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Abstract: The Rat Sarcoma (RAS) family (NRAS, HRAS, and KRAS) is endowed with GTPase
activity to regulate various signaling pathways in ubiquitous animal cells. As proto-oncogenes,
RAS mutations can maintain activation, leading to the growth and proliferation of abnormal cells
and the development of a variety of human cancers. For the fight against tumors, the discovery of
RAS-targeted drugs is of high significance. On the one hand, the structural properties of the RAS
protein make it difficult to find inhibitors specifically targeted to it. On the other hand, targeting
other molecules in the RAS signaling pathway often leads to severe tissue toxicities due to the lack
of disease specificity. However, computer-aided drug design (CADD) can help solve the above
problems. As an interdisciplinary approach that combines computational biology with medicinal
chemistry, CADD has brought a variety of advances and numerous benefits to drug design, such as
the rapid identification of new targets and discovery of new drugs. Based on an overview of RAS
features and the history of inhibitor discovery, this review provides insight into the application of
mainstream CADD methods to RAS drug design.

Keywords: RAS inhibitor; computer-aided drug design; virtual screening; molecular docking;
molecular dynamics simulation

1. Introduction

RAS as GTPase is a binary switch that functions in cellular signal transduction. In
normal situation, this function can be regulated precisely. However, mutations of RAS
or its regulators keep RAS continuously active in RAS-related diseases, such as cancer
and psychiatric disorders. Statistically, RAS mutations account for 25% of all human
cancers. Although mutations of all three types of RAS members (NRAS, HRAS, and KRAS)
can cause cancer, KRAS is the most common oncogene, accounting for 85% of all RAS
mutations. KRAS mutations alone cause approximately one million deaths worldwide
annually [1], specifically, 91% of pancreatic cancers, 42% of colorectal cancers, and 33%
of lung cancers [2]. Hence, the optimal therapeutic strategy for RAS-related diseases is
to discover new RAS inhibitors to effectively constrain the abnormal activation of RAS
mutations. Although RAS has been called “undruggable” in recent decades because the
surface of the RAS protein is smooth, the development of computer-aided drug design
(CADD) has significantly facilitated the discovery of the specific RAS inhibitors.

CADD is important not only in leading compound discovery to predict the potential
targets and compounds but also to evaluate biological competencies and optimize drug
activity. Based on different structural data, CADD is generally divided into two strate-
gies: structure-based CADD (SB-CADD) and ligand-based CADD (LB-CADD). SB-CADD
prefers target proteins with high-resolution three-dimensional (3D) structures and the
identification of binding sites [3,4]. Experimental determination or computational calcu-
lation provides these data for molecular docking and other SB-CADD methods, through
which the interaction between the target protein and ligand molecules can be evaluated [5].
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LB-CADD is an indirect drug design method based on a set of active ligands with cer-
tain structural characteristics. By modeling and similarity searching, potentially bioactive
compounds can be discovered without knowing the 3D structure of the target protein. A
quantitative structure–activity relationship (QSAR), a crucial LB-CADD algorithm, converts
the chemical structure of the molecule into descriptors to perform statistical operations and
quantitative analysis [6,7].

In terms of tactics, CADD can be divided into virtual high-throughput screening
(vHTS) and de novo drug design [8]. The former requires an existing molecular database
for screening, while the latter relies on generative models [9,10]. vHTS has been essential
in industrial and academic drug discovery for decades [11]. Structure-based vHTS requires
molecular docking to critically evaluate ligand–receptor affinity and simulate their binding
patterns while screening specific biologically active compounds [4]. Ligand-based vHTS
analyzes QSAR descriptors or other quantitative features of ligands while screening. The
screening efficiency of vHTS depends on the precision of a certain method and could
be enhanced by combining structure-based and ligand-based strategies [12]. De novo
drug design, on the other hand, is a tactic that is more demanding and less popular than
vHTS. It uses computational algorithms to generate compounds from scratch without a
molecular database [10]. In structure-based de novo design, small fragments that match
the binding site are created and then assembled into feasible compounds with a novel
structure. Although rarely mentioned in RAS inhibitor discovery, de novo design may
show its advantage in the future with broader exploration in chemical space and with the
application of machine learning [13].

In general, both of these strategies or tactics have been used alone or in combination
in drug discovery. This review provides insight into the applications of several common
CADD methods in RAS drug design based on an overview of RAS features and the history
of inhibitor discovery.

2. Biochemical Features of RAS
2.1. RAS in Normal Physiological Condition

RAS family proteins are encoded by three genes, namely HRAS, NRAS, and KRAS,
which have highly homologous sequences and overlapping functions [14]. Among them,
KRAS has splice variants representing two isoforms, KRAS4A and KRAS4B. Residues 1–166
form the G domain, which consists of six β-strands (β1–β6) surrounded by five α-helices
(α1–α5) and ten connecting loops (L1–L10). Further structural studies at RAS have revealed
P-loop (P or L1; residues 10–17), Switch I (residues 30–38), and Switch II (residues 59–76) on
the surface of the G domain, which constitutes the active site for GTP/GDP and serves as
interfaces for the binding of effector proteins and regulatory factors (Figure 1a) [15]. Most
proteins in the superfamily of P-loop nucleoside triphosphate hydrolases (NTPases) contain
a highly conserved sequence motif, P-loop. The P-loop keeps the GTP in an appropriate
configuration for nucleophilic attack by a water molecule interacting with the Switch I and
Switch II regions [16]. Twenty residues of RAS C-terminal (residues 167-188/189) form a
hypervariable region (HVR).

RAS is a GTPase switch between the GTP-bound active state and the GDP-bound
inactive state in several key signaling pathways that regulate cell growth, proliferation, and
differentiation (Figure 1b) [17]. This switch is modulated by GTP-activated proteins (GAP)
such as p120GAP, neurofibromin, type I neurofibromatosis (NF1) gene products, etc. [18]
They facilitate GTP hydrolysis. There is a highly conserved “arginine finger” on GAP.
Once this “arginine finger” moves into the active site of RAS-GTP, the intrinsic GTPase
activity of RAS is greatly increased. RAS is also modulated by GMP exchange factors
(GEF), such as the son of seven less homologue (SOS). They catalyze the loading of GTP to
active RAS [19]. Activated RAS anchors to the cell membrane via the C-terminal CAAX
box (C, cysteine; A, aliphatic amino acid; X, any amino acid) of the HVR region [20], which
is post-translated by farnesyltransferase (FTase) or geranylgeranyltransferase (GGTase)
for prenylation to dimerize or assemble “nanoclusters” of 5 to 10 monomers to regulate
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downstream signaling [21,22]. Following isoprene conversion at the CAAX cysteine, the
RAS-converting enzyme (RCE1) performs proteolytic cleavage at the RAS AAX terminal,
followed by carboxymethylation by isoprenylcysteine carboxyl methyltransferase (ICMT).
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are colored lime, pink, and blue, respectively. GTP/GDP are depicted by stick models [23]. (b) Sche-
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Src homology 2 domain containing (SHC) and growth-factor-receptor-bound protein 2 (Grb2) to 

