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A B S T R A C T

Alzheimer's disease (AD) presents significant challenges in drug discovery and development due to its complex
and poorly understood pathology and etiology. Digital twins (DTs) are recently developed virtual real-time
representations of physical entities that enable rapid assessment of the bidirectional interaction between the
virtual and physical domains. With recent advances in artificial intelligence (AI) and the growing accumulation of
multi-omics and clinical data, application of DTs in healthcare is gaining traction. Digital twin technology, in the
form of multiscale virtual models of patients or organ systems, can track health status in real time with continuous
feedback, thereby driving model updates that enhance clinical decision-making. Here, we posit an additional role
for DTs in drug discovery, with particular utility for complex diseases like AD. In this review, we discuss salient
challenges in AD drug development, including complex disease pathology and comorbidities, difficulty in early
diagnosis, and the current high failure rate of clinical trials. We also review DTs and discuss potential applications
for predicting AD progression, discovering biomarkers, identifying new drug targets and opportunities for drug
repurposing, facilitating clinical trials, and advancing precision medicine. Despite significant hurdles in this area,
such as integration and standardization of dynamic medical data and issues of data security and privacy, DTs
represent a promising approach for revolutionizing drug discovery in AD.
Introduction

Alzheimer's disease (AD) is a progressive neurodegenerative disorder
and significant cause of worldwide dementia that is intrinsically linked to
aging [1]. As people are living longer, societies will be challenged by a
corresponding rise in AD prevalence. It is currently estimated that in the
United States alone around 6.7 million people over the age of 65 are
living with AD, and that without discovery of effective treatments this
number will rise to upwards of 14 million by 2050 [1,2]. AD progression
is characterized by depression, cognitive decline, memory loss, and ul-
timately the inability to execute basic life skills. It poses an enormous
challenge and burden to individuals, families, and society [1,3,4]. Thus,
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there is an urgent need to develop effective therapeutic interventions and
preventive measures.

AD has a complex pathophysiology characterized by accumulation of
amyloid plaques and tau tangles, as well as general protein aggregation,
epigenetic alterations, peripheral effects on the brain, neuro-
inflammation, blood-brain barrier (BBB) deterioration, DNA damage,
lipid dysfunction, mitochondrial impairment, axonal degeneration,
impaired postnatal neurogenesis, and synaptic dysfunction [5]. Many of
the therapeutic strategies currently being investigated are based on these
mechanisms, although many have not yet been validated in clinical trials
[5]. Out of all Phase III clinical trials for AD that were active as of January
1, 2024, targeting neurotransmitter receptors accounted for 34 %,
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amyloid targeting accounted for 22 %, synaptic plasticity and neuro-
protection accounted for 12 %, neuroinflammation, proteostasis/pro-
teopathies, and metabolism/bioenergetics each accounted for 6 %, and
tau, postnatal neurogenesis, growth factors/hormones, and circadian
rhythm targets each accounted for 3 % [1]. However, despite decades of
extensive and expensive research, effective treatments for AD patients
remain severely limited. While to date two anti-amyloid monoclonal
antibodies, lecanemab and aducanumab, have been approved for pa-
tients, they are currently controversial due to high expense, limited
ability to slow cognitive decline, and significant risk of dangerous side
effects [1,6]. Sadly, the vast majority (over 99 %) of clinical trials in AD
to date have shown profound lack of efficacy, highlighting the need to
improve discovery of new and effective AD therapies.

