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Drug related cue-induced reactivity plays a significant role in maintaining drug use and
relapse in addicted individuals. The activation of Dorsolateral striatum-Sensorimotor
system (DLS-SM) has been suggested as an important route through which drug
cues may induce automatic drug using behavior. The current study used fMRI to
investigate the reactivity of heroin abstinent individuals to different types of cues, to
clarify the characteristics of the cues that induce the activation of the sensorimotor area.
Forty heroin-dependent abstinent individuals and 29 healthy subjects were recruited to
perform the heroin cue-reactivity task during fMRI. The participants’ subjective craving
and physical signs were evaluated before and after scanning. Whole-brain analysis
showed that compared to drug use tool and drug cues, cues related to drug use action
were more likely to activate posterior central gyrus, para-hippocampus, supra marginal
gyrus, superior parietal lobule (SPL) and inferior parietal lobule (IPL). These areas are
involved in motor preparation and output, indicating that the sensorimotor area is also an
important neural basis of craving and automatic drug using behavior, and may mediate
craving and drug seeking behavior. Our findings thus suggest that cues related to drug
using action may induce automatic drug seeking behavior more than cues related only
to the drug itself.

Keywords: drug addiction, drug-related cues, DLS-SM system, habitual drug use, fMRI

INTRODUCTION

Drug addiction is characterized by compulsive drug taking behavior and high rates of relapse even
after many years of abstinence (O’Brien et al., 1977). Exposure to drug-associated cues instigates
physiological, behavioral and subjective reactions. This phenomenon, called cue-induced reactivity,
includes craving and automatic drug using behavior, in which behavior becomes autonomous
and can be performed with little attention, intention, or cognitive effort, constituting a ‘‘habit’’
(Knowlton, 2014). Autonomous behavior is thought to play a significant role in triggering addiction
and relapse in drug users.

The majority of the neuroscience research on drug cue-induced reactivity and its neuronal
underpinnings has focused on the mesocorticolimbic system (Grant et al., 1996; Brody et al.,
2002; Due et al., 2002; David et al., 2005), including the ventral striatum (VS), extended
amygdala, hippocampus, anterior cingulate cortex (ACC), prefrontal cortex (PFC) and insula,
which are innervated by dopaminergic projections predominantly from the ventral tegmental area
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(VTA; Nestler, 2005). Whilst OFC is believed to play a key role
in reward values, and about the current state and needs of the
organism, in order to guide motivated behavior (Goldstein and
Volkow, 2011; Luijten et al., 2011; Lucantonio et al., 2012). The
ACC is engaged in a range of cognitive tasks, particularly tasks
that involve executive function (cognitive control, conflict, or
error monitoring; Goldstein and Volkow, 2002; Dosenbach et al.,
2006; Cabral et al., 2014). However, it has long been suggested
that there is another route through which drug cues may induce
increased drug use, which is the activation of conditioned
sensorimotor associations (Tiffany, 1990). Drug cues may
induce drug using behavior by activating the corresponding
brain regions related to action in heroin abstinent individuals
(Yalachkov et al., 2010). There is also considerable evidence
that the dorsolateral striatum-sensorimotor circle (DLS-SM) is
gradually engaged to underlie well established habitual drug
seeking behavior (Belin et al., 2009; Vollstädt-Klein et al., 2010;
Corbit et al., 2012; Barker and Taylor, 2014; Everitt, 2014).

Recent studies on substance users have offered an interesting
perspective on this issue. These studies found that for smokers,
areas that were activated in response to the cues included not
only the dorsal ACC, OFC and DLPFC, brain areas known for
their role in the components of addiction, which are frequently
observed in drug cue reactivity researches, but also the anterior
intraparietal sulcus (aIPS), left inferior frontal gyrus (IFG)
and premotor cortex (PMC), which store and process action
presentations (Yalachkov et al., 2009; Stippekohl et al., 2010;
Wagner et al., 2011). aIPS and IFG regions were more strongly
activated in smokers when they observed other smokers than
nonsmokers (Wagner et al., 2011). In other words, smoking
cues activated corresponding action representations of addiction
in smokers’ brains (Yalachkov and Naumer, 2011), which
may indicate that the sensorimotor cortex is involved in the
cue-induced reactivity.