Figure 1. The RAS functions as a binary switch in normal state. (a) Cartoon representation of the
crystal structure of RAS complexes: KRAS4B–GTP (modified from KRAS4B–GppNHp; PDB ID:
3GFT) and KRAS4B–GDP (PDB ID: 4LPK). The helices (α1–α5), strands (β1–β6), and loops (L1–L10)
are shown in red, yellow, and gray, respectively. The P-loop (P or L1), Switch I, and Switch II regions
are colored lime, pink, and blue, respectively. GTP/GDP are depicted by stick models [23]. (b)
Schematic diagram showing the RAS-related signaling pathways. After activation by epidermal
growth factor (EGF), the tyrosine kinase receptor EGFR recruits GEF such as SOS to the cell membrane
via Src homology 2 domain containing (SHC) and growth-factor-receptor-bound protein 2 (Grb2)
to activate RAS [24]. Subsequently, the activated RAS dimerizes and binds to the downstream RAF
protein to regulate the MAPK signaling pathway (RAS–RAF–MEK–ERK pathway). The activated
ERK is transported to the nucleus and then phosphorylates a number of transcription factors, such as
erythroblastosis virus transcription factor (ETS), to ultimately regulate the cell cycle [25]. In another
RAS–PI3K–AKT pathway, the activated RAS recruits PI3K to phosphorylate the substrate PIP2 and
generate PIP3, whereupon PIP3 causes the sequential phosphorylation of AKT and mTOR to regulate
cell proliferation [26].
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2.2. RAS Mutations Trigger Signaling Dysfunction

KRAS G12 mutations are predominant (81%) in human cancers, followed by G13
(14%) and Q61 (2%) (Figure 2a) [1]. Glycine at codon 12 or 13 mutated to an amino
acid other than proline results in steric hindrances that reduce the van der Waals forces
between RAS and the GAPs and prevent the arginine finger of GAP from entering the
GTPase site [27]. KRASG12C could prompt the exposure of the effector binding site and
the nucleotide binding site, which can increase the intrinsic GTPase activity and thus
upregulate signal transduction [28,29]. As an actuator of GTP hydrolysis, mutations of
glutamine 61 disrupt GAP-mediated intrinsic GTP hydrolysis [27]. Other mutations such
as A146V [30], T158A [31], and R164Q [28] cause the rapid dissociation of GDP (Figure 2b).
Overall, most RAS mutations can disrupt the balance of the GTPase switch function
and continuously activate downstream signaling pathways, leading to the uncontrolled
proliferation of tumor cells.
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Figure 2. Mutations on KRAS. (a) Schematic diagram showing the positions of KRAS mutations;
(b) stick representation showing six residue mutations mapped on the cartoon representation of the
crystal structure of KRAS.

Three main strategies have been proposed to treat RAS-related cancers: (I) targeting
the signaling pathway upstream of RAS, such as vascular endothelial growth factor (VEGF),
epidermal growth factor receptor (EGFR), or the phosphorylation of upstream regula-
tory kinases [32]; (II) targeting RAS downstream signaling, such as RAF [33], MEK [34],
ERK [35], PI3K [36], AKT [37], or mTOR [38]; (III) directly targeting RAS itself. However,
in the absence of a deep pocket for binding small compounds with high affinity, RAS
has long been considered undruggable [39,40]. In recent decades, it has become apparent
that advanced CADD technology can transform RAS into a promising druggable target.
Inhibitors that directly target RAS can be divided into two categories: (i) targeting the
plasma membrane localization fragment of RAS: farnesyltransferase (FTase) inhibitors
disrupt the post-translational modifications of the CAAX tetrapeptide chain [41] and phos-
phodiesterase δ (PDEδ) inhibitors prevent PDEδ from binding farnesyl, thereby trapping
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RAS into the interior of cells [42]; (ii) targeting the activation domains of RAS: drugs bind-
ing to the α4–α5 region of RAS can disrupt RAS–effector interactions [43], and binding
to the Switch II pocket (in GDP-bound inactive conformation) can block the interaction
between RAS and SOS [44,45], whereas BI-2852 and BAY-293 have been shown to inhibit
the interaction between KRAS and SOS1 with effective antitumor potency [46].

3. Application of CADD Methods in the Development of RAS Inhibitors

CADD has been increasingly important for the discovery of new inhibitors targeting
RAS and its upstream or downstream signaling pathways. Based on high-resolution 3D
apo or complex structures of RAS and its upstream and downstream proteins, SB-CADD
is the optimal strategy for successful inhibitor discovery, especially vHTS in combina-
tion with molecular docking and molecular dynamics (MD) simulations. In addition,
LB-CADD is also an essential strategy for inhibitor discovery that includes QSAR and
pharmacophore modeling. More advanced computer algorithms, such as machine learning,
are also promising for the discovery of RAS-related inhibitors.

3.1. Determination of the Target Protein Structure

To analyze the structural features of proteins, discover potential drug targets, screen
potential drugs, and accelerate drug development, researchers need to determine the struc-
tures of target proteins. Many methods have been proposed for this purpose. The most
traditional among them are nuclear magnetic resonance spectroscopy (NMR), X-ray crys-
tallography, and cryo-electron microscopy (cryo-EM). Currently, there are approximately
400 open-access RAS structures in the Protein Data Bank (PDB) database [47], most of
which were obtained using these methods. Although these approaches are widely used
and have high measurement accuracy, they are time consuming and expensive. Therefore,
the newly developed CADD method is crucial for predicting the structure of target proteins
and can be used to discover potential drug binding sites.

Homology modeling is a common method for estimating the structure of target pro-
teins and evaluating structural properties based on the homologous sequence of pro-
teins [48]. Many applications provide homology modeling, such as Modeller and Swiss-
Model [49]. RAS-association domain family (RASSF) 2 is a tumor suppressor protein
interacting with KRAS, whose epigenetic inactivation through promoter hypermethylation
is frequently detected in multiple mutant RAS-containing primary tumors. Since RASSF2
acts as a proapoptotic KRAS-specific effector, some RAS inhibitors take effect through its
overexpression to promote apoptosis and cell cycle arrest [50]. The typical amino acid
sequences were retrieved from the Uniprot database by Kanwal et al. [51]. Six templates
were then observed by searching for templates based on the query sequence using the
NCBI Basic Local Alignment Search Tool (PSI-BLAST). Finally, the 3D structure of the target
protein was generated by comparative modeling using spatial constraint-based Modeller
(9V15), I-Tasser, SwissModel, 3D-Jigsaw, and ModWeb, with quality checks on the ERRAT
protein structure verification server [51]. Compared to traditional methods such as X-ray
crystallography and NMR, homologous modeling has the advantage of being cost-effective
and time-saving in predicting the 3D structure of proteins. However, the obtained 3D model
is often improper and inapplicable when the homologous sequence is inadequate [48].

