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Abstract: Tachykinin 4 (TAC4) is the latest member of the tachykinin family involved in several
physiological functions in mammals. However, little information is available about TAC4 in teleost. In
the present study, we firstly isolated TAC4 and six neurokinin receptors (NKRs) from grass carp brain
and pituitary. Sequence analysis showed that grass carp TAC4 could encode two mature peptides
(namely hemokinin 1 (HK1) and hemokinin 2 (HK2)), in which HK2 retained the typical FXGLM
motif in C-terminal of tachyinin, while HK1 contained a mutant VFGLM motif. The ligand-receptor
selectivity showed that HK2 could activate all 6 NKRs but with the highest activity for the neurokinin
receptor 2 (NK2R). Interestingly, HK1 displayed a very weak activation for each NKR isoform. In
grass carp pituitary cells, HK2 could induce prolactin (PRL), somatolactin α (SLα), urotensin 1
(UTS1), neuromedin-B 1 (NMB1), cocaine- and amphetamine-regulated transcript 2 (CART2) mRNA
expression mediated by NK2R and neurokinin receptor 3 (NK3R) via activation cyclic adenosine
monophosphate (cAMP)/protein kinase A (PKA), phospholipase C (PLC)/inositol 1,4,5-triphosphate
(IP3)/protein kinase C (PKC) and calcium2+ (Ca2+)/calmodulin (CaM)/calmodulin kinase-II (CaMK
II) cascades. However, the corresponding stimulatory effects triggered by HK1 were found to be
notably weaker. Furthermore, based on the structural base for HK1, our data suggested that a
phenylalanine (F) to valine (V) substitution in the signature motif of HK1 might have contributed to
its weak agonistic actions on NKRs and pituitary genes regulation.

Keywords: tac4; hemokinin; neurokinin receptor; pituitary; teleost

1. Introduction

In mammals, the tachykinin (TAC) family includes three members, namely tachykinin
1 (TAC1), tachykinin 3 (TAC3) (tachykinin 2 (TAC2) in rodents), and TAC4, respectively.
Among them, TAC1 gene encodes substance P (SP) and neurokinin A (NKA). SP is known
to be involved in the regulation of pain control/injury [1], neurogenicinflammation [2]
and obesity [3] with mammals. Compared with mammals, teleost have undergone an
additional genome duplication during evolution, which is called fish-specific genome
duplication (FSGD) or the 3R hypothesis [4]. So there were two isoforms TAC1 (namely
tachykinin 1 isoforms a (TAC1a) and tachykinin 1 isoforms b (TAC1b)) and TAC3 (namely
tachykinin 3 isoforms a (TAC3a), and tachykinin 3 isoforms b (TAC3b)), respectively.
Similar to mammals, teleost TAC1 also encodes two mature peptides, namely SP and NKA,
respectively [5]. In teleost, SP and NKA can trigger the secretion of luteinizing hormone β

(LHβ), PRL, and SLα in the pituitary cells of carp, and the transcriptional levels of PRL
and SLα increase in parallel. Short-term SP treatment (3 h) induced the release of LHβ,
while prolonged induction time (24 h) inhibited LHβ mRNA expression [5].

In mammals, TAC3 encodes neurokinin B (NKB), is known to be involved in the
regulation of smooth muscles of the gastrointestinal tract, secretion of intestinal epithelial
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fluid, vasodilation, and stimulating sperm motility [6–8]. Recent studies have found that
NKB is a key regulator of mammalian reproductive function, especially controlling the
release of gonadotropin-releasing hormone (GnRH) in the hypothalamus [9,10]. In contrast
to mammals, TAC3 does not only encode NKB, but also a novel tachykinin peptide in
teleost, named neurokinin B-related peptide (NKBRP) [11]. The research on the function of
the TAC3 gene products in fish has mainly focused on the regulation of the reproductive
process. Previous studies have found that intraperitoneal injection of NKB or NKBRP
could both induce LHβ secretion in sexually mature female zebrafish [12]. In addition,
our previous studies have shown that both NKB and NKBRP can promote PRL and SLα
secretion and mRNA synthesis in grass carp pituitary cells [11].

Compared to TAC1 and TAC3, TAC4 is the last member of the tachykinin family. In
2000, Zhang et al. was first isolated the TAC4 gene from mouse hematopoietic stem cells,
and named its gene production as hemokin 1 (HK1) [13]. Subsequently, TAC4 was cloned
from rats and humans. Among them, the mouse hemokinin 1 (mHK1) encoded by the rat
TAC4 gene has extremely high similarity with rat hemokinin 1 (rHK1), while the human
race TAC4 gene encoding product was fairly different [14]. The TAC4 gene can encode
six neuropeptides, namely HK1, HK1 (4–11), endokinin A (EKA), endokinin B (EKB), en-
dokinin C (EKC), and endokinin D (EKD), respectively [15–17]. In mammals, recent studies
have shown that HK1 and EKs were new mediators of pain and inflammation, and also
play the crucial role in the hematopoietic system, anti-anxiety, and anti-depression [18–20].
However, little information is available about TAC4 in teleost.

In the present study, using grass carp (Ctenopharyngodon idellus) as a model, we try to
examine the pituitary actions of TAC4 gene product in teleost. Firstly, the grass carp TAC4
were cloned, which encoded two mature peptides, namely HK-1 and HK-2, respectively.
Secondly, six potential NKRs were isolated from grass carp. Then, by using transfection
and dual-luciferase detection, we tried to confirm the specific receptor for HK-1 and HK-2,
respectively. Thirdly, using grass carp pituitary cells as a model, we try to examine the
direct pituitary actions of HK-1 and HK-2 in teleost. Finally, we try to clarify the mechanism
of functional differences between HK-1 and HK-2 in teleost.