AD research is receiving increasing attention as the problem grows in
magnitude, with different organizations initiating large-scale projects to
address this important problem. For example, the nonprofit Brain Health
Medicines Center of the Harrington Discovery Institute of University
Hospitals of Cleveland is implementing a novel approach to specifically
support academic researchers who have made innovative discoveries in
AD, outside of the mainstream of biotech and industry, with scientific,
industry, and business development expertise to help them traverse the
valley of death between academic discovery and commercialization steps
required to access the clinic [7]. Other notable efforts include the Reli-
gious Orders Study or Rush Memory and Aging Project (ROS-MAP) [8,9],
the Seattle Alzheimer's Disease Brain Cell Atlas (SEA-AD) [10], and the
Alzheimer's Disease Sequencing Project (ADSP) [11] (Table 1). These
initiatives, along with databases like the National Institute on Aging
Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) [12], have
generated or collected a large amount of data at different dimensions.
These include genomics, transcriptomics, epigenomics, proteomics,
phenomics, and metabolomics. For example, the NIAGADS database in-
cludes genomic data (genome-wide association studies (GWAS) and
whole genome sequencing (WGS) data) and phenotypic data, while the
SEA-AD, ROSMAP and ssREAD databases provide a large amount of RNA
sequencing data including bulk-RNA-seq, single-cell/nuclear RNA
sequencing (sc/snRNA-seq) and spatial transcriptomics data. As well,
ADNI includes a variety of clinical data, including imaging data such as
magnetic resonance imaging (MRI) and positron emission tomography
(PET). Lastly, metabolomic data sets (such as the Human Metabolome
Database, HMDB) [13] contain comprehensive analysis of all metabolites
in any given biological specimen (i.e. brain, blood, cerebrospinal fluid) to
characterize of metabolic derangements in disease and facilitate dis-
covery of new therapeutic targets and biomarkers (Table 1). These
massive datasets are the cornerstone of many advanced and emerging
technologies.
Table 1
A list of data resources and tools for Alzheimer's disease (AD) research.

Name Overview Data type

AD knowledge
portal

Comprehensive collection of data, tools, and
resources for AD and AD-related dementia

Genomic, transcriptom
metabolomics, and cli

NIAGADS Centralized data repository of genomic data
related to AD

Genetic, genomic, and

ADNI Longitudinal data of neuroimaging and
biomarker data for AD

MRI and PET scans, c
biomarkers, and cogn

NCRAD Biorepository of AD and other related dementia DNA, plasma, serum, c
and other types of bio

AlzGPS Integrative platform for drug discovery and
development for AD

Multi-omics data, gen
clinical data

TACA Comprehensive resource of AD at cellular level scRNA-seq
SEA-AD Comprehensive resource of multi-omics data at

cellular level for AD
snRNA-seq, snATAC-s
transcriptomics

ssREAD Database of sn/scRNA-seq for AD sc/snRNA-seq, spatial

scREAD Database of sn/scRNA-seq for AD scRNA-seq & snRNA-s

HMDB Human metabolome database Chemical data, clinica
biology/biochemistry
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The boom in artificial intelligence (AI), especially generative AI
technologies, has greatly accelerated biomarker identification, predic-
tion of disease progression, and identification of drug targets in human
disease, including AD [2,14–16]. However, these approaches usually rely
on massive amounts of data for overall static prediction, whereas
implementing dynamic and personalized models is a challenge. Digital
twins (DTs) represent a way to potentially address this challenge. A DT is
a virtual representation of a physical individual, process, or system and is
already widely used in industries [17–19]. The feature of dynamization
and the bi-directional interaction between the virtual realm and reality
allows the digital space to be continuously updated in real time in
response to the complex physical space [20]. In recent years, the concept
of DTs has been introduced to the health and medical fields, and the
dynamic and bi-directional interplay between the virtual realm and re-
ality offers promising applications for drug discovery and precision
medicine [21,22]. In this review, we discuss the prospective applications
of DTs in predicting AD progression, discovering biomarkers, identifying
new drug targets and opportunities for drug repurposing, facilitating
clinical trials, and advancing precision medicine.

Current AD drug development landscape

AD neuropathology

AD is characterized by a complex neuropathological landscape,
traditionally characterized by accumulation of amyloid-beta (Aβ) plaques
composed of aberrantly cleaved amyloid precursor protein and other
proteins, as well as generation of neurofibrillary tangles (NFTs)
composed of hyperphosphorylated tau [19,20]. In addition to amyloid
and tau, other neuropathological features, such as neuroinflammation,
blood-brain barrier (BBB) deterioration, DNA damage, lipid dysfunction,
mitochondrial impairment, axonal degeneration, impaired postnatal
neurogenesis, and synaptic dysfunction also play significant roles in AD's
progression [6,23–26]. For instance, microglia are resident innate im-
mune cells in the brain, and activated microglia are a chronic source of
various neurotoxic factors and also propagate a chronic inflammatory
response that steadily damages neurons in AD [27–29]. Researchers have
also found a close relationship between cerebrovascular disease (CVD)
and AD. Cerebrovascular lesions are often found in the brains of AD
patients and the most common vascular lesions are cerebral amyloid
angiopathy and small vessel disease [30,31]. Indeed, increasing evidence
in recent years suggests that ADmost frequently results from a synergistic
effect of multiple neuropathologies that occur to varying degrees across
different people and also across time within any given patient. For
example, cerebral amyloid angiopathy (CAA), limbic-predominant
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age-related TDP-43 encephalopathy neuropathologic changes
(LATE-NC), and Lewy body disease (LBD) increase dramatically in inci-
dence and severity in AD [32,33], suggesting that relationships and
interdependence of various comorbid conditions with AD pose chal-
lenges for developing effective diagnostic tools and therapies [24,33].
This multifactorial nature of AD pathology highlights the complexity of
the disease and the need for multifaceted therapeutic approaches.