Psychologists have theorized that observing action increases
the likelihood that a person performs those actions (Boy et al.,
2010). Some early neuroscience research also showed that
observing related actions can recruit the superior parietal and
lateral PFC and influence the link between cues and behavioral
responses (Decety et al., 1994; Buccino et al., 2004; Hamilton and
Grafton, 2006). Furthermore, action observation also activates
similar brain regions as observed in motor imagery, such as
the inferior parietal lobule (IPL) and the PMC (Zacks, 2008;
Caruana et al., 2014). In addition, manipulable object cues
were observed to activate the inferior, middle frontal gyrus and
superior parietal lobule (SPL; Lewis, 2006; Nachev et al., 2008;
Sumner and Husain, 2008). All of the research results may reflect
the engagement of automatized motor schemata and action
knowledge in drug use behavior under drug related cues.

However, these findings are limited to smokers and alcoholics,
and it remains untested whether and to what extent the action
representation works on other types of substance use individuals.
In addition, researchers do not know if there are any differences
in reactivity to different types of drug-related cues or the exact
role and function of different drug-related cues, such as images
of drugs, drug use action and drug use tools, in drug-related
cue reactivity. Clarification of these issues would further deepen

the understanding of drug addiction in terms of cue-induced
reactivity and its underlying mechanisms. Thus, the detailed and
precise study of the relevance of brain regions for drug cue
reactivity in response to different cues, particularly the study of
the link between the activation of action-related brain regions
and different types of drug-related cues, is essential.

Based on our previous researches (Zeng et al., 2015; Su
et al., 2016), the current study used fMRI to investigate the
brain reactivity of heroin dependent individuals under different
types of cues, to identify the basic mechanism of cue-induced
reactivity and what aspect of the cues would most activate the
action representation and influence the cue-induced reaction.
We hypothesized that all cues related to heroin would activate
the brain areas associated with reward, motivation, and executive
function. Moreover, the cues related to drug use action or tools
would activate more of the sensorimotor regions and DLS. Both
reward and DLS-Sensorimotor brain systems would be activated
in the addicted brain in response to the drug-related cues.

MATERIALS AND METHODS

Subjects
Forty (26 males and 14 females) heroin abstinent individuals and
29 controls (19 males and 10 females) with no history of any drug
addiction were recruited to participate in the study at a volunteer
drug rehabilitation center and factories in Guangdong Province,
China. All the participants were required to be from 18 years to
45 years old and to have at least 6 years education (graduated
from primary school). No history of major psychiatric disorders
(e.g., schizophrenia or mania) according to DSM-IV or serious
head injury or neurological disorder was reported. None was
taking medications known to affect the central nervous system
(e.g., tranquilizers or hypnagogs).

All the heroin abstinent individuals were required to conform
to the dependance standard of DSM–IV and to have been
abstinent for at least 1 month, with no alcohol consumption at
least 1 day before the experiment (cigarettes were allowed). To
make sure the subjects were in the detoxification phase, all of
them had urine testing and all tests were negative for heroin.

A questionnaire designed for this study was used to assess
age, gender, years of education and drug use behavior. The
Self-report Anxiety Scale (SAS; Zung, 1971) was used to evaluate
the severity of anxiety. Drug craving before and after scanning
was assessed by using a visual analog scale (VAS) on which
the participants had to rate their current craving for heroin.
Heart rate, respiration, blood pressure, galvanic skin response
(GSR) and skin temperature were also taken before and after
scanning as additional measures of cue reactivity. Wrist blood
pressure monitor was used to measure heart rate and blood
pressure. Measure length is 1 min. Aural thermometers was used
tomeasure the temperature, the length is 2 s. Galvanic skin sensor
was used tomeasure the GSR.We report the data of 30th seconds.

The protocol was approved by the South China Normal
University Committee. All participants gave informed consent
in accordance with the Declaration of Helsinki and with the
guidelines set for MRI scan by the committee for the protection
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of human subjects. Each subject received 200 Chinese Yuan for
participating in the experiment.