2. Materials and Methods
2.1. Animals and Chemicals

Two-year-old grass carps with a body weight of 1.7 ± 0.2 kg were purchased from
a local market and kept in a well-aerated 250 L aquaria under a 12 h light/12 h dark
photoperiod at 28 ± 1 ◦C for seven days. Grass carps at this stage were prepuberal and the
sex character was not obvious, so breed fish with mixed sexes for pituitary cell preparation.
All experimental procedures were approved by the Huazhong Agricultural University
for Laboratory Animal Care (Ethical Approval No. HBAC20091138; Date: 15 November
2009). Grass carps selected in the experiment were all subjected to complete anesthesia at
0.05% MS222 (Sigma, St. Louis, MO, USA). Grass carp HK2 (QKFQTFVGLM-NH2), HK1
(TPGLQQVFGLM-NH2), and HK1-V7F (TPGLQQFFGLM-NH2) were synthesized by Gene-
Script Corporation (Piscataway, NJ, USA). The three mature peptides were subpackaged at
1 mM concentration using ultrapure water and stored at −80 ◦C.

2.2. Molecular Cloning and Tissue Distribution of Grass Carp TAC4 and NKRs

In order to clarify the distribution of TAC4 and its receptors in various tissues of grass
carp, total RNA were extracted from each brain subregion, pituitary gland, and peripheral
tissues of grass carp. Then the concentration was detected by the Nanodrop 2000, and
each tissue took an equal amount of total RNA for reverse transcription to prepare a cDNA
template. Primer Premier 6 was used to design specific quantitative primers for these
genes (Supplementary Tables S1 and S2), and their transcript level in grass carp brain
subregions and peripheral tissues was detected by real-time quantitative PCR (RT-qPCR).
In these studies, β-actin was performed as an internal control. Sequence alignment and
phylogenetic analysis of TAC4 and NKRs was conducted with ClustalX 2.1 and MEGA 7.0
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(http://www.megasoftware.net/). The 3D structures for TAC4 and NKRs were predicted
by I-TASSE (https://zhanglab.ccmb.med.umich.edu/I-TASSER/) and SWISS-MODEL (
https://swissmodel.expasy.org/), respectively.

2.3. Functional Expression of Grass Carp NKRs in HEK293T Cells

To clarify the receptor selectivity of TAC4 gene products, a transfection experiment
was conducted in HEK293T cells, and the fluorescent signal was detected by the firefly
luciferase reporter gene detection kit. Firstly, the cDNA sequences of neurokinin recep-
tor 1 isoforms a (NK1Ra), neurokinin receptor 1 isoforms b (NK1Rb), NK2R, neurokinin
receptor 3 isoforms a1 (NK3Ra1), neurokinin receptor 3 isoforms a2 (NK3Ra2), and neu-
rokinin receptor 3 isoforms b (NK3Rb) were isolated from grass carp pituitary, and the
coding region of the six receptors were then subcloned into the eukaryotic expression
vector pcDNA3.1. Secondly, the HEK293T cells were co-transfected with the plasmids of
NFAT-Luc (Nuclear factor of activated T cells-luciferase), green fluorescent protein (GFP),
and each pcDNA3.1-NKRs by using Lipofectamine 3000 (Thermo Fisher). The transfected
HEK293T cells were incubated with various concentration HK-1 (1–10,000 nM), HK-2
(1–10,000 nM), or HK1-V7F (1–10,000 nM) for 24 h, respectively. Finally, the transfected
cells were collected to detect the luciferase value according to the instructions of the firefly
luciferase reporter gene detection kit.

2.4. Transcriptome Sequence and Bioinformatics

Grass carp pituitary cells were obtained by trypsin digestion [21]. Then, the pituitary
cells were seeded into a 24-well cell culture plate at a density of 2.5 × 106 cells/well, and
incubated at 28 ◦C under 5% CO2 in cell culture incubator. The primary culture pituitary
cells were treated by HK2 (1 µM) for 24 h. Then, the cells were collected to extract the total
RNA by the Trizol method. The high-quality samples were sent to the Majorbio Genome
Center (Shanghai, China) for transcriptomic sequencing. Using the negative binomial
distribution model, the edgeR software was applied to calculate the differential expression
based on the FPKM (fragments per kilobase of exon per million fragments mapped) value
of the gene. The screening criteria for differentially expressed genes (DEGs) are FDR (false
discovery rate) ≤ 0.05 and FC (fold change) ≥ 1.5. Functional annotation of gene ontology
(GO) terms was analyzed by using Goatolls (http://github.com/tanghaibao/GOatolls),
and KEGG functional classification were analyzed by using KOBAS (http://kobas.cbi.pku.
edu.cn/home.do).

2.5. Real-Time Quantitative PCR (RT-qPCR) Validation

To further confirm the pituitary actions of HKs in grass carp, trypsin digestion method
was used to prepare for grass carp primary cultured pituitary cells. In the time-dependent
experiment, the pituitary cells were incubated with HK1 (1 µM) or HK2 (1 µM) for 3 h, 12 h,
24 h, and 48 h, respectively. In the dose-dependent experiment, the pituitary cells were
incubated with HK1 (0.1–1000 nM) or HK2 (0.1–1000 nM) for 48 h, respectively. After drug
treatment, total RNA was extracted from adherent cells by Trizol, and then subjected to
reverse transcription using HifairTM III 1st Strand cDNA Synthesis Kit (Yeasen, Shanghai,
China). In the present study, β-actin was used as the internal reference gene, and then,
the transcript levels of PRL, SLα, CART2, UTS1, and NMB1 were detected by using a ABI
7500 real-time PCR system (see Supplementary Table S2 for primer sequences and PCR
condition). In addition, the plasmid DNA containing the gene coding sequence was serially
diluted as a standard for data calibration.