AD drug development pipeline

Currently, the AD drug development pipeline is centered around two
strategies: disease-modifying therapy (DMT) and symptomatic therapy
[1]. Symptomatic treatments, such as the acetylcholinesterase inhibitor
Donepezil that is intended to enhance cognition, offer temporary relief
from cognitive symptoms, but they do not alter the underlying disease
process [1]. In contrast, DMTs focus on addressing the underlying
mechanisms of AD, such as targeting neurotransmitter receptors, neu-
roinflammation, amyloid beta protein processes, synaptic plasti-
city/neuroprotection, or tau pathology, with the goal of slowing or
halting disease progression [1,3]. Based on the statistics of all clinical
trials on clinicaltrials.gov, there are currently (as of January 1, 2024) 96
DMT trials, accounting for 76 % of the new drugs being tested. Of these
drugs, 12 % have a therapeutic goal of cognitive enhancement and 13 %
are intended to treat neuropsychiatric symptoms [1]. Among the total of
127 drugs that are reported in clinical trials for AD as of January 1, 2024,
22 % target neurotransmitter receptors, 20 % target neuroinflammation,
18 % target amyloid-beta protein processes, 12 % target synaptic plas-
ticity and neuroprotection, 9 % target tau-related processes, and 6 %
target metabolism and bioenergetics [1].

Notably, recent advancements in DMTs, including monoclonal anti-
bodies like aducanumab and lecanemab, have been approved for use in
Fig. 1. The complex biology and etiology of Alzheimer's disease. It includes complex p
failure rates in clinical translation. CAA: Cerebral amyloid angiopathy; LATE-NC: Lim
LBD: Lewy body disease. This figure created with BioRender.com.
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slowing the cognitive decline of AD [1]. Both aducanumab and lecane-
mab target the amyloid-β protein. Aducanumab has been approved for
treatment of patients with mild cognitive impairment (MCI), while
lecanemab is the first drug to receive full approval from the U.S. Food and
Drug Administration (FDA) for slowing progression of mild AD [34].
These developments of DMTs indicate a paradigm shift in Alzheimer's
treatment, moving from symptomatic treatment to interventions that
could potentially alter the disease trajectory. Notably, there are currently
no drug development programs aimed at reversing AD and recovering
function.

Challenges of AD treatment

Despite significant progress, numerous challenges remain in the fight
against AD (Fig. 1). One of the most pressing issues is the high failure rate
of clinical trials of agents that have shown high success in preclinical
studies. Clearly, there are important problems with translation of AD
therapies from animal model species to humans [35,36]. Additionally,
the heterogeneity of AD, which manifests as variations at the cellular
level, differences in pathology, incongruent patient responses to treat-
ment, and gender disparities in incidence, poses significant challenges to
developing universally effective therapies [25]. Single-cell genomic ap-
proaches have shown that AD involves complex interactions between
almost all major brain cell types, as summarized by Murdock et al. with
respect to cell-specific molecular and metabolism pathway changes [25].
For example, neurons account for the majority of differentially expressed
genes in AD, such as those associated with presynaptic, postsynaptic, and
inhibitory synaptic mechanisms. SYN1, the gene encoding the synapto-
physin 1 protein that is essential for synaptic vesicle function, is
up-regulated in AD neurons, whereas TSPAN7, the gene encoding the
tetraspanin protein that regulates the structure of postsynaptic dendritic
athology and co-pathology, heterogeneity, difficulty of early diagnosis, and high
bic-predominant age-related TDP-43 encephalopathy neuropathologic changes;
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spines, is down-regulated in AD neurons [25]. In addition, differentially
expressed genes in microglia are also involved in regulating synaptic
function, phagocytosis and immune responses in AD, such as LINGO1,
which negatively regulates myelination, and VSIG4 and FCGBP, which
regulate the immunoglobulin response in AD [25]. Moreover, there is
growing evidence of sex-specificity in AD manifestations, as well as sex
differences in the rate of cognitive decline and brain atrophy, suggesting
that sex is a key variable in disease heterogeneity [37].

