscore =

n∑

i=1

expi∗βi

where n is the number of prognostic genes, expi is the expression
level of prognostic gene i, and βi is the regression coefficient
of gene i.

Functional Enrichment Analysis
Gene Ontology (GO) annotation and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis of the genes
in the candidate module were conducted using the Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) online tool (version 6.8; https://david.ncifcrf.gov/).
Moreover, gene set enrichment analysis (GSEA) software,
which was downloaded from Broad Institute (http://www.
broadinstitute.org/gsea/index.jsp), was used to analyze the
potential pathways underlying the gene signature with gene set
“hallmark.all.v7.1.symbols.gmt” based on RNA-seq data in the
training set.

Construction of the Nomogram
To assist clinical procedures and improve risk stratification, a
nomogram model (Iasonos et al., 2008), which integrated the
gene signature and prognostic clinicopathological features, was
built as a quantitative tool to predict BCR in PCa patients.
The calibration plot and time-dependent receiver operating
characteristics (ROC) analysis were used to investigate the
calibration and discrimination of the model.

Cell Culture
The human PCa cell line (LNCaP) and normal myofibroblast
stromal cell line (WPMY-1) were obtained from the Institute
of Biochemistry and Cell Biology of the Chinese Academy of
Sciences (Shanghai, China). The cells were cultured in Roswell
Park Memorial Institute 1640 or Dulbecco’s Modified Eagle’s
Medium (Gibco BRL, Carlsbad, CA, USA) supplemented with
10% heat-inactivated fetal bovine serum (Gibco BRL), 100 U/ml
penicillin sodium, and 100 mg/ml streptomycin sulfate at 37◦C
in a humidified air atmosphere with 5% CO2.

RNA Isolation and Quantitative Real-Time
PCR
Total RNA was extracted from cell lines using TRIzol reagent
(Invitrogen Life Technologies, Carlsbad, CA, USA) according to
the manufacturer’s instructions. The isolated RNA was reverse
transcribed into cDNA using a reverse transcription kit (Vazyme,
Nanjing, China). According to the manufacturer’s protocols,
reverse transcription was conducted at 37◦C for 15min, followed
by 85◦C for 5 s. Quantitative real-time PCR (qRT-PCR) was

TABLE 1 | Quantitative real time PCR primers.

Primer Primer sequence (5′-3′)

Name Forward Reverse

NLRP12 ACCAGACCTTGACCGACCTT GAGGACTCGGAGTTTGCAGC

CDKN2A ATGGAGCCTTCGGCTGACT GTAACTATTCGGTGCGTTGGG

STX4 CTGTCCCAGCAATTCGTGGAG CCCAGCATTGGTGATCTTCAG

RAB27A GGAGAGGTTTCGTAGCTTAACG CCACACAGCACTATATCTGGGT

HSF1 GCACATTCCATGCCCAAGTAT GGCCTCTCGTCTATGCTCC

AURKB CAGAAGAGCTGCACATTTGACG CCTTGAGCCCTAAGAGCAGATTT

BTG-2 CCTGTGGGTGGACCCCTAT GGCCTCCTCGTACAAGACG

PHLDA3 ACATCTACTTCACGCTGGTG CTGCTGGTTCTTGAACTTGAC

E2F1 ATAGTGTCACCACCACCATCAT GAAAGGCTGATGAACTCCTCAG

NSMF CGAGCGTTTGGAGAGTACCTG TGCGGGCTTCCTAATGCTG

MSX1 GAAGATGCGCTCGTCAAAG CTTACGGTTCGTCTTGTGTTTG

TPT1 GAAAGCACAGTAATCACTGGTGT ACGGTAGTCCAATAGAGCAACC

ERP29 AAGAGAGCTACCCAGTCTTCTA TTCTTCTGAGTCTCCTTCACAC

MT1F TGCGCCGCTGGTGTCT GACGCCCCTTTGCAAACA

ADGRB1 ATGACCGACTTCGAGAAGGACG TCTGCGGCATCTGGTCAATGTG

β-actin CCACCATGTACCCAGGCATT CGGACTCATCGTACTCCTGC

performed using a standard protocol from SYBR Green Mix
(Vazyme) to detect the expression of the candidate genes. Each
10 µl of the PCR reaction volume comprised SYBR Premix
(2×, 5 µl), forward primer (10µM, 0.2 µl), reverse primer
(10µM, 0.2 µl), cDNA sample (1 µl), and bidistilled water
(3.6 µl). The qRT-PCR reaction was performed on an ABI
StepOnePlus instrument (Applied Biosystems, Carlsbad, CA,
USA). The relative expression of each mRNA was calculated
and normalized by the 2−11Ct method relative to β-actin. Each
experiment was performed in triplicate. The primer sequences
used in this study were listed in Table 1.