MD simulation is excellent for checking the quality of protein models by monitoring
the atomic motion in real-time using Newton’s equation of motion. A reliability structure
with the optimal statistical eigenvalues of molecular dynamics and thermodynamics is
then determined [52]. For example, Prakash et al. used two sets of classical MD simulation
to determine the stability of the predictive model to be optimized [53]. However, the MD
simulation requires high computational power to predict the protein structure in a given
force field with multiple intramolecular interactions.

The template-based protein–protein interaction complex structure prediction algo-
rithm, PRISM, is useful for predicting the assembly of polymers or complex protein struc-
tures. PRISM compares the known protein–protein interface structure data with the protein
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interactions to be measured to derive the shape of the protein interaction region of inter-
est [54], which drastically reduces the computational effort and research cost compared to
ab initio methods. To study GTP-dependent KRAS dimerization, Muratcioglu et al. [55]
discovered two primary dimer interfaces dependent on the binding properties of KRAS to
GTP by performing a series of conventional experiments including dynamic light scatter-
ing (DLS), isothermal calorimetry (ITC), microscale thermophoresis (MST), fluorescence
spectroscopy, Forster resonance energy transfer (FRET), and NMR. From then on, PRISM
was used to predict the dimer structure.

In recent years, the burgeoning field of artificial intelligence (AI) has shown that it is
possible to accurately predict protein structure with the increasing abundance of protein
databases. Machine learning and deep learning algorithms have been used to predict
protein structures, which are highly efficient and accurate compared to traditional CADD
methods [56]. Li et al. [57] employed the well-known AlphaFold [58] to obtain models of
145 members of the RAS superfamily and discover the accessible cysteines in the allosteric
pockets. It is expected that AI will be widely used for protein structure prediction in the near
future and will contribute greatly to the development of molecular biology and pharmacy.

3.2. Identification of Binding Sites

In drug discovery, the identification of potential binding sites for small molecules
is critical for the 3D structural model of the target protein. This process can be achieved
by using a variety of methods to calculate and identify binding sites. Evaluating the
energy, volume, and shape of potential binding sites can reflect the binding capacity of
drugs [51,59].

New algorithms such as Phosfinder [60], LPIcom [61], Sitehound-Web [62], and Gen-
ProBiS [63] provide the recognition function of ligand binding sites in protein structures. In
the study on RASSF2, Kanwal et al. [51] derived the potential binding sites of RASSF2 via
Sitehound-Web after predicting the 3D structure of the RASSF2 protein. The efficiency of
the binding sites can be verified by measuring the energy range and volume of the pockets.
These web servers can be used to conveniently discover the potential binding sites of the
predicted structures.

Probe-based molecular dynamics (PMD) simulation is a common method for discover-
ing potential binding sites of target proteins by adding probe molecules to the conventional
MD simulation process. Potential drug targets are identified based on the frequency of
contact between the target site and the molecular probe relative to the druggability of the
site [64]. In a study on the binding hotspots of KRAS, Prakash et al. [65] investigated the
surface of KRAS using PMD simulation to evaluate the probability of interaction with or-
ganic molecules. Among eight potential druggable sites, five constitute the ligand binding
pockets parallel to experimental results (Figure 3, Table 1). Overall, PMD simulation can
predict the potential binding sites of various proteins by simply modifying the probe.

Table 1. Constituents and location of experimentally identified pockets composed by potentially
druggable sites (S1–S3, Subsite 1 and Subsite 2) from PMD simulation on KRAS.

Pocket Constituents Location

S1 + Subsite 1 V7, L56, M67, K5, D54, T74, Y71,
E37, D38

In the core β-strand region
behind Switch II

S2 V7, V9, G60, F78, M72, Q99, I100 Near Switch II and α3

S3 D105, S106, D107, D108, M111,
E162, Q165, H166 Between L7 and α5

Subsite 2 D30, D33, D38, S39, Y40, I21, I36 At the back of Switch I
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Figure 3. Surface representation of five potential druggable sites (S1–S3, Subsite 1 and Subsite 2) on
KRAS from PMD simulation (PDB ID: 4DSO).

In contrast to PMD simulation, the fragment-based approach, FTMAP, uses relatively
fixed probes. It correlates the druggability of the pocket with its propensity to bind these
probes by rigidly docking each probe to generate thousands of binding sites and obtaining
the final conformations through clustering and minimal free energy [66]. In identifying
new allosteric sites on RAS, Grant et al. [67] used FTMAP to discover three new potential
binding sites: P1, P2, and P3 (Figure 4, Table 2).
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Figure 4. Surface representation of three potential allosteric sites (P1–P3) on RAS from FTMAP.

Table 2. Consist and location of three potential allosteric sites (P1–P3) on RAS from FTMAP.

Site Constituents Location

P1
K5, L6, V7, S39, D54, I55, L56,

M67, Q70, Y71, M72, R73,
T74, G75

Between β1–3 and α2

P2
Q61, E62, E63, Y64, S65, F90,
E91, D92, I93, H94, H95, Y96,

R97, E98, Q99
Between L2, α2, and α3

P3

R97, K101, E107, D108, V109,
P110, M111, S136, Y137, G138,
I139, P140, R161, E162, I163,

R164, K165, H166

Between L7, L9, and α5
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The multiple solvent crystal structures (MSCS) method employs organic solvent
molecules to detect and characterize ligand binding sites on proteins. In MSCS, the X-ray
crystal structure of the target protein is dissolved in different organic solvents. Organic
solvent molecules that accumulate at specific sites on the protein indicate that they are
potential sites for molecular interactions [68]. In a hot spot analysis of RAS GTPase surface
binding sites, MSCS helped Buhrman et al. [69] to identify the potential binding sites of
HRAS-GppNHp protein–protein interactions. Eight potential binding sites were obtained
from different conformations under the crystal structure in the solvent (Figure 5, Table 3).
However, MSCS is limited by its reliance on the X-ray crystal structure of the target protein.
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Table 3. Information about the eight potential binding sites (Cluster 1–Cluster 8) on RAS from FTMAP.