2.6. Statistical Analysis

In this study, RT-qPCR was used to detect mRNA expression for TAC4, NKRs, PRL,
SLα, CART2, UTS1, SN2, and NMB1. In the ABI7500 software, the dynamic mRNA
concentration detection range of the double standard curve is 105, and the correlation
coefficient is >0.95. Since the transcript level of β-actin showed no significant changes, the
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data of PRL, SLα, CART2, UTS1, and NMB1 were converted into average percentages in the
control group (% Ctrl). In the transfection experiment, the detected firefly luciferase activity
was routinely normalized with the GFP activity expressed in the same well, expressed as
the luciferin activity ratio Luc ratio. The data from four parallel experiments was presented
as mean ± SEM in the figure. All the data were analyzed by ANOVA, and then subjected
to Dunnett’s test in GraphPad Prism 7.0. The significant differences between groups were
indicated by p < 0.05.

3. Result
3.1. Sequence Analysis and Tissue Distribution of TAC4 and NKRs

To examine the pituitary action of TAC4 gene products in grass carp, the cDNA se-
quence of TAC4 was firstly isolated from the brain of grass carp. Sequence analysis showed
that grass carp TAC4 encoded two mature peptides, including an 11-a.a HK2 carrying
the classical tachykinin signature motif (FXGLM) and a 10-a.a HK1 containing a mutated
form of tacykinin consensus motif form (VFGLM) (Figure 1A,C). In addition, similar to
the 3D structure of other tachykinin peptids, grass carp HK1 and HK2 were also found
to be in the form of a short peptide with a α helix covering the region of the central core
to the C-terminus (Figure 1D). Phylogenetic analysis revealed that the newly isolated
grass carp TAC4 could be clustered in the clade of fish TAC4 with a close evolutionary
relationship with common carp TAC4 (Figure 1E), and TAC4 group displayed a closer
evolutionship with the TAC1 cluster compared to TAC3 (Figure 1E). Furthermore, we
also isolated six neurokinin receptors from grass carp brain and pituitary, namely NK1Ra
(Supplementary Figures S1 and S2), NK1Rb (Supplementary Figures S3 and S4), NK2R
(Supplementary Figures S5 and S6), NK3Ra1 (Supplementary Figures S7 and S8), NK3Ra2
(Supplementary Figures S9 and S10) and NK3Rb (Supplementary Figures S11 and S12),
respectively. Similar to mammals, the six NKRs in grass carp were all typical G protein-
coupled receptor (Supplementary Figure S13). Phylogenetic analysis showed that the
6 NKRs were clustered into three groups, including NK1R, NK2R, and NK3R group, respec-
tively (Figure 1F). Finally, tissue distribution revealed that TAC4 was widely distributed
in various brain regions except for the cerebellum, and its transcript level was extremely
high in the medulla oblongata and the olfactory bulb (Figure 1B). In addition, six NKRs
could all be widely detected in various brain subregions and pituitary, and NK1Rb was
more highly detected in the brain compared to other NKRs (Figure 1B).

3.2. Receptor Selectivity of TAC4 Gene Products

To clarify the receptor selectivity of HK1 and HK2 for the six NKRs, HEK-293T cell
lines were established to stably express NK1Ra, NK1Rb, NK2R, NK3Rb, NK3Ra1, or
NK3Ra2 were established, respectively. The cells were then used for transfection study
with NFAT-Luc vectors, which was allowed for functional evaluation of the activation
status of Ca2+-dependent pathway. The results showed that the HK2 could activate all
6 NKR isoforms, but HK1 displayed very weak activation for these NKRs (Figure 2). In
the case of HK2, it exhibited affinity intensity was NK2R (EC50, 122.9 nM) > NK3Rb (EC50,
145.6 nM) > NK1Ra (EC50,76.29 nM) ≈ NK3Ra1 (EC50,1344 nM) ≈ NK1Rb (EC50, 337.8 nM)
> NK3Ra2 (EC50, 1232 nM) (Figure 2).
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Figure 1. Sequence analysis of tachykinin 4 (TAC4) and six neurokinin receptors (NKRs) in grass carp. (A) Sequence anal-
ysis of TAC4 preprohormones among different vertebrates. The protein sequence of grass carp TAC4 was aligned with 
that reported in other vertebrates. The two mature peptides residues in these sequences were labeled in blue or red color, 
respectively. (B) Transcript level of TAC4 and six NKRs in various brain subregions and pituitary. Total RNA was ex-
tracted from various brain areas or pituitary of grass carp, and RT-PCR was performed by using specific primers for grass 
carp TAC4 and NKRs. (C) Sequences were compared among ten tachykinin peptides in grass carp. (D) Ribbon represen-
tation of grass carp HK1 and HK2 structural model. The amino acids with hydrophobic side chains were colored blue, 
while those with hydrophilic side chains were colored red. (E) The phylogenetic analysis of vertebrate TAC4 was per-
formed using the neighbor-joining method (MEGA 6.0), and the grass carp TAC4 was highlighted in the red box. (F) The 
phylogenetic analysis of vertebrate six NKRs was performed by using the neighbor-joining method (MEGA 6.0). 
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Figure 1. Sequence analysis of tachykinin 4 (TAC4) and six neurokinin receptors (NKRs) in grass carp. (A) Sequence
analysis of TAC4 preprohormones among different vertebrates. The protein sequence of grass carp TAC4 was aligned with
that reported in other vertebrates. The two mature peptides residues in these sequences were labeled in blue or red color,
respectively. (B) Transcript level of TAC4 and six NKRs in various brain subregions and pituitary. Total RNA was extracted
from various brain areas or pituitary of grass carp, and RT-PCR was performed by using specific primers for grass carp
TAC4 and NKRs. (C) Sequences were compared among ten tachykinin peptides in grass carp. (D) Ribbon representation of
grass carp HK1 and HK2 structural model. The amino acids with hydrophobic side chains were colored blue, while those
with hydrophilic side chains were colored red. (E) The phylogenetic analysis of vertebrate TAC4 was performed using
the neighbor-joining method (MEGA 6.0), and the grass carp TAC4 was highlighted in the red box. (F) The phylogenetic
analysis of vertebrate six NKRs was performed by using the neighbor-joining method (MEGA 6.0).
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Figure 2. Receptor selectivity of HK1, HK2, and HK1-V7F. The nuclear factor of activated T-cells (NFAT)-Luc reporter
together with NK1Ra, NK1Rb, NK2R, NK3Rb, NK3Ra1, or NK3Ra2, were transiently transfected into HEK-293 cells,
respectively. The cells were incubated with increasing levels of grass carp HK1, HK2, or HK1-V7F (0.1–1000 nM), respectively.
The luciferase activities were normalized against renilla expression in the same sample to adjust for potential variations
in transfection efficiency. Each point is determined quadruplicate and is given as a mean ± SEM. The groups denoted by
different letters represent significant differences at p-value < 0.05 (ANOVA followed Dunnett’s test).