Stimuli
Prior to the study, a pilot study was conducted to identify
pictures that would evoke significant craving in heroin addicts.
Two-hundred and one drug-related pictures were collected and
divided into three types: (1) drug images containing only the
drug itself, not displaying tools or any actions; (2) drug use tool
images consisting of pictures of a syringe and other tools for
using heroin; and (3) drug using action images containing people
engaged in the activities of using tools to absorb or inject heroin.
The pictures did not show full figures of people, but rather
showed arms and hands engaged in the action; see Figure 1.

The neutral stimuli pictures were taken by ourselves and
were also divided into three types, each of them corresponding
to drug-related stimuli respectively: granular material pictures;
daily life manipulable object pictures and pictures of people
engaged in activities using manipulable objects to do something
on their body. We also tried to match the action between
the neutral and drug use pictures. In addition, all drug-related
stimuli pictures and neutral pictures werematched in size, quality
and layout.

After all the pictures were processed, 30 heroin abstinent
individuals (who were different participants from those in
the fMRI study: mean age = 39.27 ± 5.37 years, education
years = 10 ± 2.42 years, length of heroin dependance:

11 ± 5.68 years, length of abstinence: 19.3 ± 15 months)
from a volunteer detoxification center were invited to evaluate
the degree of craving elicited by the different cue pictures. A
VAS (0–7) was used to score the craving. One–way Analysis of
Variance indicated the main effect of cue type as the predictor
of craving was significant, F(2,28) = 6.96, p < 0.001. Drug-related
pictures that were scored less than 3 were deleted. In the end, we
had 45 drug cue pictures, 45 drug use tool pictures, 45 drug use
action pictures and relatively neutral pictures.

The Experiment Design and Process
A 2 (subjects group: Heroin Abstinent Group (HAG) vs. Health
Control Group (HCG)) × 2 (cue category: drug-related vs.
neutral) × 3 (cue type: drug vs. drug use tool vs. drug use action)
block design was employed in the fMRI task. There were six
experimental conditions for each subject and 45 trials for each
condition. To prevent fatigue and to ensure optimal fixation,
45 trials of each condition were split into nine blocks. Each 15 s
block consisted of five trials, each of which showed a picture for
2 s. A cross hair was presented for 500 ms, before and after each
trial. In total, there were 54 blocks (9 × 6 conditions), which
were presented in a pseudo-randomized order (avoiding two
successive presentations of the same condition). Before and after
each block, there was a 1200 ms interval. The whole experiment
was 664 repetition time (TR), 24.3 min.

While lying in the scanner, participants held a response pad in
their hand. The stimuli were presented through a LCD projector

FIGURE 1 | Drug related pictures and relatively neutral ones.
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onto a rear projection screen located behind the participants’
head. Participants viewed the screen through an angledmirror on
the head-coil and were asked to press the button to tell that they
saw the picture clearly. Stimulus presentations were delivered
using the E-Prime software package (Psychology Software Tools,
Inc., Pittsburgh, PA, USA).

MRI Data Acquisition
MRI data acquisition was performed using a 3-Tesla Siemens
scanner with a 32-channel head coil (Siemens, Erlangen,
Germany). For functional imaging, echo planar imaging (EPI)
images were acquired using a T2∗-weighted gradient echo
sequence with a TR of 2200 ms, an echo time (TE) of 30 ms, a flip
angle (FA) of 90◦, a field of view (FOV) of 220 × 220 mm and a
matrix size of 64 × 64. Each EPI image comprised 36 axial slices
of 3-mm thickness, voxel size = 3.1× 3.1× 3.0 mm3. In addition,
a high-resolution structural brain image was acquired using a
three-dimensional T1-weighted MP-RAGE sequence with a TR
of 2300 ms, a TE of 3.24 ms, an FA of 9◦, an FOV of 256 × 256,
a matrix size of 256 × 256, and 192 axial slices of 1-mm slice
thickness.