Statistics
Levene’s test and Kolmogorov–Smirnov test were used to assess
the normality and homogeneity of variance. For parametric
variables, Student’s t-test or one-way analysis of variance
(ANOVA) was used for continuous variables and the chi-
square test or Fisher exact test for categorical variables. The
Mann–Whitney andWilcoxon tests were used for nonparametric
variables. Survival curves were generated and analyzed by
the Kaplan–Meier method using the log-rank test. The Cox
proportional hazards regression model was applied to assess the
prognostic value of each parameter for BCR. Time-dependent
ROC analysis was used to measure the predictive power with the
“survivalROC” R packages, and the areas under the ROC curve
(AUC) of each variable at different time nodes were compared.
Meta-analysis (I2 < 50%, fixed-effect model) was performed to
evaluate the prognostic value in the pooled cohort. The Z-score
method was used to normalize the risk scores in each cohort. All
statistical analyses were performed using IBM SPSS Statistics 24.0
and R software 3.6.3. A two-tailed P < 0.05 was considered to be
statistically significant for all statistical analyses.
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FIGURE 1 | Selection of powerful biomarkers to construct a prognostic apoptosis-related gene signature. (A) Cluster tree of prostate cancer (PCa) samples in The

Cancer Genome Atlas (TCGA) and the color band under the tree indicating the numeric values of clinical traits. (B) Cluster Dendrogram indicating different

apoptosis-related gene modules. (C) Heatmap showing the correlation between the modules and clinical traits. (D) Scatterplot of gene significance for biochemical

recurrence (BCR) vs. module membership in the brown module. (E) Volcano plot displaying the result of univariate Cox regression analysis. (F) Distribution of

regression coefficients of the gene signature.

RESULTS

Construction of an Apoptosis-Related
Gene Signature for Biochemical
Recurrence
WGCNA was performed with RNA-seq data and clinical
traits (BCR, GS, and cT) on the training set (Figure 1A).
Sample clustering was performed to exclude outliers
(Supplementary Figure 1). A total of five non-gray modules
were obtained through a one-step network construction
method, where β = 3 (Figure 1B). Then, we performed a
correlation analysis between these non-gray modules and
clinical traits. The results showed that among the non-
gray modules, the brown module had the most significant
correlation with not only BCR but also GS and cT (Figure 1C).
Additionally, the distribution of the modules’ average gene
significance related to BCR was displayed in Figure 1D and
Supplementary Material, among which the brown module
also had the strongest correlation with BCR. Therefore, 152
genes from this module were selected for further univariate
Cox regression analysis. With the threshold of P < 0.01, it
turned out that 38 genes (12 protective and 26 risk genes) were
significantly associated with BCR (Figure 1E). Next, multivariate
Cox regression analysis was applied to develop a gene signature
based on 38 prognostic genes. Finally, 15 genes (RAB27A,
HSF1, BTG2, AURKB, TPT1, NLRP12, PHLDA3, CDKN2A,
STX4, E2F1, NSMF, MSX1, ADGRB1, MT1F, and ERP29)
were used to construct the gene signature. The distribution
of regression coefficients of the gene signature was shown in
Figure 1F.

Predictive Value of Gene Signature for
Biochemical Recurrence
We ranked the risk scores of all patients in the training set,
and the risk scores of patients with BCR were obviously higher
than those of patients without BCR (P < 0.0001). Patients with
high risk had a significantly poorer recurrence-free survival
(RFS) than those with low risk (P < 0.0001). Multivariate Cox
regression analysis demonstrated that the risk score was an
independent prognostic factor for BCR [hazard ratio (HR) =

7.826, P < 0.001]. Additionally, time-dependent ROC analysis
showed that the risk score also acted as a powerful predictor of
BCR, with an average AUC of 0.899 after 5 years of follow-up
(Figure 2A).