3.3. Transcriptomic Analysis of HK2 in the Pituitary

In order to reveal the pituitary actions of HK2 in lower vertebrates, the pituitary
cells of grass carp were incubated with HK2 (1 µM) for 24 h. Then, high-throughput
transcriptome technology was used to detect the changes in gene transcription levels in
the pituitary after HK2 treatment (Figure 3). Compared with the control group, a total
of 1151 differentially expressed genes (DEGs) were found in the HK2 treatment group,
including 364 up-regulated DEGs and 787 down-regulated DEGs. The results of GO
enrichment analysis showed that the up-regulated DEGs in the molecular function (MF)
category were mainly involved in sequence-specific DNA binding, hormone activity, and
receptor ligand activity, respectively (Figure 3A). In the biological process (BP) category, the
main clusters were the negative regulation of metabolic processes, the G protein-coupled
receptor signaling pathway, and the negative regulation of appetite (Figure 3A). Most of the
cell components (CC) categories were enriched in kinetochore, plasma membrane, and cell
junctions (Figure 3A). Down-regulated DEGs in the molecular function (MF) category were
mainly clustered in G protein-coupled receptor activity, calcium ion binding, and steroid
hormone receptor activity (Figure 3A). In the biological process (BP) category, they were
mainly involved in cell adhesion, the regulation of innate immune response, and hormone-
mediated signaling pathways (Figure 3A). In the cell components (CC) category, they
were mostly enriched in the plasma membrane, ion channel complexes and transcription
factor complexes (Figure 3A). The results of KEGG enrichment analysis showed that
the up-regulated DEGs were mainly involved in the synthesis of steroid hormones, the
cGMP-PKG signaling pathway, and the Jak-STAT signaling pathway. The down-regulated
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DEGs were mostly enriched in the cAMP signaling pathway, neuroactive ligand-receptor
interactions, and phospholipase D signal pathway, respectively (Figure 3B). Finally, the
GO enrichment group involved in reproduction function, growth factor, hormone activity,
immune response, and feeding regulation are shown in Figure 4. In addition, the top 20 up-
regulated DEGs are shown in Table 1, including CART2, PRL, SLα, UTS1, and NMB1. The
top 20 down-regulated DEGs were displayed in Table 2, including somatostatin receptor
type 2 isoforms a (SSTR2a), somatostatin receptor type 3 (SSTR3), opioid growth factor
receptor-like protein 1 (OGFR), growth hormone secretagogue receptor type 1 (GHSR1),
and fibroblast growth factor receptor 2 (FGFR2).

Table 1. The up-regulated genes induced by HK2 in grass carp pituitary cells.

Gene Description FC Go-Biological Process

CART2 Cocaine and amphetamine-regulated transcript 2 precursors 27.23 Negative regulation of appetite
CART5 Cocaine and amphetamine-regulated transcript 5 precursors 1.23 Negative regulation of appetite

CKB Brain creatine kinase b 1.63 Creatine Kinase Activity
CRFB2 Cytokine receptor family member b2 precursor 1.77 Interferon receptor activity
GHITM Growth hormone-induced transmembrane protein 1.21 The components of the membrane
GPR186 G protein-coupled receptor 186 1.83 Signal sensor activity
IGFBP1 Insulin-like growth factor-binding protein 1 1.59 Cell growth regulation
MPR63 Mitochondrial ribosomal protein 63 1.35 Mitochondrial Ribosome
NLRP12 Proteins containing NACHT, LRR, and PYD domains 12 2.73 ATP binding
NMB1 Neurotonin B1 1.50 Neuropeptide signaling pathway
NPAS4 Neuron contains PAS domain protein 4 2.69 DNA binding
NSFb N-ethylmaleimide sensitive factor b 1.94 ATP binding
PRL1 Prolactin 1 1.71 Hormonal activity

RBM24 RNA binding protein 24 2.92 Nucleotide binding
SDC2 Heparan sulfate proteoglycan precursor 1.62 Gastrointestinal development

SERPINE2 Glial cell-derived neuron precursor 1.33 Extracellular space
SID4 Secreted immunoglobulin domain 4 precursor 3.89 Same protein binding
SLα Somatostatin alpha subunit 1.81 Hormonal activity
SN2 Secretagogue 2 precursor 1.78 Secretory granules

UTS1 Urotensin 1 7.31 Hormonal activity

FC: fold change; FDR: false discovery rate.

Table 2. The down-regulated genes induced by HK2 in grass carp pituitary cells.