Data Analysis
For each participant, the acquiredMRI images were preprocessed
using SPM121. First, slice timing correction was performed, and
all EPI volumes were spatially realigned for motion correction
and coregistered to the participant’s T1-weighted structural
image. Second, the structural image was segmented into gray
matter, white matter and cerebrospinal fluid and normalized
to Montreal Neurological Institute (MNI) space, using the
CAT12 toolbox2. Third, using the deformation field obtained
through the normalization process, the coregistered EPI volumes
were normalized to MNI space and resliced to 2-mm isotropic
voxels. Finally, the normalized EPI volumes were spatially
smoothed with an isotropic 8 mm full-width-at-half-maximum
Gaussian kernel.

The preprocessed volumes were entered into a voxel-wise
general linear model (GLM) to identify task-related activation
for each participant. The GLM included a separate regressor for
each stimulus condition: drug pictures (Drug), drug use tool
pictures (Tool), drug using action pictures (Action) and neutral
pictures (C_Drug), neutral tool pictures (C_Tool), neutral
action pictures (C_Action). Each regressor was generated by
convolving a canonical hemodynamic response function into a
boxcar function representing stimulus presentation. A temporal
high-pass filter with a cutoff of 128 s was also incorporated
into the GLM for baseline correction. Additionally, the six head
movement parameters derived from the realignment procedure
were included as covariates of no interest.

At the group level, the six first-level individual contrast
images of the HAG and the six first-level individual contrast
images of the HCG were then fed into a 2 (subjects group) × 2
(cue category) × 3 (cue type) ANOVA employing a random-
effects model. Areas of activation of main effects and interaction

1www.fil.ion.ucl.ac.uk/spm/
2dbm.neuro.uni-jena.de/cat/

TABLE 1 | The demography data of the participants (n = 66).

HAG(37) HCG(29) Cohen’s d

M SD M SD

Age 41.79 2.36 44.01 4.87 −0.58
Years of education 9.83 1.21 10.41 1.16 −0.49
Cigarettes (each day) 14.66 6.54 9.76 8.55 0.64
Alcohol (ml/day)∗ 21.89 7.89 10.28 9.77 1.31
Anxiety level∗ 30.32 6.28 27.88 4.79 0.44
Duration of dependance (months) 211.32 47.32
Dosage (grams/day) 0.46 0.18
Duration of abstinence (months) 42.11 21.65

∗p < 0.05; HCG, Healthy control group; HAG, Heroin abstinent group.

TABLE 2 | The difference in physical signs and craving level before and after scan.

Pre-Scan Post-Scan t P Cohen’s d

Craving level 3.39 (1.55) 3.48 (1.50) 0.36 0.71 −0.06
Heart rate (beats/min) 76.33 (10.66) 72.97 (11.68) 2.38 0.03 0.30
Skin temperature 36.57 (0.28) 36.82 (0.27) −2.03 0.04 −0.91
GSR (30 s) 0.67 (0.12) −2.41 (1.79) 0.97 0.33 2.42
Systolic pressure 121.55 (15.21) 129.01 (12.67) 0.18 0.84 −0.53

SBP (mm/Hg)
Diastolic pressure 82.55 (11.24) 82.69 (10.33) −0.57 0.58 −0.01

DBR (mm/Hg)

GSR, galvanic skin response.

effects were identified as significant only if they passed a
conservative threshold of p < 0.001, corrected for multiple
comparisons (family-wise error correction, FWE) at the cluster
level with an underlying voxel level of p < 0.001, uncorrected.
Parameter estimates for the BOLD responses in the peak voxels
of the brain regions significantly activated were further extracted
using MarsBaR 0.433 and examined by planned t-tests (with
Bonferroni’s correction).

RESULTS

Demographic Data
Forty heroin abstinent dependent individuals were screened to
participate in the experiment. Data from three persons were
discarded due to movement. We finally obtained 37 participants
(24 males and 13 females) in the heroin abstinent dependent
group (HAG) and 29 in the HCG. All of the individuals in HAG
had been abstinent from heroin at least for 1 month; see Table 1.