To further verify the reliability of the results, the same analyses
were conducted in the other three independent validation sets
(Figures 2B–D). It turned out that patients with BCR had
significantly higher risk scores than those without BCR in all
validation sets (validation I: P = 0.0072; validation II: P = 0.015;
validation III: P = 0.0028). The Kaplan–Meier analysis in the
three validation sets showed that low-risk scores were closely
associated with better RFS (validation I: P < 0.0001; validation
II: P = 0.0005; validation III: P = 0.0003). Notably, the risk score
was always found to be an independent risk factor for BCR in all
validation sets (validation I: HR = 2.655, P = 0.006; validation
II: HR = 4.175, P = 0.003; validation III: HR = 3.008, P <

0.001), which was consistent with the result from the training
set. Moreover, the powerful predictive value of the risk score
was observed in the three validation sets, with an average AUC
of 0.787, 0.796, and 0.761, respectively. Compared with clinical
parameters, the risk score had the largest AUC in both training set
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FIGURE 2 | Predictive value of gene signature for biochemical recurrence (BCR) in each cohort (A–D). Risk scores of patients with BCR were obviously higher than

the ones without BCR. Patients with a high risk had a significantly poorer recurrence-free survival (RFS) than those with a low risk. Multivariate Cox regression analysis

demonstrated that risk score was an independent prognostic factor for BCR. Time-dependent receiver operating curve (ROC) analysis showed that risk score also

acted as a powerful predictor of BCR.

and validation sets. Moreover, compared with the combination of
clinical variables (age, cT, GS, SM, and PSA), the average AUC of
the risk score was larger in three of the databases (training set,
validation II, and validation III).

Next, a meta-analysis was conducted to explore the prognostic
value of the gene signature in the pooled cohort. The results
showed that a high-risk score yielded a worse RFS in the pooled
cohort (pooled HR = 3.71, 95% CI 2.58–5.33) (Figure 3A). We
also calculated Z-scores to normalize risk scores and found that
Z-scores in BCR-free patients were significantly lower than those
in BCR patients. In addition, with the extension of BCR time,
Z-scores tended to increase gradually (Figure 3B).

Combination With Clinical Variables to
Build a Predictive Nomogram
By integrating the gene signature and four clinical parameters
(GS, PSA, SM, and cT) in two cohorts (GSE70769 and
GSE70768), we constructed a nomogram to meet the needs of
clinicians to quantify the possible risk of BCR (Figure 4A). This
allowed us to calculate the estimated possibility of BCR in PCa
patients at 1, 3, and 5 years by plotting a vertical line between the
total points and each prognosis axis. The AUC values of 1-, 3-,
and 5-year nomograms were 0.878, 0.837, and 0.849, respectively
(Figure 4B). Calibration curves of the nomogram showed no

deviations from the reference line, and no recalibration was
required (Figure 4C). Additionally, we established a nomogram
based on clinical features and the AUC values of 1-year, 3-
year, and 5-year BCR were 0.812, 0.733, and 0.748, respectively
(Supplementary Figure 2).

Functional Enrichment Analysis
GO analysis results showed that 152 genes in the candidate
module were significantly enriched in some apoptosis-related
biological processes, such as regulation of apoptosis, regulation
of programmed cell death, and regulation of cell death. As
for the cell component, these genes were mainly involved in
extracellular space, extracellular region part, and cytoplasmic
membrane-bounded vesicle. In terms of molecular function,
these genes were mainly related to identical protein binding,
eukaryotic cell surface binding, and protein dimerization activity.
KEGG pathway analysis revealed that these genes were associated
with pathways in cancer, p53 signaling pathway, and mitogen-
activated protein kinase (MAPK) signaling pathway (Figure 5A,
Supplementary Table 1). Additionally, stratified GSEA revealed
that some apoptosis-related pathways and biological processes,
such as Notch signaling pathway, p53 signaling pathway, and
apoptotic DNA fragmentation, were significantly enriched in the
high-risk group (Figure 5B, Supplementary Table 2).
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FIGURE 3 | Predictive value of gene signature for biochemical recurrence (BCR) in the pooled cohort. (A) Meta-analysis showing that high-risk score yielded a worse

recurrence-free survival (RFS). (B) Z-scores in BCR-free patients were significantly lower than those in BCR patients and had a tendency to increase gradually with the

extension of BCR time.