Gene Description FC Go-Biological Process

AIG1 Androgen inducible protein 1 0.77 The components of the membrane
CALCRLb Calcitonin gene-related peptide-like receptor b 0.75 Calcitonin receptor activity
DHRS13 Dehydrogenase/reductase SDR family member 13 0.43 Oxidoreductase activity
FGF14 Fibroblast Growth Factor 14 0.80 Growth factor activity
FGFR2 Fibroblast Growth Factor Receptor 2 0.46 Fibroblast growth factor binding
GHSR1 Growth hormone secretagogue receptor type 1 0.14 Signal sensor activity
GnIHR3 Gonadotropin inhibits hormone receptor 3 0.68 Receptor activity
GPER1 G protein-coupled estrogen receptor 1 0.81 G protein-coupled receptor activity
GRB2a Growth factor receptor-binding protein 2a 0.77 Binding activity
IGF1Ra Insulin-like growth factor type 1 receptor a 0.68 Insulin-like growth factor binding
INO1 Inositol-3-phosphate synthase 1 0.78 Inositol-3-phosphate synthase activity
MESD LDLR molecular chaperone MESD 0.69 Wnt signaling pathway
NRP2b Neurocin 2b 0.71 Metal ion binding
OGFR opioid growth factor receptor-like protein 1 0.36 Receptor activity

OLFM2 Olfactory protein 2 0.66 Neural c cell development
S100A10 S100 Calbindin A10b 0.60 Calcium ion binding

SAA Serum amyloid A precursor 0.72 Response to bacteria
SSTR2a Somatostatin receptor 2 0.54 Somatostatin receptor activity
SSTR3 Somatostatin Receptor Type 3 0.57 Somatostatin receptor activity

ZMYND11 Zinc finger MYND domain-containing protein 11 0.49 Zinc ion binding

FC: fold change; FDR: false discovery rate.
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Figure 3. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of HK2-regulated different
expressed genes (DEGs) in grass carp pituitary cells. (A) In GO analysis, DEGs were composed of three parts: cell
component (CC), biological process (BP), and molecular function (MF). (B) KEGG analysis were used to enrich the top
10 KEGG pathways, including up-regulated and down-regulated pathways, respectively. Up, up-regulated genes; down,
down-regulated genes; count, the number of DEGs.
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3.4. Regulation of HK1 and HK2 on the Key DEGs Expression in Grass Carp Pituitary Cells

To further confirm the pituitary actions of HK1 and HK2 in grass carp, HK1 (1 µM)
or HK2 (1 µM) were used to incubate grass carp pituitary cells for 3 h, 6 h, 24 h, and
48 h, respectively. The results showed that HK2 (1 µM) could significantly induce SLα
(Figure 5A), PRL (Figure 5B), CART2 (Figure 6A), NMB1 (Figure 6B), and UTS1 (Figure 6C)
mRNA expression in a time-dependent manner. However, HK1 (1 µM) showed no effect
on these genes in grass carp pituitary cells (Figures 5 and 6). To further evaluate the dose-
dependence of these stimulatory effects on pituitary hormones (SLα and PRL) and feeding
peptides (CART2, NMB1 and UTS1), grass carp pituitary cells were exposed to increasing
concentrations (0.1–1000 nM) of HK1 or HK2 for 24 h, respectively. In this case, HK2
treatment could consistently induce SLα (Figure 5A), PRL (Figure 5B), CART2 (Figure 6A),
NMB1 (Figure 6B), and UTS1 (Figure 6C) mRNA expression in a concentration-related
fashion. Similar to our time-course study, increasing levels of HK1 were ineffective in
altering transcript expression of the five genes mRNA expression in grass carp pituitary
cell even up to 1 µM concentration (Figures 5 and 6).

3.5. Receptor Specificity and Post-Receptor Signal Transduction for HK2-Induced SLα and PRL
mRNA Expression in Grass Carp Pituitary Cells

In this experiment, a pharmacological approach was used to clarify the receptor
specificity for SLα and PRL regulation by HK2. Pituitary cells were incubated for 24 h with
grass carp HK2 (1 µM) with simultaneous treatment of the NK1R antagonist Rolaptiant
(10 µM) or NK3R antagonist SB222200 (10 µM), respectively. Similar to the results of the
proceeding studies, HK2 could increase the basal transcript level of SLα and PRL. The
stimulatory effects on SLα mRNA expression could be totally blocked by co-treatment
with the NK3R anatagonist SB222200, but NK1R antagonist could only partially block
HK2-induced SLα mRNA expression (Figure 7A). In the parallel experiment, HK2-induced
PRL mRNA expression could not be totally abolished by NK1R antagonist Rolaptiant or
NK3R antagonist SB222200, respectively (Figure 7A).

To elucidate the signal transduction for PRL and SLα regulation by HK2, the possible
involvement of the cAMP-dependent cascade was examined by using the inhibitors for
the cAMP pathway. As shown in Figure 7B, co-treatment with AC inhibitor MDL1230A
(10 µM) or PKA inhibitor H89 (10 µM) were both effective in blocking the stimulatory
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effects of HK2 (1 µM) on PRL and SLα mRNA expression. In parallel experiments for
testing the functional role of the PLC/IP3/PKC pathway, HK2-induced PRL and SLα
mRNA expression could be both totally abolished by simultaneous treatment with the
PLC inhibitor U73122 (10 µM), PKC inhibitor GF109203X (10 µM), or IP3 receptor blocker
2-APB (10 µM), respectively (Figure 7C). Furthermore, HK2-induced PRL and SLα mRNA
expression were found to be suppressed or totally abolished by co-treatment with the
VSCC inhibitor nifedipine (10 µM), CaM antagonist calmidazolium (1 µM) or CaMK-II
blocker KN62 (10 µM), respectively (Figure 7D).