Self-Reported Craving Level and Physical
Signs Before and After Scanning
Before and after the scan, all the participants were tested
for craving level by self–report and for physical signs such
as heart rate and temperature. Paired–samples t tests were
used to compare pre-scan and post-scan measures. The results
showed there were significant differences for temperature and
heart rate, but no significant differences for self-reported
craving level or other physical signs between pre–scan and
post–scan. This may be due to the insufficient difference
in craving levels between pre-scan and post-scan, which

3http://sourceforge.net/projects/marsbar
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failed to induce a difference in these psychophysiological
indexes. Heart rate decrease after scan may be because
of the tension release after the scan was completed; see
Table 2.

fMRI Results
Main Effect of Subjects Group, Cue Category and
Cue Types
We first identified brain regions associated with the main effect
of subjects group. Right inferior frontal cortex (IFC) and left
inferior parietal cortex (IPC) showed significantly lower neural
activity in HAG group than in HCG group. Besides, left anterior
cingulum cortex (ACC) and right posterior cingulum cortex
(PCC) showed significantly higher neural activity in HAG group
than in HCG group; see Figure 2, Table 3A.

We then calculated the brain regions activated by the main
effect of the cue category. Bilateral lingual showed significantly
higher neural activity in drug-related condition than in neutral
condition. No significant activation was found in the reverse
contrast; see Figure 3, Table 3B.

Finally, bilateral middle temporal cortex (MTC), bilateral
calcarine and bilateral IPC showed significantly neural activity
associated with the main effect of cue type; see Figure 4,
Table 3C. Parameter estimates under the six experimental
conditions were extracted from the activated clusters and
submitted to a post hoc t-tests (with Bonferroni’s correction),
the results showed that: (1) in bilateral MTC and bilateral
IPC, neural activity in condition of Action and C_Action was
significantly higher than neural activity in condition of Tool
and C_Tool (all p < 0.001), neural activity in condition of
Tool and C_Tool was significantly higher than neural activity

FIGURE 2 | Neural correlates underlying the main effect of subjects group. HAG, Heroin abstinent group; HCG, Health control group; C_Drug, neutral drug pictures;
C_Tool, neutral tool pictures; C_Action, neutral action pictures.
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TABLE 3 | Brain regions showing significant relative increases of BOLD response associated with the effect of subjects group, cue type and cue category.

Brain regions L/R Cluster size Voxel BA Peak location Z-Score

X Y Z

(A) main effect of subjects group
Inferior frontal cortex R 227 45 57 27 12 7.81
Inferior parietal cortex L 254 2 −51 −36 57 7.59
Posterior cingulum cortex R 205 23 12 −51 15 6.10
Anterior cingulum cortex L 219 11 −6 36 6 5.24

(B) main effect of cue category
Lingual R 1480 37 21 −48 −9 5.24

Lingual L 19 −21 −60 −9 5.12

(C) main effect of cue type
Middle temporal cortex R 706 37 48 −63 9 14.62
Middle temporal cortex L 723 37 −51 −63 6 14.18
Calcarine L 380 17 −3 −81 −6 12.77

Calcarine R 17 6 −84 −6 12.32
Inferior parietal cortex R 210 40 36 −42 51 10.54
Inferior parietal cortex L 316 40 −39 −42 48 7.55

(D) Interaction among subjects group, cue category and cue type
Insula L 604 47 −30 36 6 4.25

Caudate L 25 −21 36 6 4.19
Caudate R 47 12 33 −3 3.91
Putamen R 48 18 15 9 3.46

The coordinates (x, y, z) correspond to MNI coordinates. Displayed are the coordinates of the maximally activated voxel within a significant cluster as well as the coordinates
of relevant local maxima within the cluster (in italics).

FIGURE 3 | Neural correlates underlying the main effect of cue category. HAG, Heroin abstinent group; HCG, Health control group; C_Drug, neutral drug pictures;
C_Tool, neutral tool pictures; C_Action, neutral action pictures.
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FIGURE 4 | Neural correlates underlying the main effect of cue type. HAG, Heroin abstinent group; HCG, Health control group; C_Drug, neutral drug pictures;
C_Tool, neutral tool pictures; C_Action, neutral action pictures.

in condition of Drug and C_Drug (all p < 0.001); and (2) in
bilateral calcarine, neural activity in condition of Drug and
C_Drug was significantly higher than neural activity in condition
of Action and C_Action (all p < 0.001), neural activity in
condition of Action and C_Action was significantly higher
than neural activity in condition of Tool and C_Tool (all
p < 0.001).