Another critical challenge is generating accurate early diagnosis of
AD. Current diagnostic methods often detect the disease only after sig-
nificant neuronal damage has already occurred, limiting the efficacy of
any given intervention [38]. The development of reliable biomarkers for
early detection and monitoring of disease progression is crucial for the
optimized success of future therapeutic strategies. Complex pathology
and co-pathology are another impediment to AD drug development. For
example, CAA, LATE-NC, and Lewy bodies increase dramatically in
incidence and severity in AD. CAA interacts with plaques and tangles,
especially in APOEε4-positive individuals; LATE-NC is associated with
tangles later in the course of the disease; and most Lewy bodies are
associated with moderate to severe plaques and tangles [33].

Digital twins

The features of digital twins

The term “digital twin” first appeared around 2010 in the National
Aeronautics and Space Administration (NASA)'s technology roadmap,
where it was defined as the pairing of a virtual representation with a
physical entity, system, or process. This virtual model is continuously
updated with real-time data to mirror its real-world counterparts [17,20,
39,40]. Much of the early work and development of digital twins took
place in industry and aerospace engineering. For example, digital twins
can be used for structural health monitoring and predictive maintenance
of airframes and aircraft engines [20]. It can also be used to monitor and
control DC-DC converters in electric vehicles [41]. Today, interest in and
development of digital twins extends to different application areas, such
Fig. 2. The features of digital twins. The input data features of DT contain multi-scale
methods, and models and decisions-making that can be updated in real time based on
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as healthcare [20]. The main features of DTs are to create a dynamic
digital model based on multi-scale real-time data that can simulate,
predict, and optimize the performance of its physical twin by virtue of the
information gleaned from examining the bi-directional interaction be-
tween physical and digital space.

In healthcare, digital twins rely on AI technologies, statistical
methods, and network approaches to obtain virtual representations from
multimodal biomedical data. It is complementary to advanced technol-
ogies like AI [42]. While on the one hand AI technologies and statistical
approaches provide powerful analytical capabilities, digital twin pro-
vides the framework for dynamic, integrated and actionable insights. The
key advancements in DTs compared to AI/MLmodels lie in their dynamic
adaptability, real-time interaction, and holistic integration [43]. Unlike
AI models, which remain static until retrained with new data, DTs
continuously evolve with real-time updates, enabling users to reflect the
current state of the system and support more responsive and informed
decision-making (Fig. 2).

The framework of digital twins

A DT involves the following components: data, modeling, connec-
tivity, evaluation, and feedback (Fig. 3). High quality, multi-dimensional,
and real-time datasets are the foundation of any DT [20,39]. Modeling
and simulation based on multi-scale and time-series data to create virtual
representations of physical counterparts is also a key element of DTs. DTs
connect the virtual and physical worlds with bi-directional interaction
creating a feedback loop that continuously updates the models and op-
timizes decisions [20]. How to effectively utilize medical DTs is a chal-
lenge that needs to be addressed urgently. First, DTs cannot be separated
from analysis of various biomedical data, such as integration of
multi-omics data, processing of image data, network analysis, and ma-
chine learning or generative AI to construct different levels of repre-
sentations and models of clinical data and disease states. For instance,
commercial enterprises are incorporating AI to create DTs of human cells
using multi-omics data to perform pathway analysis, as well as for
simulating responses to drugs and genetic perturbations [14,44,45].
real-time datasets. Models and simulations that can integrate all state-of-the-art
bi-interactions between virtual and real. This figure created with BioRender.com.