3.6. Receptor Specificity and Signal Transduction for HK2-Induced UTS1, NMB1 and CART2
mRNA Expression

In this part, the pharmacological approach was also recruited to clarify the receptor
specificity and signal transduction for CART2, UTS1, or NMB1 transcript regulation by
HK2. As shown in Figure 8A, the stimulatory effects of HK2 on CART2, UTS1, or NMB1
mRNA expression could be totally abolished by NK3R antagonist SB222200 (10 µM) but
not with the NK1R antagonist Rolaptiant (10 µM) (Figure 8A). To shed light on the signal
transduction for CART2, UTS1, or NMB1 transcript regulation by HK2, the possible in-
volvement of cAMP-dependent pathway was examined firstly using the co-treatment with
various inhibitors for the individual components of cAMP pathway. As shown in Figure 8B,
HK2-induced CART2, UTS1, or NMB1 mRNA expression could be abolished by simultane-
ous incubation with the AC inhibitor MDL12330A (10 µM) or PKA inhibitor H89 (10 µM).
In the parallel studies, co-treatment with PLC inhibitor U73122 (10 µM), PKC inhibitor
GF109203X (10 µM), or IP3 receptor blocker 2-APB (10 µM) were all effective in block-
ing the stimulatory effects of HK2 (1 µM) on CART2, UTS1 or NMB1 mRNA expression
(Figure 8C). Furthermore, HK2-induced CART2, UTS1, or NMB1 mRNA expression were
found to be suppressed/totally abolished by co-treatment with VSCC inhibitor nifedip-
ine (10 µM), CaM antagonist calmidazolium (1 µM) or CaMK-II blocker KN62 (10 µM),
respectively (Figure 8D).
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Figure 5. TAC4 gene products (HK1 and HK2) induced PRL (A) and SLα (B) mRNA expression
in grass carp pituitary cells. Time course of grass carp HK1 (1 µM) and HK2 (1 µM) on PRL (A)
and SLα (B) mRNA expression in grass carp pituitary cells. Dose-dependence of 24-h treatment
with increasing levels of HK1 and HK2 (0.1–1000 nM) on PRL (A) and SLα (B) mRNA expression
in grass carp pituitary cells. After drug treatment, the total RNA of the cells was extracted by the
Trizol method, and the expression of various genes was detected by RT-PCR. Data presented were
expressed as mean ± SEM, and the differences between groups were significant at p-value < 0.05 by
labeling diverse letters.
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Figure 6. TAC4 gene products (HK1 and HK2) induced CART2, NMB1, and UTS1 mRNA expression
in grass carp pituitary cells. Time course of grass carp HK1 (1 µM) and HK2 (1 µM) on CART2 (A),
NMB1 (B), and UTS1 (C) mRNA expression in grass carp pituitary cells. Dose-dependence of 24-h
treatment with increasing levels of HK1 or HK2 (0.1–1000 nM) on CART2 (A), NMB1 (B), and UTS1
(C) mRNA expression in grass carp pituitary cells. After drug treatment, the total RNA of the cells
was extracted by the Trizol method, and the expression of various genes were detected by RT-PCR.
Data presented were expressed as mean ± SEM, and the differences between groups were significant
at p-value < 0.05 by labeling diverse letters.
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Figure 7. The receptor specificity and signal transduction for PRL and SLα regulation by HK2 in
grass carp pituitary cells. (A) Effects of NKR subtype-specific antagonists on HK2-induced PRL
and SLα mRNA expression. Pituitary cells were challenged for 24 h with grass carp HK2 (1 µM) in
the presence or absence of the NK1R antagonist Rolaptiant (10 µM) or NK3R antagonist SB22200
(10 µM), respectively. (B) Effects of 24-h co-treatment with AC inhibitor MDL12330A (10 µM) or
PKA inhibitor H89 (10 µM) on HK2-induced PRL and SLα mRNA expression. (C) Effects of 24-h
co-treatment with PLC inhibitor U73122, PKC inhibitor GF109203X (10 µM), or IP3 receptor blocker
2-APB (10 µM) on HK2-induced PRL and SLα mRNA expression. (D) Effects of 24-h co-treatment
with the VSCC inhibitor nifedipine (10 µM), CaM antagonist calmidazolium (1 µM) or CaMK-II
blocker KN62 (10 µM) on HK2-induced PRL and SLα mRNA expression. After drug treatment, the
total RNA of the cells was extracted by the Trizol method, and the expression of various genes was
detected by RT-PCR. Data presented were expressed as mean ± SEM, and the differences between
groups were significant at p-value < 0.05 by labeling diverse letters.
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pituitary cells. (A) The pituitary cells were treated for 24 h with grass carp HK2 (1 μM) in the presence or absence of NK1R 
antagonist Rolaptiant (10 μM) or NK3R antagonist SB222200 (10 μM). (B) Effects of 24-h co-treatment with an AC inhibitor 
MDL12330A (10 μM) or PKA inhibitor H89 (10 μM) on HK2-induced CART2, UTS1, or NMB1 mRNA expression. (C) 
Effects of 24h co-treatment with a PLC inhibitor U73122, PKC inhibitor GF109203X (10 μM), or IP3 receptor blocker 2-APB 
(10 μM) on HK2-induced CART2, UTS1 or NMB1 mRNA expression. (D) Effects of 24-h co-treatment with the VSCC 
inhibitor nifedipine (10 μM), CaM antagonist calmidazolium (1 μM), or CaMK-II blocker KN62 (10 μM) on HK2-induced 
CART2, UTS1 or NMB1 mRNA expression. 
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Figure 8. The receptor specificity and signal transduction for CART2, NMB1, and UTS1 regulation by HK2 in grass carp
pituitary cells. (A) The pituitary cells were treated for 24 h with grass carp HK2 (1 µM) in the presence or absence of NK1R
antagonist Rolaptiant (10 µM) or NK3R antagonist SB222200 (10 µM). (B) Effects of 24-h co-treatment with an AC inhibitor
MDL12330A (10 µM) or PKA inhibitor H89 (10 µM) on HK2-induced CART2, UTS1, or NMB1 mRNA expression. (C) Effects
of 24h co-treatment with a PLC inhibitor U73122, PKC inhibitor GF109203X (10 µM), or IP3 receptor blocker 2-APB (10 µM)
on HK2-induced CART2, UTS1 or NMB1 mRNA expression. (D) Effects of 24-h co-treatment with the VSCC inhibitor
nifedipine (10 µM), CaM antagonist calmidazolium (1 µM), or CaMK-II blocker KN62 (10 µM) on HK2-induced CART2,
UTS1 or NMB1 mRNA expression.
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3.7. Phe to Val Mutation in FXGLM Motif in UTS1, PRL and SLα Regulation by HK2