Site Consist Location

Cluster 1 R68, Q95, Y96, Q99, D92, E62,
R68, D92, Q95, Y96, Q99, R102 Between switch II and α3

Cluster 2 H94, L133, S136, Y137, F90,
E91, I93, H94, L133, Y137 Between α3 and α4

Cluster 3 S17, I21, Q25, H27, V29, D33,
T35, D38, Y40

Opposite to Switch I relative
to gppnhp

Cluster 4 F28, D30, K147 Near L8

Cluster 5 A11, G12, N86, K88, S89, D92 Between P-loop and
N-terminus of α3

Cluster 6 D30, E31, Tyr32, GppNHp Near N-terminus of switch I

Cluster 7 L23, N26, K42, V44, V45, R149,
E153, Y157 Near C-terminus of α1

Cluster 8 G13, Y32, N86, K117,
GppNHp Between P-loop and switch I

In addition to predicting the structure of the target protein, AI can also be applied
to accurately discover the potential binding sites on the target protein [70]. Discovering
potential binding sites with AI will predict the binding ability of the binding sites to the
ligands by narrowing the selection range of the target ligands, which is a primary direction
for drug design. Table 4 shows the application of CADD in RAS-related structure and
binding site identification.
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Table 4. CADD applications in RAS-related structure and binding sites identification.

CADD Methods Results References

Homology modeling The 3D structure of RASSF2 [51]

Molecular dynamics simulation The stability of the
prediction model [53]

Template-based protein–protein
complex structure prediction algorithm

(PRISM)

The structure of
KRAS4B-GTP homodimer [55]

AlphaFold Models of 145 RAS
superfamily members [57]

Web server (Sitehound-Web) Top 10 binding pockets on RASSF2 [51]

Probe-based molecular dynamics
(PMD) simulation

Five potential druggable sites
(S1–S3, Subsite 1 and Subsite 2)

on KRAS
[53]

Fragment-based approach (FTMAP) Three potential allosteric sites
(P1–P3) on RAS [67]

Multiple solvent crystal structures
(MSCS)

Eight potential binding sites
(Cluster 1–Cluster 8) on HRAS [69]

3.3. Virtual Screening

Virtual screening (VS) automatically searches a small-molecule library for structures
that potentially bind well to the target biomolecule [71]. VS is a combination of several tech-
niques based on high-throughput screening from millions of lead compounds, i.e., vHTS,
to provide a solid foundation for further work. Although the continuous improvement
of computer hardware has led to an unprecedented increase in computational power to
screen as many compounds as theoretically possible, it is more recommended to construct
optimal small-compound libraries and improve the computational speed and hit rate with
various optimization algorithms for virtual drug screening strategies.

VS can be broadly divided into two types of screening strategies: receptor (structure)-
based and ligand-based approaches [71]. Here, receptor and ligand stand for target proteins
(drug targets) and small molecules (drugs), respectively. Structure-based virtual screening
(SB-VS), also known as receptor-based virtual screening (RB-VS), is progressed inseparably
from known protein structures and binding sites. In particular, this strategy involves molec-
ular docking, structure-based pharmacophore modeling, molecular dynamics simulation,
etc. SB-VS sometimes has to enable rapid high-throughput screening at the expense of
scoring accuracy, so the induced fit effect and solvation effect are generally ignored. Ligand-
based virtual screening (LB-VS) predicts the potential structure of candidate drugs from a
set of active compounds known to bind to specific sites on the target protein. The features
of screened ligands are extracted, such as structural conformation, charge distribution, and
physicochemical properties. Then, the feature library, including molecular fingerprints,
pharmacophore models, or matching ideal compounds, is constructed by QSAR. This
strategy is mainly used when the structure of the target protein is unknown or when the
target site is predicted in reverse, while a minor structural change can lead to a drastic
change in molecular activity.

For RAS inhibitor discovery, an emerging “hybrid virtual screening” method has been
employed to extract information from the global features of existing ligand–receptor com-
plexes for similarity-matching to reduce the false positive rate and increase computational
efficiency [72,73]. KRASG12D mutations resulted in a conformational exchange of exposing
the Switch I region to continuously activate the GTP-bound form, which was more suscep-
tible to bind to GEFs (e.g., SOS1). GTPase activity subsequently decreased, leading to the
aberrant activation of downstream signaling [74,75]. Hashemi et al. developed a strategy to
inhibit the guanylate cycle by competitively preventing the inactivated state of KRASG12D
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(iKRASG12D) from binding to SOS1 [76]. In the first round, flavonoids were selected as
ligand sets for LB-VS. In the second round, on LigandScout software, hybrid virtual screen-
ing strategy was used to build a pharmacophore model by extracting basic interaction
parameters involving hydrogen bonds, salt bridges, aromatic rings, and hydrophobic re-
gions from the existing co-crystal complexes of active inhibitors binding to the SOS1–KRAS
interface. Finally, nine hit compounds were screened out of 250,000 compounds in the Na-
tional Cancer Institution (NCI) database for subsequent molecular docking and molecular
dynamics simulation screening. In search of more effective inhibitors, the nine candidates
were then used to generate new ligand sets to repeat the process in the PubChem database.
Auriculasin (−9.8 kcal/mol) was finally identified with a higher affinity than the reported
inhibitor DCAI (−5.2 kcal/mol) for inhibiting the SOS1–KRASG12D interaction [77].

Due to RAS’s undruggability, the post-translational modification (PTM) of RAS is
considered a drug target, such as farnesyltransferase. As a potential inhibitor, theaflavin
(Vina score = −12.2 kcal/mol) is identified as an alliance of virtual screening with Autodock
Vina based on the Lamarckian genetic algorithm, molecular docking, and molecular dy-
namics [78]. After PTM, RAS localization and transport regulated by the prenyl-binding
protein PDEδ is also promising for drug intervention [79]. NHTD targeting the hydropho-
bic prenyl pocket of PDEδ (Glide XP score = −12.77 kcal/mol) was discovered by Leung
et al. [80], who applied an extra precision (XP) docking scoring to 1.3 million compounds
with Glide [81]. Aiming at the interface of the KRAS4B–PDE6δ crystal complex as a binding
pocket, VS in collaboration with MOE Dock was also performed to search for compounds
that prevent the mutant KRAS from being released from the stable complex and are candi-
dates for the treatment of pancreatic ductal adenocarcinoma [82]. MEK1 inhibitors targeting
the RAS downstream pathway were identified by a cooperation of GOLD and CDOCKER
and finally adopted by Glide XP in collaboration with HypoGen pharmacophore modeling
as a scoring method with a low root mean square deviation (RMSD) to improve screening
reliability and efficiency. After screening the SPECS library of more than 200,000 com-
pounds, the candidate MEK1 inhibitor was validated by biochemical and cellular assays
(IC50 = 3.5 µM) [83]. Multiple approaches, including Fischer’s randomization, test set pre-
diction, and decoy set confirmation, have been used in many studies to assess the quality
of pharmacophore modeling and analyze costs. Glide XP scoring was also used to identify
catechin (Glide XP score = 10.98 kcal/mol) as another potential MEK1 inhibitor for the treat-
ment of melanoma [84]. In this study, the known MEK1 inhibitory ligands in Ligand.Info
were screened for analogue compounds to build a drug library for molecular docking in
SB-VS rather than LB-VS. Due to flexibility in ligand selection, low computational cost,
and methodological versatility, LB-VS has been extensively used despite the known target
protein structure in most cases. VS is considered to be advantageously compatible with
multiple CADD screening strategies in the search for RAS inhibitors.