Neural Interaction Among Subjects Group, Cue
Category and Cue Type
Left insula, bilateral caudate and right putamenwere significantly
activated in neural interaction among subjects group, cue
category and cue type. Parameter estimates under the six
experimental conditions were extracted from the activated
clusters and submitted to a 2 (subjects group) × 2 (cue

category) × 3 (cue type) repeated-measures ANOVA (Planned
t-tests on simple effects were Bonferroni corrected). For
the HAG, Left insula, bilateral caudate and right putamen
showed significantly higher neural activity in Action condition
than in C_Action condition (all p < 0.001); while for
the HCG, Left insula, bilateral caudate and right putamen
showed significantly lower neural activity in Action condition
than in C_Action condition (all p < 0.001); see Figure 5,
Table 3D.

DISCUSSION

This study is the first to divide drug-related cues into drug, drug
use action and drug use tool, and to use these cues as drug stimuli
to induce brain activity. We confirmed that there was activity in
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FIGURE 5 | Neural interaction among subjects group, cue category and cue type. HAG, Heroin abstinent group; HCG, Health control group; C_Drug, neutral drug
pictures; C_Tool, neutral tool pictures; C_Action, neutral action pictures.

different brain regions in response to different drug stimuli, and
drug use action cues activated more areas, including the motor
area and caudate nucleus (DLS), than the other two types of
cues. These results are meaningful because they could explain
the mechanism of automatic drug using behavior induced by
drug-related cues.

We characterized differences between participants with HAG
and HCG in terms of their response to neutral stimuli and
to different types of drug-related cues. IFC and IPC, PCC
and ACC were observed to be significantly activated for
the main effect of subject group, bilateral lingual gyrus was
observed to be significantly activated for the main effect of

cue category. For HAG, relative to the drug tool and drug
cues, the drug use action cues stimulated greater activations
in the sensorimotor areas including bilateral MTC, inferior
parietal gyrus and calcarine. The neural interaction between
participant group, cue category and cue type indicated that
the left insula, right caudate and right putamen showed
significantly enhanced neural activity in the ‘‘HAGaction’’
condition. These findings partly verified our hypothesis: drug
related cues activated both ACC, insula and DSL-sensorimotor
circles (IPC, caudate and putamen). The cues related to drug use
action activated more of the sensorimotor and dorsal striatum
regions.
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These results are also in line with some of the addiction
literatures, which have repeatedly demonstrated that
amygdala, hippocampus, dACC, PFC, components of the
mesocorticolimbic system, are innervated by dopaminergic
projections from VTA. Activity in these brain regions reflects
the reward value predicted by drug related cues (Schultz,
2007; Jasinska et al., 2014). The insula was also activated
under drug-related cues, which is often engaged during tasks
requiring cognitive control (Lewis, 2006; Stippekohl et al.,
2010; Wagner et al., 2011; Jasinska et al., 2014), it contributes
to hand-and-eye motor movement and motor learning too
(Mutschler et al., 2007). The putamen and caudate nucleus
together form the dorsal striatum.The putamen has long been
known to be associated with motor processes (Malenka et al.,
2009). It is interconnected with many other structures, and
works in conjunction with them to influence many types of
motor behaviors. A primary function of the putamen is to
regulate motor planning and execution (Yager et al., 2015). It
was also found to play a role in the ‘‘automatic’’ performance
of previously learned movements (Griffiths et al., 1994). This
encodes associations between drug-related cues and behavioral
responses. It may allow the presentation of drug-related cues to
activate automatic behavioral response, which results in drug
taking (Goodman and Packard, 2016).