As carp HK1 is unique for having a Phe to Val mutation in the “FXGLM” signature
motif, the biological relevance of this mutation in pituitary hormone regulation was exam-
ined by mutating the Val residue at position 7 of carp HK1 back to Phe as in the case of
the typical “FXGLM” motif. As shown in Figure 9A, the dose-response study has shown
that the HK1-V7F mutant could significantly enhance the stimulatory effects of HK1 on
SLα, PRL, and UTS1 mRNA expression to levels comparable to that induced by HK2.
In addition, Phe to Val mutation in the “FXGLM” motif in HK1 on binding affinity to
NKR were also examined. In HEK-293T cells with stable expression grass carp each NKR,
co-transfection with NFAT-Luc expressing vectors were conducted to allow for biochemical
probing of functional activation of NKR. Similar to the results of pituitary hormone genes
regulation in carp pituitary cells, carp HK1 with a “VXGLM” motif was found to be a
relatively low efficient stimulant for six NKR isoforms (Figure 2). In parallel experiments
with the treatment of increasing doses of the Val to Phe mutant HK1-V7F, the stimulatory
effects on NFAT-Luc mediated luciferase activity expression was notably enhanced with
significant increases in the corresponding ED50 value from >10 µM to the nanomolar dose
range (Figure 2).
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Figure 9. Phe to Val mutation in FXGLM motif in PRL, SLα, and UTS1 regulation by HK2 in grass carp pituitary cells.
(A) Effects of HK1-V7F on PRL, SLα, and UTS1 mRNA expression in grass carp pituitary cells. In this experiment, grass
carp pituitary cells were incubated for 24 h with increasing levels of HK1-V7F (0.1–1000 nM). (B) Suppressed effects of HK1
on HK2-induced PRL, SLα, and UTS1 mRNA expression in grass carp pituitary cells. Pituitary cells were challenged for
24 h with grass carp HK2 (0.1 µM) in the presence or absence of HK1 (1 µM) and HK1 (10 µM). In these experiment, Trizol
method was used to extract total cell RNA, and RT-PCR was used to detect PRL, SLα, and UTS1 mRNA expression. Data
presented are expressed as mean ± SEM, and the differences between groups were significant at p-value < 0.05 by labeling
diverse letters.

Furthermore, to verify whether HK1 could function as an endogenous antagonist of
NKRs, we examined the antagonist effect of HK1 on HK2-induced pituitary hormone genes
expression. As shown in Figure 9B, a 24 h static incubation with a 0.1 µM dose carp HK2
was effective in triggering significant rises in SLα, PRL, and UTS1 mRNA expression in
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grass carp pituitary cells. Of note, the stimulatory effects of HK1 treatment were found to
be much weaker compared to the corresponding stimulation induced by HK2 (Figure 9B).
In the same experiment, co-treated with increasing levels of carp HK1 (1 µM and 10 µM
doses) could not suppress the stimulatory actions caused by HK2 on SLα, PRL, and UTS1
mRNA expression (Figure 9B).

4. Discussion

In mammals, multiple tachykinin genes with different gene products, including TAC1
encoding SP and NKA, TAC3 (also referred to as TAC2 in rodents) encoding NKB and
TAC4 encoding HK1 and EKs, have been widely reported [22]. Compared to mammals,
due to the third round of whole-genome duplication, two TAC1 isoforms (TAC1a and
TAC1b) [5] and two TAC3 isoforms (TAC3a and TAC3b) [23] have been reported in teleost.
However, in the present study, only one TAC4 isoform was isolated in teleost, which might
be the result of the non-functionalization by forming pseudogenes or deletion/mutations
leading to the loss of redundant genes [24] (Supplement Figure S14). In mammals, TAC4
gene products were various in different species. TAC4 in mice and rats can encode one
hemokinin mature peptide with 11 amino acid length [25]. In human, TAC4 encodes for
hemokinin-1 (hHK-1), but its sequence is different from its murine counterpart. It is spliced
into four alternative transcripts (α, β, γ and δ) that give rise to four different peptides which
have been named endokinis A (EKA), B (EKB), C (EKC), and D (EKD), respectively [26,27].
In the present study, in contrast to mammals, TAC4 in teleost could not only encode HK-1,
but also another mature tachykinin HK-2, which might be due to a loss of segmentally
duplicated gene fragments in TAC4 during tetrapod evolution.

In mammals, the biological action of tachykinins is mediated by three GPCRs, namely
NK1R, NK2R, and NK3R, which are stimulated preferentially by SP, NKA, and NKB,
respectively [28]. Both in mice and rats, HK-1 has a similar affinity to SP at the NK1R [29,30],
while human HK-1 binds to NK1R with a much lower affinity than SP [31]. In addition,
high-dose human HK-1 can also bind to NK2R and NK3R [14]. In the present study,
due to the third round whole-genome duplication, 6 NKRs were detected in grass carp,
namely NK1Ra, NK1Rb, NK2R, NK3Ra1, NK3Ra2, and NK3Rb, respectively. Based on
the ligand-receptor selectivity, we found that HK2 could activate all 6 NKR isoforms, but
showed the highest affinity for NK2R. Our previous study has revealed that carp NK2R is
a multiligand receptor, which could be activated by SP, NKA, NKBa, NKBRPa, NKBRPb
with comparable efficacy and potency [5]. These results indicated that teleost hemokinin
preferentially stimulated the multiligand receptor NK2R, which suggests that hemokinin
in teleost may analog the function of other tachykinins through activation of NK2R.