http://BioRender.com


Fig. 3. The general framework of medical DT and its application in AD. It typically consists of three main components, where the physical space includes multi-scale
input data, genomic data (e.g. GWAS), transcriptomic data (e.g. scRNA-seq, spatial transcriptomics) and epigenomic data (e.g. ATAC-seq data and methylation data),
proteomic data (e.g. MS and PPI), and phenomics data, that is clinical data, including such as MRI, EHR. The middle space is modeling component, which uses AI,
statistics, and network approaches to connect the physical and digital components for bi-directional interactions. The digital part can be constructed as cell-DT,
individual-DT, organic-DT, and population-DT depending on whether the input data is at the cellular level, the organ level, the individual level, or the population
level. It then can be applied to different aspects such as in AD, which including prediction of AD progression, biomarker identification, drug repurposing, virtual
clinical trials, and personalized medicine. This figure created with BioRender.com.
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Potential applications of digital twins in AD

DTs typically serve as a foundational framework via integrating AI
models, statistical methods, and network-based approaches. A key
advancement of DTs lies in their real-time bidirectional feedback capa-
bilities. This enables precise predictive insights from even small amounts
of new data, paving the way for precision medicine. As foundational
models continue to flourish, DTs are emerging as a powerful tool in
healthcare, particularly for addressing complex diseases such as cancer,
type 2 diabetes, multiple sclerosis, heart failure, seasonal allergic rhinitis,
post-hepatectomy liver failure, viral infection, and dental issues [46–49].
For example, dynamic single cell-based DTs have been used to prioritize
disease-associated genes and drug targets by network-based method for
seasonal allergic rhinitis, which provides a foundational framework for
biomarker discovery and identification of drug targets [50]. This
framework can be continuously refined with new data and validated for
treatment efficacy over time. By accelerating the discovery of biomarkers
and drug targets, this approach not only shortens the drug development
timeline but also enhances precision in identifying individual-specific
biomarkers, revolutionizing the drug discovery process. In addition,
the company DeepLife has leveraged single-cell omics data, AI, and sys-
tems engineering to develop a platform for creating DTs of human cells,
enabling rapid assessment of how cells respond to potential drug candi-
dates [44]. This approach streamlines drug discovery, reduces costs, and
enhances safety in drug testing compared to traditional pre-clinical
methods. Despite these advancements, the application of DTs in AD
5

remains largely underexplored, highlighting an opportunity for future
research to unlock their potential in understanding and managing this
complex neurodegenerative diseases.

Predictive AD progression

AD progresses with age and is categorized into early, middle and late
stages [51]. Diagnosing AD at its early stage is challenging due to the sub-
tlety of symptoms, which are often masked by routine age-related changes,
and the subjective nature of commonly used cognitive tests [51]. Previous
studies have investigated AD progression with different approaches. For
example, to characterize the spatiotemporal atrophy staging of AD at the
whole-brain level, Planche et al. modeled lifetime volumetric changes of
brain structure in both healthy and AD brain by integrating multiple
large-scale databases, comprising 3512 MRIs across nine subject cohorts
spanning the entire lifespan [52]. Furthermore, several studies have pre-
dicted AD progression by evaluating the AD Course Map, which is a statis-
tical model that forecasts the progression of a patient's neuropsychological
assessments and imaging biomarkers based on early-stage medical and
radiologic data [16,53]. Additionally, researchers have explored the mo-
lecular changes across AD progression at the single-cell level. For instance,
Mathys et al. and Gabitto et al. studied molecular regulation of major brain
cell types across AD progression through single-cell multi-omics data [10,
54]. These studies provide essential data resources for developing a DT
model that accurately represents AD progression, paving the way for more
precise predictions of disease trajectories.

http://BioRender.com
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Biomarker discovery