3.4. Molecular Docking Studies

As the most common method in the structure-based drug design of CADD, molecule
docking is widely used in RAS-targeted drug discovery. The basic principle of molecule
docking is to give a prediction of the ligand–receptor complex structure by computation
methods. To achieve this aim, there are two key steps: sampling and scoring. The former
targets ligands and active sites of proteins; moreover, it estimates experimental binding
modes; the latter evaluates binding affinity through a scoring function (with various
assumptions and simplifications) [85].

The earliest reported docking method is called “rigid body docking” derived from Fis-
cher’s “lock-and-key assumption”. The essence of rigid body docking is that both ligands
and receptors are treated as rigid bodies and that the affinity between ligand and receptor is
positively related to the geometric fit between their structures [86]. This method is still used
for macromolecular interactions due to its simplicity and feasibility. However, in practical
tests, rigid body docking procedures such as ClusPro produced obvious disadvantages,
such as fewer hits as the top 1 prediction and the lower accuracy of the generated mod-
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els [87]. Over time, the theory of “induced-fit” was developed. It states that the active site of
the enzyme is non-rigid. The substrate can induce a corresponding conformational change
of the active site of the enzyme, and the relevant groups rearrange the correct orientation
so that the enzyme and substrate fit together to form an intermediate complex, causing a
reaction [88]. As a developmental method, “flexible docking” allows the conformational
changes of small molecules or targets to precisely examine intermolecular recognition by
matching spatial shape and energy. The binding capacity is ultimately determined by
the change in binding free energy (∆Gbind) during the formation of the complex with
indispensable kinetic considerations [89]. To simplify biological macromolecular dynam-
ics, the assumptions of additivity and transferability have been employed in force fields
instead of electronic degrees of freedom. Most classical force fields focus on five terms: the
bond deformation and the angular geometry (stretching/compression of bonds, angular
bending), rotation around some dihedral angle (torsion), the so-called nonbonding, the
electrostatic interactions, and the dispersive interactions, as well as the repulsion because
of atoms overlapping (van der Waals forces). The extended complex force fields include
atomic polarizability and coupling forces, for instance, cross-coupling between bonds and
angles [90].

In the history of RAS-targeted drug discovery, molecular docking technology has
screened an indirect inhibitor to inhibit RAS nucleotide exchange. By constructing a
series of KRAS conformers containing infrequencies and performing blind docking with
AutoDock4.2, a bicyclic diterpene lactone from andrographis paniculate andrographolides
(AGP) was identified. Its benzylidene derivatives can bind to a transient pocket on KRAS
to block the exchange of GDP-GTP and thus inhibit the signal transduction of KRAS.
The successful inhibition study not only suggests that nucleotide exchange factors are
required for RAS signal transduction but also demonstrates that the inhibition of nucleotide
exchange is a practical approach to abolish the function of oncogenic RAS mutants [91].

In RAS post-translational modification, processing required three enzymes, as men-
tioned earlier, so targeting one of these enzymes is undoubtedly a promising strategy for
inhibiting the process [92]. Molecular docking uses the crystal structure of FTase as a
template to clarify the interaction between antroquinonol and the CAAX box of FTase after
verifying the inhibition of isoprene transferase by antroquinonol in vitro. In conclusion,
antroquinonol can inhibit the activity of prenyltransferase to restrict the activation of RAS
and RAS-related GTP-binding protein, leading to the activation of autophagy and death of
the cancer cell [93].

As a molecule in the RAS–RAF–MEK–ERK signaling pathway, BRAF protein kinase
mutating in approximately 7% of human cancers has been manifested as elevated kinase
activity and considered an important therapeutic target for inhibition. A study identify-
ing 18 compounds targeting BRAF through virtual screening and ELISA confirmed that
compound 1 efficiently inhibits BRAF kinase. Moreover, molecular docking clarifies the
docking conformation of compound 1 in the active site of BRAF and deduces the scaffold
based on the key of hexahydropteridine moiety. This conjecture has been confirmed by
ELISA with homologous compound 19. After a series of in vitro experiments with analogs
of compound 19 (19–33), compound 24 exhibits the most potent inhibitory activity [94].

Since RASSF2 as a potential tumor suppressor gene promotes apoptosis and cell cycle
arrest, Modeller (9V15) and online servers (I-Tasser, SwissModel, 3D-JigSaw, ModWeb)
generated the 3D structure of RASSF2 based on homology modeling to identify its top
10 binding pockets ranked by energy. Furthermore, AutoDock Vina and AutoDock4
recognize the ligands of RASSF2 that regulate the normal activity of RASSF2. Finally, as
stabilized RASSF2 compounds, ANP (phosphoaminophosphonic acid adenylate ester) and
GNP (phosphoaminophosphonic acid guanylate ester) can serve as lead compounds for
further studies targeting the RASSF family [51].

Initially, molecular docking is used to study the interaction mode between molecules,
which plays an irreplaceable role in clarifying the mechanism of intermolecular interaction,
discovering essential parts and guiding the synthesis of lead compounds. The rapid devel-



Molecules 2022, 27, 5710 12 of 23

opment of molecular docking enables the automatic screening of numerous compounds,
which has been one of the mainstream methods of CADD. In addition, molecular docking
also plays a vital role in drug repositioning and adverse reaction prediction. In summary,
molecular docking is rapidly developing as a promising CADD method.

3.5. Molecular Dynamics (MD) Simulation

The MD simulation is endowed with a temporal dimension in which the dynamic
interactions at the atomic and molecular levels can be traced over a period of time [95].
Compared to the static function of the structure determined by X-ray crystallography or
cryo-electron microscopy, the MD simulation builds the time function of position and
velocity for each atom with ideal environmental variables and initial flexible conformations
evolving to final molecular conformations with lower energy or ligand–acceptor interaction
patterns. In the MD simulation, a number of conditions should be tightly controlled,
including the incorporation of mutations/modifications, the selection of ligand receptors,
the imposition of perturbations, etc. Since the initial conditions are limited, the errors
caused by the integration process in the simulation accumulate over the time dimension
and cannot be completely eliminated. Therefore, it is necessary to improve the accuracy
by optimizing the algorithms, exerting appropriate molecular mechanical force fields,
and setting suitable parameters. In this regard, the three basic parameters determine the
accuracy, such as the simulation range (regional treatments are often required), the time
step (should be smaller than the minimum period of oscillation of the particle system, about
10−15 s), and the total time duration (must cover the period of natural interaction dynamics,
10−9–10−6 s or longer).