Exploration and Validation of Gene
Expression in the Signature
The expression levels of genes in the signature in TCGA dataset
were shown in Supplementary Figure 3. Among 15 genes in
the signature, except four genes, RAB27A, ADGRB1, MT1F, and
TPT1, the remaining were differentially expressed between tumor
and normal tissues. Among them, nine genes (AURKB,CDKN2A,
E2F1, ERP29, HSF1, NSMF, MSX1, STX4, and NLRP12) were
upregulated, while the other two genes (PHLDA3 andBTG2) were
downregulated in the PCa tissues.We found that all 15 genes were
significantly associated with BCR. Among them, PHLDA3, BTG2,
ERP29, NLRP12, RAB27A, MT1F, and TPT1 were protective
genes, whereas AURKB, CDKN2A, E2F1, HSF1, NSMF, MSX1,
STX4, andADGRB1were risky genes (Supplementary Figure 4).
To further determine the expression of these genes, we used
immunohistochemistry results from the Human Protein Atlas
database to show that AURKB, CDKN2A, E2F1, ERP29, HSF1,
NSMF, MSX1, STX4, and NLRP12 were significantly increased
in PCa compared with normal tissue. In contrast, the antibody
staining levels of PHLDA3 and BTG2 were relatively reduced in
PCa tissue. Additionally, there were no significant differences
in the protein expression of RAB27A and TPT1 between
tumor and normal tissues (Supplementary Figure 5). Finally,
the results from qRT-PCR validation were also consistent with
the bioinformatics results, which further confirmed the accuracy
of our bioinformatics analysis (Figure 6).

DISCUSSION

After RP, PSA will drop to undetectable levels as expected,
and BCR is defined as two consecutive serum PSA >0.2 ng/ml
and rising (Moul, 2000). BCR is a sign of a major progression
and is associated with clinical recurrence, metastasis, and
cancer-specific mortality. As reported, 24–34% of patients with

BCR will develop metastasis and receive androgen deprivation
therapy as recommended in guidelines (Pound et al., 1999;
Boorjian et al., 2011). Unfortunately, it is a largely palliative
care, as most of them will eventually develop into metastatic
castration-resistant PCa (Heinlein and Chang, 2004). The best
way to improve these patients’ prognosis is to identify high-risk
patients at an early stage and adopt more rigorous follow-up
plans and personalized adjuvant therapies. Currently, predictions
of BCR are mainly based on clinical parameters with a low
predictive accuracy. According to the guidelines, patients are
divided into low-, medium-, and high-risk groups based on PSA,
GS, and cT (Mottet et al., 2017). Patients in the high-risk group
receive adjuvant or other systemic therapies, while those with low
risk undergo active surveillance. However, the performance of
this risk stratification is unsatisfactory, and a few patients in the
low-risk group develop BCR (Ghadjar et al., 2018). Thus, it is of
great clinical value to find novel biomarkers with more predictive
accuracy for BCR in localized PCa after RP.

In this study, we established a 15-gene signature based on
apoptosis-related genes in the training set and validated it in the
other three independent validation sets. WGCNA was conducted
to identify the candidate gene module most correlated with
BCR, and univariate and multivariate Cox regression analyses
were performed to construct the gene signature with genes
from the candidate module. Fifteen genes were finally enrolled
in the signature, and each patient’s risk score was calculated
according to the formula. We found that patients with a high-
risk score had a significantly poorer RFS than those with a
low-risk score in each cohort. In multivariate Cox regression
analysis, after correction for clinical parameters, the risk score
still served as an independent prognostic factor for BCR in each
cohort. Time-dependent ROC analysis revealed that the risk
score had the strongest predictive power in both the training
set and the validation sets. It is worth noting that the risk score
was the only significant predictor in all four cohorts, with an
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FIGURE 4 | Combination of clinical variables to build a predictive nomogram. (A) Nomogram plot to predict 1-, 3-, and 5-year survival. (B) Calibration plot of the

nomogram to predict 1-, 3-, and 5-year survival. (C) Receiver operating curve (ROC) curves of the nomogram to predict 1-, 3-, and 5-year survival.
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FIGURE 5 | Functional enrichment analysis. (A) Bubble chart showing Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that 152 genes in the candidate

module were enriched in. (B) KEGG pathways enriched in the high-risk group based on stratified gene set enrichment analysis (GSEA).