A comprehensive understanding of the molecular changes underlying
AD development across cellular, genomic, individual, and population
levels is essential for identifying biomarkers for diagnosis, discovering
drug targets, and gaining precise insights into AD mechanisms. At the
cellular level, researchers are leveraging multi-omics single-cell data
integration, network analysis, and machine learning methods to
construct spatial transcriptomics and an epigenetic atlas of AD, uncov-
ering cell-specific molecular changes [50,54–58]. At the population
level, continuous or lifelong learning methods applied to electronic
health records (EHR) and longitudinal genomic data provide valuable
insights into disease progression, facilitating the identification of mech-
anisms driving AD development and enabling the prediction, prevention,
and treatment of the disease [2,17,29,59,60]. Although general machine
learning methods are also effective for biomarker discovery, particularly
when leveraging large datasets, these methods typically analyze static
data or snapshots in time, uncovering general patterns and associations at
the population level [39]. In contrast, the DT framework is designed for
continuous model updates and real-time feedback, even with minimal or
individual-specific data. This capability allows DTs to simulate the dy-
namic progression of a disease over time, facilitating the discovery of
biomarkers that reflect early disease stages, progression, or therapeutic
response, as well as pinpointing optimal temporal windows for inter-
vention [20]. Additionally, DTs have the potential to generate individ-
ualized, dynamic simulations within a continuous feedback loop. By
integrating multi-scale data—genomic, proteomic, and clinical—these
simulations capture the unique trajectory of disease progression for each
individual. This approach accelerates biomarker and drug discovery,
enhancing precision and efficiency even in scenarios with limited data
availability. Furthermore, DTs can conduct virtual trials to evaluate the
efficacy of biomarkers before proceeding to clinical validation [61]. This
innovative approach not only enhances the precision and efficiency of
biomarker discovery but also significantly accelerates drug development
while reducing associated costs.

Drug repurposing

Traditional drug discovery continues to be challenged by long lead
times and drug safety risks, even after entering clinical trials. Drug
repurposing - finding new uses for existing FDA-approved drugs – is an
important area for discovering new treatments for patients. For example,
Cheng et al. developed a Genome-wide Positioning System Network
(GPSnet) algorithm that enables drug repurposing through localization of
disease-specific modules in individual patient DNA and RNA sequencing
profiles that are mapped to the human protein-protein interactome
network, as well as a protein-network-based approach for identification
of combinations of drugs with clinical efficacy for specific diseases [62,
63]. Furthermore, Fang et al. and Xu et al. developed a network-based
artificial intelligence framework for drug repurposing that integrates
bulk-RNA-seq and multi-omics data at the single-cell/nucleus level as
well as the human protein-protein interactome network to accurately
infer drug targets affected by disease-associated genetic variants identi-
fied by genome-wide association studies (GWAS) [29,64,65]. Overall,
this important area is particularly amenable to application of DT tech-
nology [66]. For example, by modeling how existing drugs interact with
disease models in patient-specific DTs, utilizing large-scale perturbation
databases such as Connectivity Map (CMap) or the Library of Integrated
Network-based Cellular Signatures (LINCS), the efficacy of potential drug
candidates can be efficiently screened [29,67,68]. These candidates can
then be validated using real-world data (RWD) from extensive clinical
databases like OneFlorida and MarketScan, which collectively encom-
pass over a decade of clinical records for more than 170 million patients
[69–72]. Drug repurposing not only saves time and resources, but also
leverages the safety profile of approved drugs to deliver effective
6

treatments to patients faster. Future application of DTs to drug repur-
posing in AD holds great promise for accelerating the discovery of new
treatment approaches.

Clinical trial emulation

Clinical trial emulation using DTs is another innovative application
that could be applied to AD research. Clinical trials are costly and time-
consuming, and it can be difficult to recruit patients. Developing DTs of
trial participants, however, allows for in silico simulations of experi-
mental therapies, enabling the prediction of outcomes and identification
of potential side effects before human trials are conducted [73,74]. This
approach can significantly reduce costs, save time, and minimize the risk
associated with clinical testing. Importantly, virtual DT clinical trials
more accurately reflect real-world changes than traditional cell and an-
imal models, and thus could be uniquely applicable in AD for which there
is a particular high discordance between preclinical data and clinical
efficacy. For example, Bertolini et al. developed a machine learning
model for predicting AD progression using a conditionally constrained
Boltzmann machine. The model utilized nearly 7000 clinical records
from placebo groups of AD clinical trials and observational studies to
generate DTs in the form of synthetic clinical records that reflect baseline
characteristics and the most likely disease progression of real patients
under the standard of care with or without placebo [73]. Companies like
Unlearn.AI [75] are also designing virtual clinical trials with large
amounts of data on diseases such as AD and Parkinson's disease, which
they named TwinRCT. TwinRCT is a randomized trial that uses DTs to
predict individual outcomes to optimize the trial process. Notably, cre-
ation of DTs of trial subjects by AI models trained on patient-level data
helps in conducting subsequent human trials with higher power and
smaller control groups [18,76]. In summary, clinical trial emulation
using DTs can help optimize trial design, reduce the number of partici-
pants needed, and increase the likelihood of success, ultimately accel-
erating the development of new treatments.