In classical MD simulation, the trajectories of molecules are traced by solving the
Newtonian equations of motion of the interacting particle system to approximate the
quantum mechanical model: the kinematic parameters of the atom are determined via
interaction forces with given atomic coordinates and random initial velocities. The crucial
kinetic steps are often located in transition states with high free energy and are difficult to be
sampled, especially in complicated protein systems with heterogeneous states, complicated
interactions, and undefinable solvent effects. To solve these problems, various algorithms
should be carefully selected and optimized. The nudged elastic band (NEB) algorithm
can calculate the transition state of protein structures within the minimum energy path
(MEP) between different conformations [96]. Similarly, Pande et al. [96] used the well
established Markov state model (MSM) method to describe long-time dynamics based
on the transformation between Markovian substable conformations [97]. The accelerated
MD (aMD) simulation method has been used in previous studies to calculate the short
time scale in classical MD simulation [98]. Various MD simulation programs, such as
GROMACS, AMBER, CHARMM, and NAMD, can evaluate the ligand–receptor binding
properties in terms of RMSD, root-mean-square fluctuation (RMSF), interaction forces, and
the energy of the complex system, etc. The force field of MD represents a potential energy
function consisting of the functional form and the parameter sets. The parameter sets
depend on the atom types of the MD molecular systems and are transferable based on the
structural similarity of the molecules. For apo structures and polymers of macromolecular
systems in biochemistry, optimized potentials for liquid simulations (OPLS), assisted model
building with energy refinement (AMBER), and chemistry at Harvard macro-molecular
mechanics (CHARMM) are common all-atom force fields with higher simulation accuracy,
while Groningen molecular simulation (GROMOS) is a united-atom force field with higher
computational efficiency.

MD simulation can break the bottleneck in determining protein structures and molecu-
lar interactions, especially in drug discovery [99]. In the SOS-induced nucleotide exchange
process of the RAS system, MD simulation identifies the stable binding site of SRJ23 in the
KRAS4B–SRJ23 (benzylidene derivative of AGP) complex [100,101]. Based on experimental
evidence that the Src-induced dual phosphorylation of KRAS Y32/64 disrupts the GTPase
cycle to interfere with RAS downstream signaling [102], MD simulation has revealed the
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complex process of unphosphorylated or phosphorylated KRAS4B in GAP, SOS, and RAF
in the GTP/GDP-bound states. The dual phosphorylation of KRAS4B alters the nucleotide
binding site conformations and generates perturbations at the catalytic site, resulting in the
expansion of the GDP binding pocket and the latency of the intrinsic hydrolysis of RAS
GTP. This has identified RAS phosphorylation as a drug target [103]. As a covalent inhibitor
targeting the Switch II allosteric pocket (SII-P) for KRASG12C, AMG-510 (SotoRASib) is
the first FDA-approved drug discovered by MD simulation. Using all-atom simulation
on a long time scale (75 µs), in MD simulation, Pantsar and colleagues [104] found that
AMG-510 remains stably bound to SII-P during switch swing, rather than fixing KRAS
switches based on crystal structure. With the MD simulation, AMG-510 also explains the
interaction with KRAS of PTM [104]. The interaction mechanism and kinetic parameters
between KRASG12C and another covalent inhibitor, ARS-853, were also revealed with
molecular docking and MD simulation [105]. There is a challenge that the dimerization or
oligomerization of RAS with PTM on membranes can only be resolved with recombinant
lipid membranes or nanodiscs [55,106,107]. Therefore, MD simulation plays a pioneering
role in discovering new potential drug targets and strategies by revealing the interface
interaction and energetic information of RAS dimer or other RAS-related pathway proteins
at the atomic level [53].

MD simulation is also a robust tool for discovering allosteric binding sites. Allostery
can modulate protein structure and activity by binding an effector to an allosteric site
instead of the orthosteric site [108]. Therefore, the discovery of allosteric sites [109–112],
the exploration of the allosteric mechanism [113–116], and the targeting of allosteric sites
for drug discovery [117–119] are of great importance. In combination with the transition
pathway generation algorithm and MSM analysis, MD simulation helps to identify sev-
eral key conformational substates in RAS deactivation hydrolysis and a novel potential
allosteric binding site for inhibitors to block downstream signaling effects [99]. NS1 is a
peptidomimetic that binds to the variable configuration site of RAS to inhibit RAS dimer-
ization and prevent the abnormal activation of the downstream RAF–MEK–ERK pathway.
However, the affinity of NS1 for HRAS is reduced by the HRASR135K mutation. In a 200-ns
MD simulation with dynamic network analysis and investigation of the overall architecture
of the allosteric network of HRAS, Ni et al. [120] found that HRASR135K disrupts most of
the key interactions at the interface of the wild-type HRAS–NS1 complex and abrogates
the original allosteric regulation. There are studies on the allosteric effects of KRAS as
the regulated or the regulator. Using aMD and allosteric pathway analysis, the mecha-
nism of the allosteric activation of PI3Kα by KRAS4B was elucidated to the extent that
KRAS4B binding disrupts the interaction between the p110 catalytic subunit and the p85
regulatory subunit of PI3Kα. This disruption leads to the exposure of the kinase domain of
PI3Kα, which facilitates its membrane binding and substrate phosphorylation [114]. Li et al.
propose the mechanism of long-range allosteric regulation from Sprouty-related, EVH1
domain-containing protein 1 (SPRED1) to KRAS in the SPRED1–GAP (NF1)–RAS ternary
complex via aMD and MSM analysis. NF1, acting as a scaffold, transfers the allosteric effect
from the SPRED1 side to another (KRAS binding site), resulting in the restricted confor-
mational change of the NF1 catalytic center for RAS hydrolysis but steadier KRAS–NF1
binding. Overall, SPRED1 enhances RAS–GTP hydrolysis [121]. The long-range allosteric
regulation also exists in the catalytic KRas4BG13D (nucleotide-free)–SOS–KRas4BG13D–GTP
ternary complex. According to the MD simulation result, the binding of KRas4BG13D–GTP
at the distal allosteric site of SOS increases the affinity between the catalytic KRas4BG13D

and SOS and promotes the removal of Switch I from the nucleotide binding site. These
facts lead to a higher nucleotide exchange rate and generate more GTP-binding RAS for
allosteric regulation as a positive feedback loop [122].

In general, MD simulation can firstly reveal the mechanism of the existing drugs
at the atomic level, create new models for the potential drug–protein or protein–protein
interactions, and design the precursor compounds. Second, the MD simulation can predict
ligands as agonists or antagonists, with spatial resolution at the atomic level and temporal
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resolution at the femtosecond level. Third, the MD simulation can explore the allosteric
sites and capture the temporal phase of the effect at the kinetic level and the receptor
binding affinity. Finally, MD simulation can provide a more realistic and detailed atlas of
pharmacodynamics and is more useful for drug design. Consequently, MD simulation is
very helpful for the discovery of promising RAS inhibitors.