In mammals, many studies have focused on the actions of hemokinin on immuno-
logical regulation and inflammation [32]. However, little information is available about
its endocrinology function. In the present study, firstly, we found that six NKRs could be
detected in grass carp pituitary, which indicated that HKs play an important role in the
pituitary. Then, using grass carp pituitary cells as a model, we found that carp HK2 could
significantly induce PRL and SLα mRNA expression mediated by NK2R and NK3R via
activation of the cAMP/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK II cascade. Similar
results were also reported in our previous TAC3 studies, which indicated that NKB could
significantly induce pituitary PRL and SLα synthesis and secretion [17]. In fish models,
PRL is involved in a wide range of physiological functions, including reproductive mi-
gration [33], gonadal maturation [34], reproductive cycling [35,36], nesting and brooding
behaviors [37], and osmoregulation [38]. As the latest member of the growth hormone
(GH)/PRL family, somatolactin was a pituitary hormone unique to fish species and has
been reported to play a functional role in the regulation of reproduction [39], growth [40]
and pigmentation [41]. These results, as a whole, suggested that HK2 was involved in
pituitary regulation of PRL and SLα mRNA expression, which presumably may contribute
to the reproduction and growth metabolism in teleost.
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In addition to the regulation of pituitary PRL and SLα, our present study also found
that HK2 could significantly induce pituitary UTS1, CART2, and NMB1 mRNA expression
mediated by NK3R via activation of cAMP/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK II
signal pathways. Interestingly, our recent study also found that NKB could stimulate UTS1,
CART2, and NMB1 mRNA expression in grass carp pituitary cells [42]. Previous studies
reported that CART could inhibit feeding in rats [43] and goldfish [44]. Similarly, NMB
has also been found to inhibit feeding and gastric peristalsis [45,46]. Fish UTS1 showed a
closed structural and biological homology with the corticortropin-releasing hormone (CRH)
family. In mammals, CRH could reduce food intake and induce energy expenditure [47].
In teleost, the CRH system could also exert an anorexigenic effect [48]. These results, taken
together, suggested that HK2 might be involved in the regulation of feeding in teleost.

In our functional studies with carp pituitary cells, interestingly, the potency and
efficacy of the other TAC4 gene product, namely HK1, was found to be ineffective for
UTS1, PRL, and SLα mRNA expression. In addition, HK1 could barely activate any NKR
isoforms in HEK-293T cells. Sequence analysis showed that HK1 from different fish species
was also very unique in having a well-conserved Phe to Val mutation in the signature
motif “VXGLM” located in the C-terminal. The functional role of the new signature motif
“VXGLM” in HK1 was currently unclear, but an “FXGLL” motif has been previously
reported in human EKC and EKD despite the fact that the other gene products of human
TAC4, namely EKA and EKB, still have the original “FXGLM” signature sequence [49].
In human patients with TAC3 gene mutations, a Thr for Met mutation in the “FXGLM”
motif of NKB was known to cause hypogonadism or even infertility in adulthood [1]. To
confirm that the low intrinsic activity of HK1 was caused by the Phe to Val mutation in the
C-terminal of the signature motif, the Val to Phe mutant of HK1, namely HK1-V7F, was
synthesized and tested for its bioactivity on SLα regulation in carp pituitary cells. In this
case, the stimulatory effects of the HK1-V7F with the regeneration of the original “FXGLM”
motif on SLα mRNA expression was markedly enhanced to the levels for HK2. These
findings, as a whole, indicated that (i) the F residue in the “FXGLM” motif played a crucial
role in the bioactivity of tachykinins in the fish model, and (ii) the Phe to Val mutation form
in the “VXGLM” motif represented the molecular determinant in HK1 leading to weak
agonistic actions on SLα regulation, presumably by interfering the interaction with target
receptors. Our findings were also in agreement with the previous studies in mammalian
cell models, e.g., COS-7 cells with NK3 receptor [9,12], confirming that the C-terminal
“FXGLM” motif was essential for the bioactivity and receptor binding [32,50].

In rats, central administration of SP and EKA/B is known to induce pain-related
behaviors, e.g., scratching paw withdrawal and thermal hyperalgesia [26,51], mainly
through activation of NK1R expressed in the brain and/or spinal cord [52]. However,
these stimulatory effects can be blocked by simultaneous treatment with EKC/EKD, and
apparently, the “antagonistic effects” on NK1R activation induced by SP or EKA/B are
mediated through the “FXGLL” motif of EKC/EKD [26,53,54]. These previous findings in
mammalian models indicated that the Phe to Val mutation found in the “VXGLM” motif
of HK1 might also have a functional impact on the receptor interaction and/or biological
actions of other tachykinins in fish species. However, our present study found that HK1
could not block HK2-induced UTS1, PRL, and SLα mRNA expression. These results
suggested that the V to F substitution in the signature motif of HK1 did not contribute to
its “antagonistic effect” for HK2 on NKR binding/activation.

In summary, in order to clarify the pituitary actions of TAC4 gene products in lower
vertebrates, the TAC4 and six NKR isoforms were isolated from grass carp. Sequence
analysis showed that grass carp TAC4 could encode two mature peptides (namely HK1
and HK2), in which HK2 retained the typical FXGLM motif of tachyinin in the C-terminal,
while HK1 contained a mutant VFGLM motif. The ligand-receptor selectivity showed
that HK2 could activate all six NKR isoforms but with the highest activity for NK2R.
Interestingly, HK1 could display a very weak activation for NK2R and NK3Ra2. Using
grass carp pituitary cells as a model, we found that HK2 could significantly induce PRL,
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SLα, UTS1, NMB1, and CART mRNA expression mediated by NK2R and NK3R coupled
with cAMP/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK II cascades (Figure 10). These
results indicated that HK2 might be involved in the regulation of reproduction, growth
metabolism, and feeding in teleost. However, the potency and efficacy of HK1 was found
to be ineffective for the six pituitary genes’ expression. Further studies indicated that
the F to V mutation in “VXGLM” motif in HK1 contributed to its weak pituitary actions.
Furthermore, we found that HK1 could not contribute to its “antagonistic effect” for HK2
on NKR binding/activation.
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