FIGURE 6 | Validation of expression of genes in the signature by quantitative real-time PCR (qRT-PCR). *P < 0.05, **P < 0.01, ***P < 0.001.
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average AUC ranging from 0.761 to 0.899. Moreover, after Z-
score normalization, the prognostic value of the risk score was
satisfactory in the pooled cohort.

To meet clinical needs and improve risk stratification, we
combined the risk score with four clinical variables (GS, PSA,
SM, and cT) and constructed a nomogram based on two of
the cohorts. The nomogram model enabled practitioners to
predict 1-, 3-, and 5-year RFS of localized PCa patients after RP.
Time-dependent ROC analysis demonstrated that the prognostic
accuracy significantly improved after the risk score was combined
with clinical parameters, with an average AUC of 0.855 after a 5-
year follow-up. Additionally, the presentation of calibration plot
showed that there was good conformity between the predicted
and observed outcomes.

Some of the genes in our signature have been reported to
be involved in cancer, especially PCa. For example, BTG2, a
protective gene in the signature, was downregulated in PCa,
and the ectopic expression of this gene inhibited PCa cell
growth. Hu et al. (2011) discovered that BTG2 complexes with
androgen receptors (ARs) via an LxxLL-dependent mechanism
and may play a role in PCa by modulating the AR signaling
pathway. Nuclear HSF1 expression could serve as a novel
prognostic marker for PCa patient risk stratification for disease
progression and survival after RP (Bjork et al., 2018). Worst et al.
(2017) reported that RAB27A was frequently underexpressed in
advanced PCa and was inversely correlated with PCa outcome.
In addition to the abovementioned genes, some genes play an
important role in the progression and prognosis of other tumors
as well, such as AURKB in clear cell renal cell carcinoma (Wan
et al., 2019) and gastric cancer (Nie et al., 2020), MSX1 in
melanoma (Heppt et al., 2018) and breast cancer (Yue et al.,
2018), ERP29 in osteosarcoma (Chaiyawat et al., 2019), and
MT1F in gastric cancer (Lin et al., 2017). Taken together, the
functional roles of 15 genes in the signature in PCa and their
underlying mechanisms still require further research.

Functional enrichment analysis demonstrated that genes in
the candidate module were significantly enriched in some
apoptosis-related biological processes and pathways. In addition,
GSEA revealed that some apoptosis-related pathways and
biological processes were significantly enriched in the high-risk
group as well. The control of apoptotic mechanisms is integral
to many aspects of tumor biology and appears to be involved
in the process of recurrence in several malignancies, such as
malignant melanoma (Xu et al., 2019), glioma (Lan et al., 2018),
and PCa (Hirata et al., 2009; Anees et al., 2011; Khan et al.,
2014). Apoptosis serves as an essential mechanism to prevent the
proliferation of cells with a higher mutation rate, thus tempering
malignant transformation. Resistance to treatment may result
from specific inhibition of apoptotic signaling (Konstantinidou
et al., 2002). Notably, the p53 signaling pathway was enriched
in both analyses. Moreover, some genes in the signature, like
HSF1 (Toma-Jonik et al., 2019) and E2F1 (Udayakumar et al.,
2010), have been reported to be associated with the p53 signaling
pathway. Thus, we suppose that the p53 signaling pathway
might contribute to cancer progression and recurrence and poor
prognosis in PCa.

We acknowledge some limitations of this study. Firstly, due
to the retrospective design and relatively small sample size,

multicenter and prospective studies are needed to validate the
predictive value of our signature. Secondly, some cohorts are with
incomplete clinical information, such as age and PSA. Thirdly,
in addition to PCR, more in-depth experiments are needed to
further explore the biological functions underlying the signature
in PCa. However, the prognostic value of our signature for BCR
in localized PCa after RP cannot be ignored.

CONCLUSION

Taken together, this study identified a novel robust apoptosis-
related gene signature for BCR in localized PCa patients after
RP. Incorporation of the gene signature into clinical parameters
could further improve risk stratification. However, well-designed
prospective studies are needed to further validate its prognostic
value and test its clinical utility.
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