3.6. Quantitative Structure–Activity Relationship Study (QSAR)

QSAR is created by combining mathematical methods of empirical equations com-
monly used in physical chemistry based on the traditional structure–activity relationship
between molecular structure and properties, such as molecules with similar structures
having similar properties. Briefly, QSAR consists of the following core steps: experimentally
determining the data for various compounds to construct training and test sets; computa-
tionally converting the structural formulas into the descriptor data for statistical operations,
a process known as the acquisition of molecular descriptors; establishing a statistical model
between the molecular properties of interest and the molecular descriptors of the training
set; evaluating the obtained model according to various indicators; and attempting to ex-
plain the model from a mechanism. Various molecular descriptors reflecting different levels
of chemical structure representation have been proposed as the core of QSAR. These levels
range from molecular formulas (so-called 1D) and two-dimensional structural formulas
(2D) to three-dimensional conformational formulas (3D) and higher formulas that take
mutual orientation and time dependence into account (4D or higher) [6].

The 2D descriptor mainly defines the connectivity of atoms in molecules according to
the existence and nature of chemical bonds, which is also called topological representation.
This representation contains valuable and straightforward information about the molecular
structure and has the advantage of being invariant to the rotation and translation of
molecules. Although 2D descriptors cannot be used as unique representations without
reconstructing molecules, they can characterize molecules with higher discrimination with
well-defined ordered sequences [123]. Furthermore, 3D descriptors based on biological
selectivity result from highly specific interactions between the target and ligands, such
as hydrogen bonds. The ligand preferences arise mainly from non-covalent field effects
imposed by the spatial proximity. The systematic sampling of field differences, such as the
CoMFA formulation with the classical and dominant comparative molecular field, provides
molecular descriptors suitable for QSAR. The main challenge in performing CoMFA is
the alignment protocol for selecting conformation and orientation of the ligands in the
training and test sets, which is cumbersome and expensive. However, new QSARs, such as
topologically heterogeneous protocols, dramatically simplify reliable predictability [124].
Overall, 3D-QSAR research requires the structural alignment of compounds as the most
critical step. Being related to the alignment protocol, the major obstacle in performing
CoMFA is precisely the selection of ligands for the training and test groups, as well as the
selection of the conformation and orientation of each ligand. In practice, this task often
becomes slow and tedious and somewhat temporarily requires higher statistical standards
(such as q2) [123]. To overcome this bottleneck, QSAR usually works with with other
techniques such as molecular docking.

As a member of the RAS activator family (RAF), BRAF mutations exhibit markedly
increased kinase activity and a high degree of disease severity. The BRAF V600E mutation,
one of the most known oncogenic protein kinase mutations, represents an excellent potential
therapeutic target. Due to the collaboration between molecular docking techniques and
reliable CoMFA and CoMSIA models, three different V600E BRAF inhibitor datasets were
generated based on a dataset of 125 compounds using receptor-guided alignment methods
and database alignment. Both models show good statistical values and are validated by y-
randomization tests. Finally, the newly predicted structure (IIIa) shows a higher inhibitory
potency than the previous active compounds in the series (pIC50 = 6.826) [125].
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3.7. Pharmacophore Modelling

The pharmacophore is a concept that represents the structural characteristics indis-
pensable for ligand–target interactions [126]. According to the official IUPAC definition: a
pharmacophore is the ensemble of steric and electronic features that is necessary to ensure
the optimal supra-molecular interactions with a specific biological target structure and to
trigger (or to block) its biological response [127]. The pharmacophore includes a range of
hydrogen bond acceptors and donors, acidity, alkalinity, nucleophilicity, or electrophilicity
of the functional group [128]. Based on the pharmacophore modeling of active ligands,
vHTS can screen compounds with similar pharmacophore properties. If a compound has
multiple pharmacophore features described in the pharmacophore modeling of active
ligands, it is a multitarget compound [129].

Pharmacophore modeling in conjunction with vHTS is widely used as a reliable
and rapid ligand-based CADD approach to discover inhibitors of RAS upstream and
downstream molecules [128]. RAF kinase inhibitor protein (RKIP) is a critical regulator
of the RAS–RAF–MEK–ERK signaling pathway. In recent research on RKIP inhibitors
by Parate et al., a pharmacophore model with a series of hydrogen bonds, hydrophobic
groups, and aryl rings of locoastatin (the most potent RKIP inhibitor known to date) was
created [130]. Based on the pharmacophore model, compounds that have an analogous
structure can be selected from the library by vHTS. As a result, the model has assigned a
total of 2557 compounds out of 14,492 compounds in the Marine Natural Product Library.
By optimizing the model, the number of compounds was significantly reduced, to 134 for
further research.

Pharmacophore modeling was also applied to the structural orientation of QSAR
modeling. A reliable 3D QSAR model was established by pharmacophore models with
similar structural properties and molecular comparison for RKIP inhibitor discovery by
Xie et al. [131]. Moreover, pharmacophore modeling also helps in the discovery of inhibitor
targets RAS upstream and downstream molecules such as PI3K-α and PKC-η [59] (Table 5).

Table 5. CADD applications in RAS inhibitor discovery.

Targeting
Strategy Drug Targeting Information

CADD Methods
ReferenceVirtual

Screening Ligand-Based Receptor-Based

Direct targeting
KRAS

Andrographolide
(AGP) and its
benzylidene
derivatives

Binding to a transient pocket on
KRAS, blocking

GDP–GTP exchange

Molecular docking;
Molecular
dynamics

[91]

Auriculasin
Blocking iKRASG12D–SOS1
interaction, inhibiting the

guanylate cycle

Similarity
searching;

Pharmacophore
modelling (via
ligand–receptor

complex
fingerprint)

Molecular docking;
Molecular
dynamics

[76]

ARS-853, ARS-1620

Targeting the SII-P of RAS
proteins in the GDP-bound state
formation, interfering with the

region of Switch 1 and Switch 2,
blocking SOS-mediated GTP

binding and effector
proteins involvement,

√
Molecular docking [44]

Compound D14
and C22

stabilizing the KRAS4B–PDE6δ
molecular complex, and blocking

the release of abnormal KRAS
with mutations

√ Molecular docking;
Molecular
dynamics

[82]

Indirect targeting
KRAS

IMB-1406

Inducing apoptosis in HepG2
cells by arresting the cell cycle at
the S phase and altering anti- and
pro-apoptotic proteins leading to
mitochondrial dysfunction and
activation of caspase-3, one of

the possible targets being protein
farnesyltransferase

Molecular docking [132]
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Table 5. Cont.