Precision medicine

It is hoped that in the future DTs will deliver personalized medicine to
AD patients, with continuous updating of a patient's DT based on new
data (e.g., biomarkers at multi-scales level, imaging results, and clinical
assessments), to help physicians customize their treatment plans in real
time [21,77]. In this respect, we propose future utilization of cellular DTs
(CDTs) across AD progression, as many AD risk genes are differentially
expressed in various cell types. For example, multiple GWAS studies
suggest that the ε4 allele of the apolipoprotein E (APOE) gene is the most
potent genetic risk factor for sporadic late-onset AD, and APOE genes are
relatively highly expressed in microglia and astrocyte cells [25,78]. In
addition, integrative analysis of multi-omics single-cell data has shown
that somatostatin-expressing neuronal subtypes are reduced in early AD,
intracranial suprachiasmatic projection excitatory neurons and
parvalbumin-expressing neurons are reduced in late AD, and
disease-associated microglial and astrocytic cells are increased in late AD
[10]. These results suggest that cell type- and disease progression-specific
effects are an important consideration in treatment. The construction of a
cellular DT for AD progression could potentially mirror the molecular
changes of AD progression at the cellular level, which could enable
identification of key biomarkers and drug targets. In addition, machine
learning and network-based approaches, combined with drug databases
such as CMap, could enable drug perturbation trials to identify
cell-specific drugs that are effective against a given stage of AD pro-
gression. This dynamic, personalized approach utilizing DTs could ensure
that each patient receives the most effective interventions and treatments
based on their unique disease characteristics.

Another potential application for DTs in AD drug discovery is devel-
opment of whole brain DT (BDT). Lu et al. [79] and Feng et al. [80] have
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already introduced the BDT computing platform that simulates spiking
neuronal networks at the scale of the entire human brain, containing up
to 86 billion neurons and 478,000 billion synapses [79,80]. In this work,
they incorporated imaging data from a variety of biological brain struc-
tures, including structural magnetic resonance imaging (sMRI), diffusion
tensor imaging (DTI), and positron emission tomography (PET), while
using a hierarchical random graph model with constraints and multiple
edges to simulate synaptic interactions between neurons [79]. This BDT
under development is projected to emerge into a powerful platform for
enhancing our understanding of brain dynamics, thereby supporting
development of new therapeutic approaches and improving clinical
decision-making through personalized brain simulation.

Challenges and future directions

To summarize, DT technology is already showing great potential
application in healthcare, and we propose that it is particularly promising
for accelerating drug discovery and development for AD, as well as aspects
of personalized precision medicine. However, there are still some limita-
tions for DT in healthcare. DT currently lacks well-defined, systematic
theories and algorithms, often relying on existing statistical models and
various machine learning approaches. Advancing DT requires a highly
interdisciplinary effort: mathematicians and computer scientists are
needed to provide foundational theoretical support and develop robust
models, while biologists and medical scientists contribute domain exper-
tise to accurately represent biomedical systems. Additionally, the inte-
gration of mechanistic modeling, Internet of Things (IoT) technologies, and
other tools is essential to seamlessly connect the virtual and physical
worlds, ensuring the fidelity and applicability of DT. It is also important to
note that DT validation in biology is more challenging than in industry.
One of the main challenges is that biological processes and diseases
themselves are not as straightforward as objects in industry, and their
inherent complexity complicates multi-scale real-time data collection as
well as integration and coordination of data in different dimensions. It
should also be noted that sensitive personal health information may be
used in constructing DT, and data privacy and data security should be
taken into account. Some current advanced techniques, such as federated
learning and distributed learning, are methods that can effectively reduce
data security issues [81,82]. In the future, as DT technologies and theories
mature, DT has the potential to revolutionize drug discovery in AD and
provides patients with more accurate, personalized, and efficient care.
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