It is known that superior and inferior parietal cortices,
posterior MTG and inferior temporal cortex, which are
called action-representation regions, store and process action
knowledge and tool use skills (Lewis, 2006; Buxbaum et al.,
2007) involved in motor preparation and output (Yalachkov
and Naumer, 2011). IPL and SPL are also associated with links
between and synthesizing of sensory and motor signals (Jacob
and Jeannerod, 2005), characterized as a motor resonance system
(Rizzolatti and Craighero, 2004). Our study results proved that
related cues not only activate the reward-motivation system
of addiction which include thalamus, anterior cingulate and
insula, but also stimulate activities in the sensorimotor-DLS
circuit, which is the neural basis of automatic action response,
including inferior and superior parietal gyrus, caudate and
putamen.

The Sensorimotor-DLS areas that were activated under
different drug-related cues have also been shown to be activated
in many other cue-induction studies (Jacob and Jeannerod,
2005; Smolka et al., 2006; Chase et al., 2011; Kühn and
Gallinat, 2011; Engelmann et al., 2012; Tang et al., 2012). A
meta-analysis of 11 studies pointed out that the more reliably
activated regions, including visual system, precuneus, anterior
and posterior cingulate cortex, the dorsolateral PFC, insula and
dorsal striatum, were activated in most of the fMRI studies
on smoke-related cue-induced reaction (Engelmann et al.,
2012).

However, little is known about factors that modulate the
degree of cue reactivity, especially factors related to the cue
itself. It is hard to tell from previous research which specific
aspect of the cue induces the specific brain area reactivity,
and which area’s activity is the underpinning mechanism of a
specific cue. Based on previous research, we distinguished the
effect of different cues on cue–induced reactivity. Compared to

the other drug cues, the drug use action cues more strongly
activated the DLS- Sensorimotor related brain regions. This
indicated that drug cues might not be the only essential factor in
cue-induced reactivity, especially for behavior reactivity. White
(1996) suggested that drugs play the part of ‘‘reinforcers’’ that
strengthen associations among drug-related cues and drug using
behavior, implying that action representation is possibly the
other important mechanism of cue-induced reactivity. Jasinska
et al. (2014) argued that drug use history might facilitate the
sensorimotor processing of drug cues and promote a suite of
learning and plasticity processes. Thus, once addicted individuals
are exposed to drug-related cues, automatic drug seeking or
using behavior would be elicited. This is coincident with what
Tiffany pointed out in 1990: Automatic drug using behavior is
assumed to be an important aspect of craving and the key point
of relapse.

The current study not only confirmed that the sensorimotor
areas associated with action representation are activated under
drug-related cues, but moving forward, the study clarifies
different types of cues and the effects of each type of cue-induced
reactivity. Activations of sensory and motor brain regions
in response to drug-associated cues can predict relapse and
correlate with craving, severity of dependance and automatized
behavioral reactions towards drug-related stimuli (Yalachkov
et al., 2009). This highlights the potential use of the cortex
representation effect of the sensorimotor system in cue exposure
therapy for drug addiction (Choi et al., 2011).

CONCLUSION

The findings largely replicate prior neuroimaging research on
drug cue reactivity, and also clarify different types of cues’
effects in drug-induced reactivity (Lewis, 2006; Stippekohl et al.,
2010; Wagner et al., 2011; Jasinska et al., 2014). The study
indicated that drug use action related cues activate corresponding
action representations and dorsal striatum in the heroin addicted
brain. This finding might be one key to understanding habitual
drug using behavior and relapse. The results have important
implications not only for a theory of addiction but also for the
practical application of neuroscientific findings in the prevention
of uncontrolled drug use and the treatment of drug addiction.

LIMITATIONS

A limitation of the study is that static pictures were used as
the cues in the research. Even though static cues have proven
instrumental to the study of cue-induced craving, dynamic action
stimuli may be better suited for studying motor representation.
Further research needs to use dynamic action stimuli to confirm
the results of this study and to identify the effect of different
cues in the process of automatic drug using behavior. Another
limitation is that HAG had a higher level of alcohol use on
average than HCG, and all participants were permitted to use
cigarettes. These factors might have confounded the results
(Wagner et al., 2011; Li et al., 2013). However, we do not know
if the levels of drinking or smoking in these individuals could
explain the results.
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