Targeting
Strategy Drug Targeting Information

CADD Methods
ReferenceVirtual

Screening Ligand-Based Receptor-Based

Indirect targeting
KRAS

NHTD

disrupting KRAS–PDEδ
interaction, redistributing the

localization of KRAS to
endomembranes by targeting the
prenyl-binding pocket of PDEδ

√
[80]

Antroquinonol

Inhibiting prenyltransferase
activity, blocking RAS and
RAS-related GTP-binding

protein activation

√
Molecular docking [93]

Theaflavin Targeting farnesyltransferase,
inhibiting PTM process

Molecular docking;
Molecular
dynamics

[78]

Upstream
signaling
pathway

Daidzein Interacting with the kinase
domain of the EGFR protein

√ Molecular docking;
Molecular
dynamics

[133]

Scopoletin Iargeting EGFR, BRAF, and
AKT1 in NSCLC Molecular docking [134]

Downstream
signaling
pathway

Purine-2,6-dione
analogues

Inhibiting BRAF protein kinase
(a molecule in the

RAS–RAF–MEK–ERK signaling
pathway)

Molecular docking [94]

phosphoaminophosphonic
acid adenylate ester

(ANP), phospho-
aminophosphonic

acid guanylate ester
(GNP)

Stabilizing RASSF2 (a
KRAS-specific effector protein,
promoting apoptosis and cell

cycle arrest)

√
Molecular docking [51]

newly designed
2,6-disubstituted

pyrazine derivatives
Inhibiting V600E BRAF QSAR

Molecular docking
(for the

consideration of
the similarity and

alignment)

[125]

Dehydrocoelenterazine

Interacting with the RAF kinase
inhibitor protein (RKIP)

ligand-binding pocket, thus
inhibiting RKIP

√ Pharmacophore
Modelling

Molecular docking;
Molecular
dynamics

[130]

NCI 94680NCI
527880NCI 183519 BRAF inhibitor

√

QSAR;
Pharmacophore

modeling (used in
the structural

alignment step of
QSAR modelling)

Molecular docking [131]

Pictilisib PI3K-α inhibitor
√ Pharmacophore

Modelling Molecular docking [59]

Staurosporine PKC-η inhibitor
√ Pharmacophore

Modelling Molecular docking [59]

Compound M4 MEK1 inhibitor
√ Pharmacophore

Modelling Molecular docking [83]

Catechin MEK1 inhibitor
√ Similarity

searching

Molecular docking
(using the drug
library obtained
from similarity

searching);
Molecular
dynamics

[84]

CID-20759629 PI3Kγ/AKT/mTOR
pan-inhibitor

√ Similarity
searching

Molecular docking;
Molecular
dynamics

[135]

Compound 17 mTOR inhibitor
√ Similarity

searching

Molecular docking;
Molecular
dynamics

[136]

3.8. Other CADD Applications

Although vHTS is widely used, the de novo design of RAS inhibitors still alternatively
shows a promising future ahead. Recently, proteins such as fluorescence-activating β-barrel
were developed by de novo drug design [137]. A functional RAS-binding domain with
extreme thermostability was identified by another de novo sequence redesign model called
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ABACUS by Liu et al. [138]. The de novo sequence redesign model does not suffer from a
restrictively cumulative effect for future directions.

Currently, mainly qualitative or semi-quantitative methods are used in MD simulation
to calculate the binding affinity with accurate free energy. Accurate free energy prediction
methods, such as alchemical free energy method (AFEM) and absolute binding free energy
(ABFE), greatly improve the efficiency of CADD, although it is extremely demanding
and costly [139]. Free energy prediction models that are more accurate and efficient than
molecular docking and less computationally demanding than AFEM, including Poisson–
Boltzmann surface area (MM /PBSA) and Born surface area (MM /GBSA) generalized
molecular mechanics, have already been used in current research, such as the discovery of
RAS inhibitors [140]. The discovery of allosteric binders of RAS can also be empowered
with free energy prediction methods. For example, the naphthyridinone scaffold was
identified as a novel covalent allosteric binder for KRASG12C in free energy perturbation
models [141].

As a more promising CADD method, machine learning (ML) algorithms, such as
neural networks and the transformer, are developing suitable models to predict target
protein structure and discover potential compounds. Other CADD methods, including
molecular docking, QSAR, and pharmacophore modeling, also benefit from machine
learning algorithms [142,143]. In molecular docking, ML is used for scoring functions that
translate protein–ligand interactions into descriptors. In this way, effective scoring function
models such as a NN Score and a RF Score can be built. In QSAR and pharmacophore
modeling, ML improves the accuracy of molecular comparison and descriptor identification.
It is foreseeable that machine learning algorithms with high efficiency will be increasingly
used for RAS inhibitor discovery in the future.

4. Conclusions

RAS was once referred to as an “undruggable target” because of the special structural
characteristics of RAS, the complexity of signaling pathways, and the drug resistance of
RAS mutant tumors. RAS proteins have high intrinsic affinity for their GDP and GTP
substrates and lack distinct pockets in their catalytic domain for binding compounds.
However, thanks to the relentless efforts of researchers and advances in CADD, inhibitors
have consistently shown satisfactory effects in experiments. To date, only a few small
molecules have been able to covalently bind to KRASG12C. Since the HVR mutations of
RAS cause cancer, they can be used to develop small-molecule inhibitors targeting specific
oncogenic RAS mutants. Recently, phosphorylation at multiple residues was identified
to regulate the activation of RAS, which may be a new target for therapeutics against
RAS diseases.

In recent years, FDA-approved KRASG12C mutation inhibitors (AMG 510, Sotorasib)
have been introduced. The existing pan-RAS inhibitors, such as compound 3144, have
unavoidable toxicity and off-target activity [144]. However, the discovery of RAS inhibitors
is still a challenge. First, the discovery of specific inhibitors targeting other alleles is
needed to provide a personalized medical approach, such as the common KRAS variants
KRASG12D and KRASG12V. Second, the effect of allele-specific inhibitors as monotherapy
may be limited. Therefore, it is necessary to combine them with other inhibitors because
cancers are often raised by multiple mutations [145]. Therefore, advanced knowledge of the
pharmaceutical effects of other inhibitors on RAS alleles is necessary to develop strategic
combination therapies. Combination therapy with solid therapeutic effects and relatively
low toxicity is required. Third, further exploration of the mechanism of drug resistance by
gene mutation and histological transformation is needed [146]. The rapid development of
graphical computing, cloud computing, artificial intelligence technologies, and improve-
ments in software and algorithms make this possible. Then, VS has become more diverse
and high-throughput. MD simulation has even been extended to the millisecond level,
accompanied by higher precision and lower consumption. QSAR and pharmacophore
models have gained accuracy and efficiency as ML algorithms have improved. Overall,
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with increasing accuracy, CADD is becoming an indispensable component in RAS inhibitor
discovery and other areas of drug discovery.
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